
Citation: Attaullah; Khurshaid, A.;

Zeeshan; Alyobi, S.; Yassen, M.F.;

Prathumwan, D. Computational

Framework of the SVIR Epidemic

Model with a Non-Linear Saturation

Incidence Rate. Axioms 2022, 11, 651.

https://doi.org/10.3390/

axioms11110651

Academic Editor: Chihhsiong Shih

Received: 17 September 2022

Accepted: 8 November 2022

Published: 17 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Computational Framework of the SVIR Epidemic Model with a
Non-Linear Saturation Incidence Rate
Attaullah 1 , Adil Khurshaid 2, Zeeshan 1, Sultan Alyobi 3 , Mansour F. Yassen 4,5 and Din Prathumwan 6,*

1 Department of Mathematics & Statistics, Bacha Khan University, Charsadda 24461, Pakistan
2 Department of Mathematics, University of Swabi, Swabi 23430, Pakistan
3 King Abdulaziz University, College of Science & Arts, Department of Mathematics, Rabigh, Saudi Arabia
4 Department of Mathematics, College of Science and Humanities in Al-Aflaj, Prince Sattam Bin Abdulaziz

University, Al-Aflaj 11912, Saudi Arabia
5 Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Damietta, Egypt
6 Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
* Correspondence: dinpr@kku.ac.th; Tel.: +66-4300-9700

Abstract: In this study, we developed an autonomous non-linear epidemic model for the transmis-
sion dynamics of susceptible, vaccinated, infected, and recovered individuals (SVIR model) with
non-linear saturation incidence and vaccination rates. The non-linear saturation incidence rate
significantly reduces the death ratio of infected individuals by increasing human immunity. We
discuss a detailed explanation of the model equilibrium, its basic reproduction number R0, local
stability, and global stability. The disease-free equilibrium is observed to be stable if R0 < 1, while
the endemic equilibrium exists and the disease exists permanently in the population if R0 > 1. To
approximate the solution of the model, the well-known Runge–Kutta (RK4) methodology is utilized.
The implications of numerous parameters on the population dynamics of susceptible, vaccinated,
infected, and recovered individuals are addressed. We discovered that increasing the value of the
disease-included death rate ψ has a negative impact on those affected, while it has a positive impact
on other populations. Furthermore, the value of interaction between vaccinated and infected λ2 has a
decreasing impact on vulnerable and vaccinated people, while increasing in other populations. On
the other hand, the model is solved using Euler and Euler-modified techniques, and the results are
compared numerically and graphically. The quantitative computations demonstrate that the RK4
method provides very precise solutions compared to the other approaches. The results show that the
suggested SVIR model that approximates the solution method is accurate and useful.

Keywords: SVIR model; HIV; RK4 method; numerical comparison

1. Introduction

Infectious diseases spread among humans, and individuals become worried and work
diligently to cure diseases. They are trying to find a way to treat the infection and are looking
for help from doctors. Infections produced by bacteria, viruses, fungi, or parasitic animals
are instances of contagious diseases. A wide range of organisms live in human organs.
They are normally harmless or useful, yet some organisms may transmit disease under
certain conditions. “Leptospirosis” is one of the most contagious diseases. Leptospirosis
is a disorder originating from a specific type of bacteria known as “Leptospira”. Both
humans and livestock are commonly affected by the disease [1–3]. Humans become ill
after entering the water where a dead rat is located, and animals that drink this water
become infected. Because the Leptospirosis infection germs were released via the urine,
the individual whose urine was used by other animals and cattle became severely ill. This
disease is frequently transmitted by those who walk through polluted water. In 1886, Weil
recognized Leptospirosis as a distinct chronic disease, three decades before Inada and
his colleagues discovered the individual’s etiology. High body temperature, headache,
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chills, muscle pain, conjunctivitis (red eyes), diarrhea, vomiting, kidney or liver issues,
anemia, and rash are also all signs of Leptospirosis infection. The indications might persist
anywhere from a few days to a few months. This disease can cause death, although it is
uncommon. In some situations, illnesses are minor and have no visible symptoms [4–8].
The majority of frameworks have indeed been presented to capture mammalian, and vector
evolutionary processes [9–11]. Pongsuumpun et al. [12] used computational models to
analyze Leptospirosis epidemic behavior. These show the pace of change in both the rat and
human populations. Adolescents and mature phases are the two main categories within
global occupants. Triampo et al. [13] proposed a mathematical framework for Leptospirosis
affliction dissemination. The investigators looked at various Leptospirosis illnesses in
Thailand and demonstrated mathematical visualizations. Zaman et al. [14] studied the
vigorous deportment and function of optimal control theory using actual information
from [13]. Zaman et al. [15] describe the sequential interconnection between a Leptospirosis-
contaminated vector and a global community, including local and global resilience. Their
paper also depicted bifurcation analyses and gave numerical computations for various
infectious rates. A.A. Lashari et al. introduced an endemic prototype of malaria in [16] and
reached their best solutions by employing three control factors. For additional information,
check [16–19]. Salmonellosis causes typhoid bugs and bacterial contamination. Typically,
this infection is characterized by the consumption of food or beverages contaminated with
feces or urine of infected people. However, typhoid infection has spread from person to
person, which airborne organisms might have helped. High body temperature, headaches,
and coughing are common side effects; however, some people are asymptomatic shippers
and can still be infected. The most well-known case is a teenage chef who had been held
responsible for infecting at least 53 people with typhoid, three of whom died [20]. Another
infection with similar characteristics is cholera. Cholera is another illness with comparable
features. The far more important and prevalent dissemination routes are contaminated
food and water, although human-to-human dissemination is indeed conceivable [21].
This suggests that certain bug families should be required to represent both direct and
environmentally friendly mediation. Sick people seek adequate medication when they
become well-known, but the therapy is often inadequate, and the medicated people remain
virulent. According to the CDC, over 5% of persons who are hospitalized for typhoid
continue to spread the disease after treatment [22]. Nearly every year, millions of people
die from different infectious diseases. These expansions played a vital role in the spread of
HIV in the 1980s.

