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Abstract: It may happen that under a certain wave interrogation, a medium scatterer produces no
scattering. In such a case, the scattering field is trapped inside the scatterer and forms a certain
interior resonant mode. We are concerned with the behavior of the wave propagation inside a
transparent scatterer. It turns out that the study can be boiled down to analyzing the interior
transmission eigenvalue problem. For isotropic mediums, it is shown in a series of recent works that
the transmission eigenfunctions possess rich patterns. In this paper, we show that those spectral
patterns also hold for anisotropic mediums.
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1. Introduction

Achieving “transparency” or “invisibility” has been a fascinating topic. This subject
has a huge impact on technological and industrial applications. Regarding the invisibility
cloaking, transformation optics [1–5] is one of the most notable methods; see also [6–16] for
more related mathematical works. This cloak reduces both back-scattering and forward-
scattering with metamaterial technology. It is interesting to note that the cloaking layer
can steer the wave propagation so that it slides over the surface of the object being cloaked
and returns to its original path after passing through the cloaking layer. Another ap-
proach to realize the invisibility cloaking is to utilize plasmonic structures [17–22]. The
transparencies/invisibilities mentioned above are “artificial” in the sense that they are
achieved by artificially engineered material structures. In this paper, we are concerned
with “natural” transparencies/invisibilities, namely, the phenomena that occur for generic
natural materials. It turns out that the study can be boiled down to analyzing the so-called
interior transmission eigenvalue problem. In fact, if transparency occurs, the scattering
wave is trapped inside the scatterer, which together with the interrogating/incident wave
forms a pair of transmission eigenfunctions. The corresponding wavenumber is an interior
transmission eigenvalue.

The study of the interior transmission eigenvalue problem has a long and colorful
history. It is a class of non-elliptic and non-selfadjoint eigenvalue problems that stems
from the scattering theory for inhomogeneous media [23–25]. The spectral properties of the
transmission eigenvalues have been intensively and extensively studied in the literature.
In particular, it is known that for a generic medium scatterer, there exists an infinite and
discrete set of eigenvalues satisfying 0 < k1 ≤ k2 ≤ · · · ≤ kl ≤ · · · → +∞, with +∞
the only accumulating point [23,25,26]. However, there are few results on the spectral
geometry of transmission eigenfunctions, which corresponds to the pattern of the wave
propagation inside the scatterer when transparency/invisibility occurs. Very recently, it
was revealed in [27–32] in different physical contexts that the transmission eigenfunctions
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possess rich spectral patterns. These studies show that near a corner/high-curvature point
on the boundary of the scatterer, the transmission eigenfunctions must be nearly vanishing.
Furthermore, concerning the global property, Chow et al. [30] discovered that under generic
scenarios, either the transmission eigenfunction w or v is localized on the boundary surface
in R3 or the boundary curve in R2. These discoveries about the geometric properties of
the transmission eigenfunction also have some interesting applications, e.g., establishing
unique identifiability results for a variety of inverse problems [33–35], producing a super-
resolution imaging scheme for the inverse acoustic scattering problem, and generating the
so-called pseudo surface plasmon resonant modes with a potential sensing application [30],
as well as electromagnetic mirage [31].

So far, all of the discoveries about the geometric patterns of transmission functions have
been made in the setting of isotropic media. For the more challenging case of anisotropic
media, we find for the first time that the waves inside the “transparent” scatterers have
some regular patterns. On the one hand, the transmission eigenfunctions generically vanish
near the corner points in both R2 and R3. On the other hand, they tend to localize on
the boundary of the scatterer if the wavenumber is large or the refractive index of the
medium scatterer is high. Due to the limitation of computing resources, our study cannot
be exhaustive. Nevertheless, we consider the representative geometric setup. In fact, a
wider range of cases have these kinds of properties. We discuss the related results in
Section 3.

The paper is organized as follows. Section 2 shows the wave patterns inside a variety
of “transparent” scatterers. Among them, the isotropic results are displayed in Section 2.1,
and the numerical results for anisotropic media are demonstrated in Section 2.2. The paper
concludes in Section 3 with a summary of the most important results.