The World Health Organization (WHO) estimates that 32.6 million people are infected
with Aids currently [23]. The global population benefits from awareness of the prevalence
and severity of pandemic illnesses to avoid significant damage. Mathematical modeling
of infectious diseases was first introduced in 1760 by the general practitioner and math-
ematician Daniel Bernoulli, son of John Bernoulli and nephew of Bernoulli. His energy
was about illustrating the advantages of vaccination of less poisonous smallpox to stop
the bug, weighing the threats. The mathematical models become usable tools to predict
future phenomena [24,25]. From then on, physicians started using mathematical models to
illuminate the important tools that influence transmitting transmissible diseases. One of the
vital presentations of mathematical models is to help and recognize control approaches to
remove a disease or reduce its endemicity [25–32]. In current centuries, numerous attempts
have been made to examine the spread-changing aspects of infectious bugs. Moreover,
the asymptotic deeds of these epidemic models are studied in [33–36]. Vaccination and
antiviral remedies are the most effective way to change a contagious disease. Real antiviral
treatment may not be available in sufficient amounts. For example, Bird flu bugs H5N1
and H7N9, having periodically infested souls, become dexterous of tainting cells and take
a stride towards revolving into a pandemic causing pressure [37,38].

Many simple models have generated beneficial intuitions into the disease transmission
dynamics. For example, in the regular SIR compartment model for infectious diseases,
the population is divided into three compartments: Susceptible (S), Infected (I), and Re-
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covered (R). Based on the theory of epidemics in [39], the blowout of transferable bugs
is termed compartmental simulations such as SIR or SIRS models that mention every
alphabet to a compartment in which the individual could exist. Lastly, vaccination is
added to decrease the effect of diseases. SIS, SIRS, and SEIR models have also been used
to study various biological questions related to different bugs. Certain contagious dis-
eases are passed from person to person, while others are spread via bug or animal stings.
Others are generated as a result of ingestion of degraded food, drinking polluted water,
or being subjected to environmental organisms. Each communicable disease has unique
symptoms, although fever, coughing, and exhaustion are common. Vaccination helps
intercept several communicable diseases, such as measles and chickenpox. Hands that
are cleaned regularly and thoroughly help protect us from most viral infectious diseases.
In the beginning, treatment of any infectious disease is very rare and costly, and people
try to control it in such a way that is low in cost, reliable, and efficient. It is especially
of great interest when living standards are not up to the mark. Different types of experi-
ments were performed for the treatment, such as vaccinations, antibiotics, and awareness.
The progress in the development of sanitation, antibiotics, and well-organized vaccination
policies brought forth a situation in the last half of the previous century that viral diseases
would be abolished. Due to this reason, the treatment of the diseases like Cancer and HIV
has been made possible by doctors. However, the viral disease vectors took up a new form,
and in resultant new ailments came into being, and preexisted epidemics adopted new
forms. Precautionary measures, except these approaches, are of special importance. In
developed countries, noncommunicable diseases (NCDs) are replaced by communicable
viral diseases (CVDs) [40–44]. The leading epidemic in the tropical and subtropical regions
is Dengue, which inflicts economic, health, and social issues [45]. According to the World
Health Organization (WHO), 50 to 100 million Dengue illnesses are recorded each year,
with 500,000 cases of Dengue Hemorrhagic Fever (DHF) involving twenty-two thousand
deaths, the overwhelming of which are adolescents [46]. The Mediterranean is at high risk
for this vector-borne disease [47]. Elbasha et al. [48] explored the design of vaccination
strategies to overcome various types of Human Population virus (HPV). The vector of
dengue fever is a female mosquito known as Aedes. No vaccine is available to eradicate
Dengue, but prevention is the best possible way to cure it. Dengue has mainly affected the
warm parts of the world, such as India, Sri Lanka, Central Asia, China, Central America,
and Pakistan. The breeding of Aedes in urban areas is not the same as in rural areas. Dengue
has become endemic in over a hundred countries, among different parts of the globe,
in the last two decades [49]. Aedes prefer to live in human habitation regions. Aedes bites
at dusk and dawn. Breeding of Aedes in urban areas is at a high rate in discarded tires,
broken bottles, flower vases, and water containers. The poor environmental conditions
and poor sanitation encourage the spread of disease [50]. Mathematical models provide a
powerful way that leads to investigate infections. Anderson et al. [51] studied infectious dis-
eases using mathematical models. Kermack et al. [52] introduced the susceptible, infected,
and recovered (SIR) model for a fixed population. The host population is divided into
compartments, each containing individuals who are the same with respect to the disease.
Different numerical techniques are used in every era to find the solution to the epidemic
model. Attaullah et al. [53] discussed the computational analysis of the HIV model and
the immune system interaction using the Galerkin scheme. Amin et al. [54] used the Haar
wavelet approach to estimate the solution of the mathematical model of HIV infection CD4
+ T-Cells. Laarabi et al. [55] considered the SIRS model with vaccination and treatment
control. AIDS is an infectious disease that HIV causes. It is a viral infection that can be
transferred through blood, or during pregnancy from mother to child, by sharing needles
or by blood transfusions [56]. Zhao et al. [57] discussed the behavior of an SVIR epidemic
model with stochastic perturbation. Zhao et al. [58] presented a qualitative evaluation
of a two-group SVIR epidemic model with random effect. Djilali et al. [59] investigated
the global dynamics of an SVIR epidemic model with distributed delay and an imperfect
vaccine. Wang et al. [60] explored the global stability of a multigroup SVIR model with
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vaccination age. Xing et al. [61] explained the periodic solutions for a relapse-based SVIR
epidemic model.

The fundamental aim of the present paper is to examine the SVIR based on four
coupled non-linear ordinary differential equations. We discuss a detailed explanation of the
model equilibrium, its basic reproduction number R0, local stability, and global stability. It is
observed that the disease-free equilibrium is stable if R0 < 1, while the endemic equilibrium
exists and the disease exists permanently in the population if R0 > 1. The mentioned model
is solved by applying the well-known Runge–Kutta scheme. This method has superiority
to some extent over the other traditional techniques [62,63]. Furthermore, adjusting the
values of various medical predictors in the prototype allows for observation of variance.
To illustrate the reliability of the suggested scheme, the model is solved using Euler and
Euler modified methods, and the findings are compared with those obtained using the RK4
technique. All the findings are visualized through different graphs. The detailed analysis
of the aforementioned model demonstrates that the RK4 scheme is more authentic and
accurate than the previous approaches employed for the model.

The following is how the article’s content is organized: Section 2 introduces the
fundamental concepts—the formulation of the SVIR model. The disease-free equilibrium of
the proposed model was introduced in Section 3. Section 4 represents the basic reproduction
number of the model. The local stability of the model was shown in Section 5 and followed
by the global stability in Section 6. Section 7 provides the well-known Runge–Kutta method
implemented for the model. The numerical results, the behaviors of different parameters,
and comparison of the solutions of the RK4 method with other classical techniques applied
to the model are discussed in Section 8. Finally, Section 9 gives the conclusion of the article.
A computer code written in MATLAB is used to perform the computations.

2. Mathematical Formulation of the SVIR Model

One of the major research areas for mathematicians and biologists is the mathematical
modeling of natural phenomena or disease modeling. According to the mathematical
framework, infectious diseases manifest themselves as ODEs, PDEs, or both. The dynamical
behavior, reproduction number, stability analysis, bifurcation analysis, and numerical
findings of models that depict the epidemiology of a certain illness can be examined.
Kermack and Kendrick [52] gave the first statistical model. It provides a straightforward
SIR model with three state variables: susceptible, infected, and recovered. Due to the
development of this framework, several mathematical models for other infectious diseases
have been developed. The major goal of such mathematical models is to get insights into
the mechanisms of various diseases and how to regulate them. The dynamics of susceptible
S(t), vaccinated V(t), infected I(t), and recovered R(t) individuals are described by a
mathematical model consisting of a set of four first-order non-linear differential equations,
respectively. The flow chart of the proposed model is shown in Figure 1. The model is
presented as follows:

dS(t)
dt

= α(1− µ)β− (α + η)S(t)− λ1S(t)I(t)
1 + ξ1 I(t)

+ γV(t),

dV(t)
dt

= αµβ + ηS(t)− λ2ξ2V(t)I(t)− (α + γ)V(t),

dI(t)
dt

=
λ1S(t)I(t)
1 + ξ1 I(t)

+ λ2ξ2V(t)I(t)− (α + φ + ψ)I(t),

dR(t)
dt

= φI(t)− αR(t),

(1)

the initial conditions are given as follows:

S(0) ≥ 0, V(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0. (2)
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The equation for N, which represents the entire population can be written as

dN(t)
dt

= αβ− αN(t)− ψI(t) (3)

Table 1 shows the explanations of the parameters and values in the specified model.

Figure 1. The flow chart and graphical representation of the proposed model.

Table 1. The explanation of the parameters with their values is contained in the model.

Parameters Explanation Values

S(0) Susceptible individuals who can contract the disease 90 per day
V(0) Vaccinated individuals who are vaccinated 25 per day
I(0) Infected individuals that have capacity to spread sickness to others 30 per day
R(0) Recovered individuals who have acquired immunity 18 per day
αβ Population recruitment rate 0.00018 per day
µ The fraction of individuals to be vaccinated 0 per day
α Natural death rate 0.09 per day

λ1 The disease contact rate 0.0002 per day
λ2 The interaction between vaccinated and infected 0.09 per day
γ Waning of vaccine 0.01 per day
φ Recovery rate 0.01 per day
η The individuals who needs vaccination 0.009 per day
ψ The disease included death rate 0.02 per day
ξ1 Reflects the effect of vaccine reducing the infection rate 0.05 per day
ξ2 The saturation constant 0.3 per day

3. Equilibria

System (1) in the proposed model having disease-free equilibrium at E0 = (S0, V0, 0, 0),
as given below

E0 = (S0, V0, 0, 0) = (
(α + γ)(1− µ)αβ

α(α + γ + φ)
,

φαβ(1− µ)

α(α + γ + φ)
, 0, 0)