2. Results

In this section, the main numerical results of the internal patterns of those “transparent”
waves are presented. We assume that the scatterer D ⊂ Rd, d = 2, 3 is a bounded connected
domain with Lipschitz boundary ∂D. Let pb be the background pressure field and ps be the
scattered pressure field; then, the total pressure field p can be represented by

p(x, t) = pb(x, t) + ps(x, t). (1)

Now the wave equation for theacoustic field in the fluid satisfies the following system

ρ(x)
∂v
∂t

(x, t) +∇p(x, t) = 0, κ(x)
∂p
∂t

(x, t) +∇ · v(x, t) = 0, (2)

where ρ denotes a symmetric matrix valued function, v denotes the perturbed velocity of
the fluid, and κ is the compressibility. Moreover, κ−1 = B denotes the bulk modulus. By
eliminating the velocity field v, the last wave equation can be rewritten as

∂2 p
∂t2 − κ−1∇ · (ρ∇p) = 0. (3)

For the time-harmonic case, let p(x, t) = <(u(x)eiωt); then, u satisfies the reduced
wave equation

∇ · (ρ∇u(x)) + ω2κu(x) = 0, (4)

where ω > 0 denotes the frequency. Correspondingly, the reduced time-harmonic back-
ground field ub satisfying the Helmholtz equation

∇2ub + ω2ub = 0. (5)

The presence of the scatterer D interrupts the propagation of the background field ub,
bringing on the scattered field us. Let u := ub + us denote the total wave field. If we denote
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I + Q := ρ, k2 := ω2, and 1 + p := κ. The forward scattering problem is modeled by the
following system: 

∇ · [(I + Q)∇u] + k2(1 + p)u = 0 in Rd,

∆ub + k2ub = 0 in Rd,

u = ub + us in Rd,

lim
r→∞

r
d−1

2

(
∂us

∂r
− ikus

)
= 0,

(6)

where r = |x| and the last limit in (6) characterizes the outgoing nature of the scattered
wave field us. The well-posedness of the scattering system (6) is known, and in particular,
a unique solution u ∈ H2

loc(R
d) exists. Furthermore, the scattered field has the following

asymptotic expansion:

us(x, θ, k) =
ei π

4
√

8kπ

(
e−i π

4

√
k

2π

)d−2
eikr

r
d−1

2

{
u∞(x̂, θ, k) +O

(
1
r

)}
as r → ∞, (7)

which holds uniformly for all directions x̂ := x/|x| ∈ Sd−1. The complex-valued function
u∞(x̂, θ, k) defined on the unit sphere Sd−1 is known as the far-field pattern of u, which
encodes the information of the indexes Q and p. If the presence of the object does not
cause scattering, invisibility occurs. In this case, u∞ ≡ 0, and by Rellich’s Theorem, one has
us = 0 in Rd \ D̄. Meanwhile, one immediately can verify that w = u|D and v = ub|D fulfill
the following system:

∇ · [(I + Q)∇w] + k2(1 + p)w = 0 in D,

∆v + k2v = 0 in D,

w = v, ν · (I + Q)∇w = ν · ∇v on ∂D,

(8)

where, and in what follows, ν is the unit outward normal to ∂D. A value k ∈ R+ for which
the transmission eigenvalue problem (8) has non-trivial solutions (w, v) ∈ H1(D)× H1(D)
is called a transmission eigenvalue. The corresponding nonzero solutions (w, v) are called
transmission eigenfunctions. In the following, we denote by

q∗ = sup
x∈D

sup
ξ∈Rd ,|ξ|=1

(ξ ·Q(x)ξ), (9)

q∗ = inf
x∈D

inf
ξ∈Rd ,|ξ|=1

(ξ ·Q(x)ξ), (10)

p∗ = sup
x∈D

p(x), p∗ = inf
x∈D

p(x) (11)

the essential supremum and infimum of Q and p. We suppose that the matrix valued
function Q and the function p are such that either q∗ > 0 and p∗ < 0, or q∗ < 0 and
p∗ > 0. Then, an infinite sequence of transmission eigenvalues exists with +∞ as the only
accumulation point [25].

We use the continuous finite-element method to solve the system (8). Multiplying the
first two equations in (8) by a test function ϕ ∈ H1

0(D) and integrating by parts, one has

((I + Q)∇w,∇ϕ)− k2((1 + p)w, ϕ) = 0, ∀ϕ ∈ H1
0(D),

(∇v,∇ϕ)− k2(v, ϕ) = 0, ∀ϕ ∈ H1
0(D).