4. Basic Reproduction Number

It is a constraint that detects the spread and control of the disease in epidemiology.
The probable secondary cases in a finally susceptible populace by an infective individual are
called the reproduction number, denoted by R0. It is perfectly proposed that the threshold
value governs whether the disease continues or dies. If R0 < 1, means the disease-free
equilibrium is stable, i.e., disease vanishes from society. If R0 > 1, then endemic equilibrium
exists also disease permanently exists in the populace. With the next age group matrix
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approach, we regulate an expression for the suggested system. Suppose x = (I), then
system (1) will be,

dx
dt

= F1 −V1,

F1 =

[
( γ1SI

1+ξ1 I ) + γ2ξ2 VI
0

]
,

V1 =

[
(α + φ + ψ)I

αµβ + φS− (α + γ)V

]
,

F = Jacobian of F1 =

[
( γ1S

1+ξ1 I2 ) + γ2ξ2V γ2ξ2 I

0 0

]
,

F = Jacobian of F1 at (S0, V0, 0, 0) =
[

γ1S0 + γ2ξ2V0 0
0 0

]
,

V = Jacobian of V1 =

[
α + φ + ψ 0

0 α + γ

]
,

V = Jacobian of V1 at (S0, V0, 0, 0) =
[

α + φ + ψ 0
0 α + γ

]
.

V−1 = ( α+φ+ψ
α+γ )

[
α + γ 0

0 α + φ + ψ

]
,

so,

FV−1 =

[
γ1S0+γ2ξ2V0

α+φ+ψ 0
0 0

]
.

As,

E0 = (S0, V0, 0, 0) = (
(α + γ)(1− µ)αβ

α(α + γ + φ)
,

φαβ(1− µ)

α(α + γ + φ)
, 0, 0).

By using S0 and V0 in FV−1, we get

R0 = ρ[FV−1] =
γ1(α + γ)(1− µ)αβ + γ2ξ2φαβ(1− µ)

α(α + γ + φ)(α + φ + ψ)
.

which is a basic reproduction number required for the system (1).

5. Local Stability

Here, we are going to discuss the local stability of the disease-free and endemic equilib-
rium. From system (1), the last equation is independent of the rest. After omitting that term
following reduced model is obtained:

dS
dt

= α(1− µ)β− (α + φ)S− γ1SI
(1 + ξ1 I)

+ γV,

dV
dt

= αµβ + φS− γ2ξ2VI − (α + γ)V,

dI
dt

=
γ1SI

(1 + ξ1 I)
+ γ2ξ2VI − (α + φ + ψ)I,

(4)

with initial conditions S(0) = S0 ≥ 0, V(0) = V0 ≥ 0, I(0) = I0 ≥ 0. We will use the
following theorems and their proofs as follows.
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Theorem 1. At E0, the disease free equilibrium of the system (4) is stable locally asymptotically,
when R0 < 1.

Proof. Jacobian matrix at E0 is

J0 =


−(α + φ) γ γ1S0

φ −(α + γ) −γ2ξ2V0

0 0 (R0 − 1)(α + φ + ψ)
.

 (5)

Its characteristic equation is

λ3 + a1λ2 + a2λ + a3 = 0,

by solving, we get

a1 = (α + φ) + (α + γ) + (α + φ + ψ)(1− R0) > 0,

a2 = (α + φ)(α + γ)− φγ + [(α + φ) + (α + γ)](α + φ + ψ)(1− R0) > 0,

a3 = [(α + φ)(α + γ)− φγ](α + φ + ψ)(1− R0) > 0.

Let suppose, A = α + φ, B = α + γ, C = (1− R0)(α + φ + ψ).

a1a2 − a3 = (A + B)[AB− φγ + (A + B)C] + AB(C)2 > 0.

The Routh–Hurtwiz criteria is satisfied as a1 > 0, a2 > 0, a3 > 0 and a1a2 − a3 > 0 if
R0 < 1. All the entries in the above system have a real part, which is negative. Hence, the
disease-free equilibrium of the above system (4) at E0 is locally asymptotically stable.

For R0 > 1, its shown that under some sufficient conditions the above system is locally
asymptotically stable around E∗.

Theorem 2. The system (4) is locally asymptotically stable at E∗ if R0 > 1, otherwise unstable.

Proof. Jacobian matrix at E∗ of the system (4) is given as:

J1 =

 −(α + φ)− γ1 I∗
1+ξ1 I∗ γ −γ1S∗

(1+ξ1 I∗)2

φ −γ2ξ2 I∗ − (α + γ) −γ2ξ2V∗
γ1 I∗

1+ξ1 I∗ γ2ξ2 I∗ γ1S∗

(1+ξ1 I∗)2 + γ2ξ2V∗ − (α + φ + ψ)

.

By elementary row operation, the new matrix is obtained as follows:

J1 =

 −α −α −(α + φ + ψ)
0 −α(γ2ξ2 I∗ + (α + γ + φ)) −α(γ2ξ2V∗ + φ)

0 α(γ2ξ2 I∗ − γ1 I∗
1+ξ1 I∗ −α(γ2ξ2V∗ + (α + φ + ψ)− γ1S∗

1+ξ1 I∗

.