(12)
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To enforce the boundary condition ν · (I + Q)∇w = ν · ∇v weakly, we multiply it by
a test function ψ ∈ H1(D) and integrate by parts, thus obtaining

((I + Q)∇w,∇ψ)− k2((1 + p)w, ψ) = (∇v,∇ψ)− k2(v, ψ), ∀ψ ∈ H1(D). (13)

Hence, the variational formulation for (8) is to find (u, v) ∈ H1(D)× H1(D) satisfy-
ing (12) and (13), together with the essential boundary condition w = v on ∂D.

Let Th be a regular triangular or tetrahedral mesh of D, and let Vh be the finite element
subspace of H1(D) consisting of piecewise linear functions on each element of Th. We also
define a subspace V0

h = Vh ∩ H1
0(D). Let {ηi}m

i=1 detote a basis for V0
h and {ηi}m

i=1 ∪ {ζ j}n
j=1

denote a basis for Vh, respectively. To enforce the boundary conditions w = v on ∂D, we set

wh =
m

∑
i=1

w(i)ηi +
n

∑
j=1

u(j)ζ j, vh =
m

∑
i=1

v(i)ηi +
n

∑
j=1

u(j)ζ j, (14)

to be the finite element approximations of w and v, respectively. Thus, the discrete form
of (12) and (13) can be written as

AX = k2BX, (15)

where
X = [w(1), · · · , w(m), v(1), · · · , v(m), u(1), · · · , u(n)] ∈ C2m+n, (16)

and

A =

 SI I 0 SIB
0 SI I SIB

S>IB −S>IB 0

, B =

 M2,I I 0 M2,IB
0 M1,I I M1,IB

M>2,IB −M>1,IB M2,BB −M1,BB

. (17)

Here, the stiffness and mass matrices are given by

SI I = (∇ηi, (I + Q)∇ηj), SIB = (∇ηi, (I + Q)∇ζ j),

M2,I I = (ηi, (1 + p)ηj), M2,IB = (ηi, (1 + p)ζ j),

M1,I I = (ηi, ηj), M1,IB = (ηi, ζ j),

M2,BB = (ζi, (1 + p)ζ j), M1,BB = (ζi, ζ j).

(18)

Here, we use an open-source PDE solver FreeFEM++ to implement the assembly of
the above matrices. The eigenvalue and eigenvector for the non-symmetric eigenvalue
problem (15) are computed by ARPACK in FreeFEM++, which is based on the Arnoldi al-
gorithm.

2.1. Isotropic Media

As a special case of anisotropic media, we first show the results of isotropic media.
Here, Q ≡ 0.

2.1.1. Local Geometrical Structures of Transmission Eigenfunctions

For any point on the scatterer boundary, we can quantitatively describe the properties
of a function around it. Let P ∈ ∂D be a point and Br(P) be a ball of radius r ∈ R+ centered
at P. Define Dr(P) := Br(P) ∩ D. Consider a function w ∈ L2(D). Then, we say w is
vanishing near P if

lim
r→+0

1√
|Dr(P)|

‖w(x)‖L2(Dr(P)) = 0, (19)

where |Dr(P)| signifies the area or volume of the region Dr(P) in two or three dimensions,
respectively.
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Two-Dimensional Example

Here, we consider the transmission eigenvalue problem in a regular hexagon with
vertices at P1 = (−2, 0), P2 = (−1,−

√
3), P3 = (1,−

√
3), P4 = (2, 0), P5 = (1,

√
3), and

P6 = (−1,
√

3). Let the scalar real valued function p = 3. The vanishing properties of both
transmission eigenfunctions w’s and v’s around each corner can be seen in Figure 1.

(a) k = 2.527 (b) k = 3.612 (c) k = 4.272

(d) k = 2.527 (e) k = 3.612 (f) k = 4.272

Figure 1. The magnitude of transmission eigenfunctions for a regular hexagon with different
eigenvalues. (a–c): eigenfunctions w’s; and (d–f): eigenfunctions v’s.

Three-Dimensional Example

Next, we numerically investigate the vanishing property of transmission eigenfunc-
tions in the three-dimensional case. Firstly, we give the definition of vertex points in R3 [36].
Let D ∈ R3 be a bounded open set. A point P ∈ ∂D is called a vertex if a neighborhood V
of P, a diffeomorphism Ψ of class C2, and a polyhedral cone Λ with the vertex at O exist
such that

∇ψ(P) = I3×3 ∈ R3, Ψ(P) = O, (20)

and Ψ maps V ∩ D̄ onto a neighborhood of O in Λ̄. Here, let D be a pyramid with a base of
length 1 and a top of length 0.5 and the index p = 15. From Figure 2, we can see that both
transmission eigenfunctions w’s and v’s vanish at all vertices of the domain D.

From the above isotropic examples, we can see that for both two-dimensional and
three-dimensional cases, the transmission eigenfunctions vanish at all vertices of D.

2.1.2. Global Geometrical Structures of Transmission Eigenfunctions

The vanishing properties of transmission eigenfunctions discussed in the previous
section are of a local nature. In this section, we are going to show the global geometric
structures of transmission eigenfunctions numerically in two and three dimensions. Recall
that the transmission eigenfunctions associated with the Helmholtz equation are localized
on the boundary of D under generic scenarios. For completeness and self-containedness,
in this part, we implement some different examples. Let’s first review the definition of
the localizing of transmission eigenfunctions here, referring to [30]. Consider a function
u ∈ L2(D). It is said to be surface-localized if a sufficiently small ε0 ∈ R+ exists such that

‖u‖L2(Nε0 (∂D))

‖u‖L2(D)
= 1−O(ε0), (21)

where
Nε0(∂D) := {x ∈ D; dist(x, ∂D) < ε0}. (22)
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Two-Dimensional Example

Let D be an ellipse with major axis 4 and minor axis 3 and p = 25. We can see from
Figure 3 that in this setting, the transmission eigenfunctions v’s are surface-localized, while
w’s are not for the same eigenvalues.

(a) k = 3.093 (b) k = 3.556 (c) k = 4.073

(d) k = 3.093 (e) k = 3.556 (f) k = 4.073

(g) k = 3.093 (h) k = 3.556 (i) k = 4.073

(j) k = 3.093 (k) k = 3.556 (l) k = 4.073

Figure 2. The magnitude of transmission eigenfunctions for a pyramid with different k’s.
(a–c): surface of w’s and v’s; (d–f): eigenfunctions w’s; (g–i): eigenfunctions v’s; and (j–l): w− v’s.
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(a) w (b) v

(c) w (d) v

Figure 3. The magnitude of transmission eigenfunctions for an ellipse. (a,b): k = 1.983;
(c,d): k = 2.347.

Three-Dimensional Example

Next, we consider the domain D a triaxial ellipsoid with the principal semi-axes
a = 2, b = 1.5, and c = 1, respectively. From Figure 4, it is clear that there is a family of
transmission eigenfunctions v’s that are localized on the boundary ∂D, while w’s are not.

2.2. Anisotropic Media

In this part, we consider the numerical results for a range of anisotropic media, i.e.,
cases where Q 6= 0.

2.2.1. Local Geometrical Structures of Transmission Eigenfunctions

In this section, we provide several anisotropic numerical examples to verify the
vanishing property in a certain geometric setup including corner singularities.

Two-Dimensional Examples

In the first example, we let D be an equilateral triangle with vertices at P1 = (−1, 0),
P2 = (1, 0), and P3 = (0,

√
3). Let

Q =

(
−0.5 0.2
0.2 −0.5

)
, p = 4. (23)

In Figure 5, we calculate the transmission eigenfunctions with respect to several differ-
ent transmission eigenvalues. This example illustrates that the transmission eigenfunctions
w’s and v’s vanish near every corner point of D.
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(a) k = 1.680 (b) k = 2.140 (c) k = 2.215

(d) k = 1.680 (e) k = 2.140 (f) k = 2.215

(g) k = 1.680 (h) k = 2.140 (i) k = 2.215

Figure 4. The magnitude of transmission eigenfunctions for an ellipsoid with different k’s.
(a–c): surface of w’s and v’s; (d–f): eigenfunctions w’s; and (g–i): eigenfunctions v’s.

(a) k = 3.206 (b) k = 3.433 (c) k = 4.815

(d) k = 3.206 (e) k = 3.433 (f) k = 4.815

Figure 5. The magnitude of transmission eigenfunctions for an equilateral triangle with different
eigenvalues. (a–c): eigenfunctions w’s; and (d–f): eigenfunctions v’s.