In the Jacobian matrix, the first eigenvalue is clearly negative, i.e., −α < 0. By showing
tr J1 < 0 and det J1 > 0 we obtained the remaining eigenvalues:

tr J1 = −α[1 + γ2ξ2 I∗ + (α + γ + φ) + (α + φ + ψ)− γ2ξ2V∗ − γ1S∗

1 + ξ1 I∗
] < 0,
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and

det J1 = α[α2(γ2ξ2 I∗ + (α + γ + φ))((α + φ + ψ)− γ2ξ2V∗ − γ1S∗

1 + ξ1 I∗
)

+α2(αγ2ξ2V∗ + φ)(γ2ξ2 I∗ − γ1 I∗

1 + ξ1 I∗
)] > 0.

Determinant of J1, det J1 > 0, (as the determinant is always positive). The endemic
equilibrium of the system (4) at E∗ has a negative real part. Therefore, the endemic
equilibrium is locally asymptotically stable if R0 < 1.

6. Global Stability

Now we will discuss the global stability of (disease-free and endemic equilibrium) by
the Lyapunov function given below:

Theorem 3. The disease-free equilibrium of local stability of the model (4) is globally asymptotically
stable if R0 < 1.

Proof. The Lyapunov function is

L = u1(S− S0) + u2(V −V0) + u3 I,

where u1, u2, u3 are positive constants which we are going to determine. By differentiating
the given Lyapunov equation w.r.t time t, we get

L′ = u1[α(1− µ)β− (α + φ)S− γ1SI
(1 + ξ1 I)

+ γV] + u2[αµβ + φS− γ2ξ2VI − (α + γ)V]+

u3[
γ1SI

(1 + ξ1 I)
+ γ2ξ2VI − (α + φ + ψ)I],

by arranging some terms, we get

L′ =
γ1SI

(1 + ξ1 I)
(u3 − u1) + γ2ξ2VI(u3 − u2) + S(u2φ− (α + φ)u1) + V(u1γ− u2(α + γ))+

u1α(1− µ)β + u2αµβ− u3(α + φ + ψ)I,

here u1 = u2 = u3 = 1. We obtain L′ = −(αN − αβ)− (φ + ψ)I < 0.
Therefore, the disease-free equilibrium of the system is globally asymptotically stable ,

if R0 < 1.

Theorem 4. The endemic equilibrium E∗ of the system (4) is globally asymptotically stable if
R0 > 1,

γ∗ =
(α + γ)(α + φ)

φ
, ξ∗2 =

α + φ

φ
,

γ1(α + γ)(α + φ)µ > γ2ξ2φ(1− µ), are satisfied.

Proof. We construct a Lyapunov function as

W = (α + γ)(S− S∗) +
(α + γ)(α + φ)

φ
V + (α + γ)I.
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Differentiating w.r.t time, we get

W ′ = (α + γ)[α(1− µ)β− (α + φ)S− γ1SI
(1 + ξ1 I)

+ γV] +
(α + γ)(α + φ)

φ
[αµβ + φ S

−γ2ξ2VI − (α + γ)V] + (α + γ)[
γ1SI

(1 + ξ1 I)
+ γ2ξ2VI − (α + φ + ψ)I].

After some arrangements, we get

W ′ = −α(α + φ + ψ)(α + φ + γ)R0 − αβ(γ1(α + γ)(α + φ)µ− γ2ξ2φ(1− µ))− γ1(α + γ)(α + φ + ψ)I < 0.

Thus, W ′ < 0, the endemic equilibrium E∗ of the system (4) is globally asymptotically
stable, provided that R0 > 1.

7. The Well-Known Runge–Kutta Method of Order Four

The Runge–Kutta method of order four briefly RK4 method is the numerical method
used to solve initial value problems of the first-order differential equation. Let us consider

ẏ = g(t, y), a ≤ t ≤ b (6)

be the initial value problem with the initial condition y(a) = α. Let N be an integer and
we let h = b−a

N is the step size. Partition the whole Interval into N subinterval with mesh
points ti = a + ih, for i = 0, 1, 2, · · ·, N − 1. Then the Runge–Kutta method of order four
can be expressed as

yi+1 = yi +
1
6
(k1 + 2(k2 + k3) + k4), for i = 0, 1, 2, . . ., N − 1, (7)

where
k1 = h · g(ti, yi),

k2 = h · g
(

ti +
h
2

, yi +
k1

2

)
,

k3 = h · g
(

ti +
h
2

, yi +
k2

2

)
,

k4 = h · g(ti + h, yi + k3).

The Runge–Kutta method of order four (RK4) agrees with the Taylor series method
up to terms of O

(
h4). This method can be extended to solve a system of nth first-order

differential equations. The generalization of the method is as follows:
Let

dy1

dt
= g1(t, y1, y2, . . . , yn),

dy2

dt
= g2(t, y1, y2, . . . , yn),

...
dyn

dt
= gn(t, y1, y2, . . . , yn),

be the nth-order system of first-order initial value problems with the initial conditions

y1(a) = α1, y2(a) = α2, . . . , yn(a) = an. (8)
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Using the notation yj
i , for each i = 0, 1, 2, . . . , N and j = 1, 2, . . . , n, to denote an

approximation to yj(ti). That is, yj
i approximates the jth solution y(t) of Equation (7) at the

ith mesh points ti. For the initial condition, set

y1
0 = α1, y2

0 = α2, . . . , yn
0 = αn (9)