In the next example, we consider the domain D to be a square with a side length 2. Let

Q =

(
7 1
1 7

)
, p = −0.3. (24)
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The vanishing properties of both transmission eigenfunctions w’s and v’s near the
corners can be seen in Figure 6.

(a) k = 5.303 (b) k = 7.280 (c) k = 8.888

(d) k = 5.303 (e) k = 7.280 (f) k = 8.888

Figure 6. The magnitude of transmission eigenfunctions for a square with different k’s. (a–c): eigen-
functions w’s; (d–f): eigenfunctions v’s.

The two examples above show that near the corner points of the domain D, either
q∗ < 0, p∗ > 0 or q∗ > 0, p∗ < 0, the transmission eigenfunctions w’s and v’s both vanish.

Three-Dimensional Examples

In the following examples, we let D be some different three-dimensional domains. In
the first example, we let D be a cube with side length 1. Let

Q =

 49 2 0
2 49 0
0 0 36

, p = −0.4. (25)

From Figure 7, we can see that both transmission eigenfunctions w’s and v’s vanish at
all vertices of D.

Next, we let D be a cone with the bottom radius 1 and the height 1.5. Let

Q =

 36 2 0
2 36 0
0 0 25

, p = −0.5. (26)

We can see from Figure 8 that the transmission eigenfunctions w’s and v’s vanish near
the top point (0, 0, 1.5), which is the only vertex on D.

2.2.2. Global Geometrical Structures of Transmission Eigenfunctions

In Section 2.1.2, we reviewed the surface-localized property of transmission func-
tions in isotropic media. In this section, we numerically illustrate that the transmission
eigenfunctions for anisotropic media also possess the surface-localized property.
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Two-Dimensional Examples

We consider several different two-dimensional configurations in this part. In Figure 9,
we calculate the transmission eigenfunctions w’s and v’s for D being a unit disk. The corre-
sponding

Q =

(
−0.5 0.3
0.3 −0.5

)
, p = 8. (27)

It is clearly seen that for the same transmission eigenvalue, the transmission eigen-
function v is surface-localized, while w is not.

(a) k = 10.513 (b) k = 11.851 (c) k = 15.467

(d) k = 10.513 (e) k = 11.851 (f) k = 15.467

(g) k = 10.513 (h) k = 11.851 (i) k = 15.467

Figure 7. The magnitude of transmission eigenfunctions for a cube with different k’s. (a–c): surface
of w’s and v’s; (d–f): eigenfunctions w’s; and (g–i): eigenfunctions v’s.

From Figure 10, we can see that when D is an ellipse, and

Q =

(
25 2
2 25

)
, p = −0.6, (28)

the transmission eigenfunctions w’s are surface-localized, while v’s are not for some certain
eigenvalues.
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(a) k = 6.930 (b) k = 8.370 (c) k = 9.193

(d) k = 6.930 (e) k = 8.370 (f) k = 9.193

(g) k = 6.930 (h) k = 8.370 (i) k = 9.193

Figure 8. The magnitude of transmission eigenfunctions for a cone with different k’s. (a–c): surface
of w’s and v’s; (d–f): eigenfunctions w’s; and (g–i): eigenfunctions v’s.

(a) w (b) v

(c) w (d) v

Figure 9. The magnitude of transmission eigenfunctions for a unit disk. (a,b): k = 2.576; (c,d): k = 3.301.
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(a) w (b) v

(c) w (d) v

Figure 10. The magnitude of transmission eigenfunctions for an ellipse with the semi-major radius
1.5 and the semi-minor radius 1. (a,b): k = 8.736; (c,d): k = 9.621.

Three-Dimensional Examples

Next, we conduct several numerical examples in three dimensions. We first consider a
unit sphere with

Q =

 25 1 0
1 25 0
0 0 17

, p = −0.5. (29)

From Figure 11, it is clear that there is a family of transmission eigenfunctions w’s that
is localized on the boundary ∂D, while v’s are not.