Suppose that the values y1
i , y2

i , . . . , yn
i have been computed. We obtain y1

i+1, y2
i+2, . . . , yn

i+1
by first calculating

kj
1 = hgj

(
ti, y1

i , y2
i , . . . , yn

i

)
,

kj
2 = hgj

(
ti +

h
2

, y1
i +

k1
1

2
, y2

i +
k2

1
2

, . . . , yn
i +

kn
1

2

)
,

kj
3 = hgj

(
ti +

h
2

, y1
i +

k1
2

2
, y2

i +
k2

2
2

, . . . , yn
i +

kn
2

2

)
,

kj
4 = hgj

(
ti + h, y1

i + k1
3, y2

i + k2
3, . . . , yn

i + kn
3

)
for each j = 1, 2, . . . , n; and then

yj
i+1 = yj

i +
1
6

(
kj

1 + 2
(

kj
2 + kj

3

)
+ kj

4

)
(10)

for each j = 1, 2, . . ., n. The values k1
1k2

1, . . . , kn
1 must be calculated before any of the terms of

the form kj
2 can be determined.

8. Numerical Results

The numerical solution of the SVIR model is described using the Runge–Kutta tech-
nique of order four (RK4 method) in this section. We alternate the values of certain specified
parameters while keeping all other parameters constant to determine the behavior of dis-
tinct parameters in the recommended model. The model’s geometrical representation
shows the behavior of different parameters. From the figures, it might be clear that the
dynamic behavior of S(t), V(t), I(t), and R(t) shows different results by changing the val-
ues of the parameters. This study deals with how the approval of an equilibrium solution
changes with deviating parameters. We intended only for the case where only one param-
eter is assorted. We numerically examined the model based on the previous results and
textured the classic’s properties by changing the parameters’ values by keeping fixed vari-
ables and using the different initial conditions. We dispute the dynamics of ψ (the disease
included death rate) in susceptible, vaccinated, infected, and recovered individuals, respec-
tively, that are shown in Figure 2a–d. In Figure 2a, by increasing the value of ψ, a decrease
occurs in susceptible individuals over time. Figure 2b analyses the effects of different values
of ψ on vaccinated individuals. By increasing the value of ψ, the strength of the vaccinated
individuals increased and gradually decreased after some time. Moreover, in Figure 2c,
the concentration of infected individuals increased by increasing the value of the disease-
included death rate, i.e., ψ. In Figure 2d, by increasing the value of the disease-included
death rate, the recovered individuals’ population increased, decreased, and became stout
after approximately ten weeks. In Figure 2a–f, by increasing the value of the interaction
between vaccinated and infected individuals, i.e., λ2, the strength of susceptible individuals
and vaccinated individuals become equal, and then slightly decreases in Figure 3a,b, by in-
creasing the value of the interaction between vaccinated and infected, i.e., λ2, the strength
of infected individuals and recovered individuals become equal, and then slightly increases.
In Figure 3c,d, by increasing the value of the saturation constant, i.e., ξ2, the strength of
susceptible individuals and vaccinated individuals decreases. While in Figure 3e,f, by in-
creasing the value of the saturation constant, i.e., ξ2, the strength of infected individuals
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and recovered individuals increases. In Figure 4a–d, by decreasing the initial conditions,
the concentration of susceptible, vaccinated, infected, and recovered individuals decrease in
the results of infected individuals. Figure 4e describes the population dynamics of all four
individuals, i.e., susceptible, vaccinated, infected, and recovered. Finally, in Figure 5a–h
are shown the graphical comparison between the aforementioned schemes implemented
for the model S(t), V(t), I(t), and R(t). From the figure, it could be seen that the Euler
modified finding is closer to the results of RK4 than the findings of Euler solutions.

(a) (b)

(c) (d)

(e) (f)

Figure 2. The population dynamics of (a) S(t), (b) V(t), (c) I(t), and (d) R(t) for different values of
‘ψ’ and (e) S(t), (f) V(t), with different values of‘ λ2’.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Numerical simulations of the model variables (a) S(t), (b) V(t), (c) I(t), and (d) R(t) for
different values of ‘λ2’ and (e) S(t), (f) V(t), with different values of ‘ξ2’.
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(a) (b)

(c) (d)

(e)

Figure 4. The population dynamics of (a) S(t), (b) V(t), (c) I(t), and (d) R(t) for different values of
‘ξ2’ and (e) different values of the initial condition.

8.1. The Euler’s Method

Although Euler’s method is rarely used in practice, the simplicity of its derivation
can be used to illustrate the techniques involved in the construction of some of the more
advanced techniques without the cumbersome algebra that accompany these constructions.
Euler’s method aims to obtain an approximation to the well-posed initial value problem.

dy
dt

= f (t, y), a ≤ t ≤ b, y(a) = α (11)

In actuality, a continuous approximation to the solution y(t) will not be obtained;
instead, approximations to y will be generated at various values, called mesh points, in the
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interval [a, b]. This condition is ensured by choosing a positive integer N and selecting the
mesh points.

ti = a + ih, for each i = 0, 1, 2, . . . , N. (12)

The common distance between the points h = b−a
N = ti+1− ti is called the step size. We

will use Taylor’s Theorem to derive Euler’s method. Suppose that y(t), the unique solution to
Equation (12), has two continuous derivatives on [a, b], so that for each i = 0, 1, 2, . . . , N − 1,

y(ti+1) = y(ti) + (ti+1 − ti)y′(ti) +
(ti+1 − ti)