Figure 12 plots the transmission eigenfunctions with three different eigenvalues. The
domain D considered here is a torus, and

Q =

 36 2 0
2 36 0
0 0 25

, p = −0.4. (30)

For these different transmission eigenvalues, the transmission eigenfunctions w’s are
surface-localized, while v’s are not.
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(a) k = 8.273 (b) k = 9.447 (c) k = 10.587

(d) k = 8.273 (e) k = 9.447 (f) k = 10.587

(g) k = 8.273 (h) k = 9.447 (i) k = 10.587

(j) k = 8.273 (k) k = 9.447 (l) k = 10.587

Figure 11. The magnitude of transmission eigenfunctions for a unit sphere with different k’s.
(a–c): surface of w’s and v’s; (d–f): eigenfunctions w’s; and (g–i): eigenfunctions v’s; (j–l): w− v’s.

From the above examples, we can see that when q∗ < 0 and p∗ > 0, the transmission
eigenfunction v is surface-localized, while w is not. If q∗ > 0 and p∗ < 0, the transmission
eigenfunction w is surface-localized, while v is not. This result agrees to some extent
with the result for the isotropic situation [30]. Recall the isotropic cases; if p > 0, the
transmission eigenfunction v tends to localized on the boundary of the scatterer if the
wavenumber is large. If −1 < p < 0, the same global geometric property holds for the
transmission eigenfunction w. Practically, we cannot compute very large eigenvalues, so
we take the relatively large indexes Q or p to illustrate the localization property. As the
numerical experiments cannot be complete, further theoretical analysis is needed on how
the localization property depends on the indexes.

For summary and comparison purposes, we list the necessary parameters of all of the
numerical results in Table 1.
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(a) k = 7.674 (b) k = 8.374 (c) k = 9.087

(d) k = 7.674 (e) k = 8.374 (f) k = 9.087

(g) k = 7.674 (h) k = 8.374 (i) k = 9.087

Figure 12. The magnitude of transmission eigenfunctions for a torus with different k’s. (a–c): surface
of w’s and v’s; (d–f): eigenfunctions w’s; and (g–i): eigenfunctions v’s.

Table 1. Summary of numerical results.

No. Shape Medium Q p

Figure 1 hexagon isotropic 0 3

Figure 2 pyramid isotropic 0 15

Figure 3 ellipse isotropic 0 25

Figure 4 triaxial ellipsoid isotropic 0 16

Figure 5 equilateral triangle anisotropic
(
−0.5 0.2
0.2 −0.5

)
4

Figure 6 square anisotropic
(

7 1
1 7

)
−0.3

Figure 7 cube anisotropic

 49 2 0
2 49 0
0 0 36

 −0.4

Figure 8 cone anisotropic

 36 2 0
2 36 0
0 0 25

 −0.5

Figure 9 disk anisotropic
(
−0.5 0.3
0.3 −0.5

)
8

Figure 10 ellipse anisotropic
(

25 2
2 25

)
−0.6

Figure 11 sphere anisotropic

 25 1 0
1 25 0
0 0 17

 −0.5

Figure 12 torus anisotropic

 36 2 0
2 36 0
0 0 25

 −0.4
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3. Summary and Conclusions

In this paper, we numerically investigate the intrinsic geometric structures of transmis-
sion eigenfunctions for isotropic media and anisotropic media, especially for anisotropic
media. Extensive numerical results show that these eigenfunctions have similar geometric
properties to the transmission eigenfunctions associated with the Helmholtz system for
isotropic media. Locally, the transmission eigenfunctions vanish near the corner points
of the scatterer. Globally, they tend to localize on the boundary of the scatterer if the
wavenumber is large or the refractive index is high. The results also show the dependence
of the localization property on the wavenumber and the refractive index of the medium
scatterer. Both two- and three-dimensional experiments qualitatively confirm our results.

It is noted that the transmission eigenfunction is closely related to the invisibility cloak-
ing. The phenomenon that the transmission eigenfunction is localized on the boundary
can be regarded as the cloaking device forcing the field to enclose the hidden object, that
is, the “artificial transparency/invisibility” is a natural extension of the “natural trans-
parency/invisibility”. On the other hand, it is physically justifiable that the transmission
eigenfunctions vanish at the corners. If the field enters the place near a corner, it will be
trapped there. Then, it is impossible for the incident field to pass through the obstacle
without scattering.

Although our numerical study cannot be exhaustive, we consider the representative
geometric setup in both two and three dimensions. This work not only enriches the spectral
theory for the interior transmission eigenvalue problem but also provides direction for
future theoretical research. Moreover, this study can be applied in many practical projects.
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