2

2
y′′(ξi), (13)

for some number ξi in (ti, ti+1). Since h = ti+1 − ti, we have

y(ti+1) = y(ti) + hy′(ti) +
h2

2
y′′(ξi), (14)

and, since y(t) satisfies the differential Equation (12),

y(ti+1) = y(ti) + h f (ti, y(ti)) +
h2

2
y′′(ξi). (15)

Euler’s method constructs wi ≈ y(ti), for each i = 1, 2, . . . , N, by deleting the remain-
der term. Thus, Euler’s method is as follows:

wi+1 = wi + h f (ti, wi), for each i = 0, 1, 2, . . . , N − 1. (16)

8.2. The Modified Euler Method

The modified Euler method is used to numerically solve first-order initial-value
problems. Let

ẏ = g(t, y), a ≤ t ≤ b, (17)

is the initial value problem with the initial condition y(a) = α, let N > 0 be an integer and
we set h = b−a

N is the step size. Partition the whole interval into the N subinterval with
mesh points ti = a + ih, for i = 0, 1, 2, . . . , N − 1. Then the Modified Euler method can be
described as:

yi+1 = yi +
h
2
[ f (ti, yi) + f (ti+1, yi) + h f (ti, yi)], for i = 0, 1, 2, · · · , N − 1. (18)

8.3. Comparison between the Results of Euler, Modified Euler, and RK4 Method

In this section, we solve the model for SVIR infection using Euler and modified Euler
methods and compare the results graphically and numerically with those obtained from
the RK4 method. We illustrate the precision and effectiveness of the RK4 method. In
Tables 2–5, the comparison between the results of the Euler method and the Rk4 method
for S(t), V(t), I(t), and R(t) are shown. Tables 6–9 show that the modified Euler method
solutions are much closer to the RK4 method solutions than the solutions of the Euler
method. Finally, absolute errors are computed between the results of RK4, Euler, and modi-
fied Euler schemes. The comparison shows that the RK4 technique is effective and reliable
in obtaining an approximate solution to real-world initial value problems.
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Table 2. Comparison between the results of the Euler method and RK4 method for S(t).

ti Euiler Method RK4 Method Absolute Errors

0.0 90.000000000000000 90.000000000000000 0.000000000000000
0.1 89.034762948033872 89.029617999999999 0.005144948033873
0.2 88.079745470036670 88.069561229557578 0.010184240479092
0.3 87.134842868778534 87.119723407963733 0.015119460814802
0.4 86.199951484273271 86.179999316198234 0.019952168075037
0.5 85.274968681238036 85.250284783712715 0.024683897525321
0.6 84.359792836886470 84.330476675573507 0.029316161312963
0.7 83.454323329042992 83.420472879951788 0.033850449091204
0.8 82.558460524566343 82.520172295948527 0.038288228617816
0.9 81.672105768070509 81.629474821741852 0.042630946328657
1.0 80.795161370931382 80.748281343044667 0.046880027886715

Table 3. Comparison between the results of the Euler method and RK4 method for V(t).

ti Euiler Method RK4 Method Absolute Errors

0.0 25.000000000000000 25.000000000000000 0.000000000000000
0.1 24.596395992509390 24.592500000000001 0.003895992509388
0.2 24.200511635620451 24.192824725287501 0.007686910332950
0.3 23.812237223402949 23.800865148540041 0.011372074862908
0.4 23.431461615664698 23.416510567635029 0.014951048029669
0.5 23.058072446901463 23.039648827631819 0.018423619269644
0.6 22.691956326423597 22.670166533866979 0.021789792556618
0.7 22.332999029641439 22.307949256089849 0.025049773551590
0.8 21.981085680526895 21.952881723606147 0.028203956920748
0.9 21.636100925301140 21.604848011435209 0.031252913865931
1.0 21.297929097427900 21.263731717520841 0.034197379907059

Table 4. Comparison between the results of the Euler method and RK4 method for I(t).

ti Euiler Method RK4 Method Absolute Errors

0.0 30.000000000000000 30.000000000000000 0.000000000000000
0.1 29.980146014399079 29.982900000000001 0.002753985600922
0.2 29.954862429909038 29.960256183154929 0.005393753245890
0.3 29.924267607139907 29.932187033704771 0.007919426564865
0.4 29.888480809334528 29.898812164962287 0.010331355627759
0.5 29.847621999039390 29.860252102516966 0.012630103477576
0.6 29.801811643920956 29.816628076688705 0.014816432767748
0.7 29.751170531724419 29.768061824282324 0.016891292557904
0.8 29.695819594336569 29.714675399653530 0.018855805316960
0.9 29.635879740882331 29.656590995059311 0.020711254176980
1.0 29.571471699755335 29.593930770231555 0.022459070476220

Table 5. Comparison between the results of the Euler method and RK4 method for R(t).

ti Euiler Method RK4 Method Absolute Errors

0.0 18.000000000000000 18.000000000000000 0.000000000000000
0.1 17.868582780067243 17.867999999999999 0.000582780067244
0.2 17.738320527288252 17.737170899999999 0.001149627288253
0.3 17.609197547275553 17.607496618083154 0.001700929192399
0.4 17.481198404554231 17.478961335554111 0.002237069000120
0.5 17.354307921038636 17.351549495699086 0.002758425339550
0.6 17.228511174324886 17.225245802340311 0.003265371984575
0.7 17.103793495809906 17.100035218195938 0.003758277613969
0.8 16.980140468647647 16.975902963056456 0.004237505591192
0.9 16.857537925552993 16.852834511788600 0.004703413764393
1.0 16.735971946463639 16.730815592177564 0.005156354286076
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Table 6. Comparison between the results of the modified Euler method and RK4 method for S(t).

ti Euiler Method RK4 Method Absolute Errors

0.0 90.000000000000000 90.000000000000000 0.000000000000000
0.1 89.034762948033872 89.034780614778782 0.000017666744910
0.2 88.079745470036670 88.079780449716438 0.000034979679768
0.3 87.134842868778534 87.134894813323911 0.000051944545376
0.4 86.199951484273271 86.200020051221500 0.000068566948229
0.5 85.274968681238036 85.275053533603440 0.000084852365404
0.6 84.359792836886470 84.359893643035804 0.000100806149334
0.7 83.454323329042992 83.454439762575433 0.000116433532440
0.8 82.558460524566343 82.558592264197998 0.000131739631655
0.9 81.672105768070509 81.672252497523374 0.000146729452865
1.0 80.795161370931382 80.795322778826517 0.000161407895135

Table 7. Comparison between the results of the modified Euler method and RK4 method for V(t).

ti Euiler Method RK4 Method Absolute Errors

0.0 25.000000000000000 25.000000000000000 0.000000000000000
0.1 24.596395992509390 24.596412362643751 0.000016370134361
0.2 24.200511635620451 24.200544044586529 0.000032408966078
0.3 23.812237223402949 23.812285327914147 0.000048104511198
0.4 23.431461615664698 23.431525061732632 0.000063446067934
0.5 23.058072446901463 23.058150871082471 0.000078424181009
0.6 22.691956326423597 22.692049357026683 0.000093030603086
0.7 22.332999029641439 22.333106287895113 0.000107258253674
0.8 21.981085680526895 21.981206781702834 0.000121101175939
0.9 21.636100925301140 21.636235479792926 0.000134554491787
1.0 21.297929097427900 21.298076711783498 0.000147614355598

Table 8. Comparison between the results of the modified Euler method and RK4 method for I(t).

ti Euiler Method RK4 Method Absolute Errors

0.0 30.000000000000000 30.000000000000000 0.000000000000000
0.1 29.980146014399079 29.980128091577463 0.000017922821616
0.2 29.954862429909038 29.954827092314897 0.000035337594142
0.3 29.924267607139907 29.924215370430119 0.000052236709788
0.4 29.888480809334528 29.888412195475798 0.000068613858730
0.5 29.847621999039390 29.847537535051817 0.000084463987573
0.6 29.801811643920956 29.801711860665900 0.000099783255056
0.7 29.751170531724419 29.751055962739020 0.000114568985399
0.8 29.695819594336569 29.695690774716830 0.000128819619739
0.9 29.635879740882331 29.635737206216305 0.000142534666026
1.0 29.571471699755335 29.571315985107560 0.000155714647775

Table 9. Comparison between the results of the modified Euler method and RK4 method for R(t).

ti Euiler Method RK4 Method Absolute Errors

0.0 18.000000000000000 18.000000000000000 0.000000000000000
0.1 17.868582780067243 17.868585450000001 0.000002669932758
0.2 17.738320527288252 17.738325782082203 0.000005254793951
0.3 17.609197547275553 17.609205303340765 0.000007756065212
0.4 17.481198404554231 17.481208579809305 0.000010175255074
0.5 17.354307921038636 17.354320434934280 0.000012513895644
0.6 17.228511174324886 17.228525947864242 0.000014773539355
0.7 17.103793495809906 17.103810451565728 0.000016955755822
0.8 16.980140468647647 16.980159530776440 0.000019062128793
0.9 16.857537925552993 16.857559019806192 0.000021094253199
1.0 16.735971946463639 16.735995000195960 0.000023053732320
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5. Graphical comparison of RK4-method and Euler method for (a) S(t), (b) V(t), (c) I(t), and
(d) R(t). Numerical comparison of RK-4 method and modified Euler method for (e) S(t), (f) V(t),
(g) I(t), and (h) R(t).
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9. Conclusions and Future Recommendations

In this paper, the dynamical behavior of the SVIR model is examined. characterized
the equilibrium of the model, its basic reproduction number R0, local stability, and global
stability. The endemic equilibrium exists and the disease exists permanently in the popula-
tion if R0 > 1. The disease-free equilibrium is observed to be stable if R01. The influence of
different clinical parameters is depicted graphically by varying their values while keeping
all other parameters constant. The main points are summarized as follows:

• The concentration of S(t) decreases, while V(t), I(t), and R(t) increase with an in-
creasing rate of ψ.

• Increasing the values of λ2, the population dynamics of S(t), V(t) and I(t), R(t) is
observed to decrease and increase, respectively.

• The rate of saturation constant ξ2 results in a decrease in the density of S(t), I(t) while
an increase in the density of I(t) and R(t).

• Decreasing the initial conditions has a decreasing effect on the population dynamics
of S(t), V(t), I(t), and R(t).

From the study, medical doctors can become knowledgeable about the dynamic
behavior of susceptible, vaccinated, infected, and recovered individuals during disease.
On the other hand, the model has been solved using Euler and modified Euler schemes,
and the results have been compared graphically and numerically. From the comparison,
it could be seen clearly that the results of the modified Euler method agree closely with
the results of the RK4 method as in the comparison of Euler’s method. For further work,
the authors are interested in extending the model by introducing treatment and vaccination
rates. Moreover, to examine the stability analysis and reproduction number of the model.
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