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Abstract: The six-dimensional pseudo-Euclidean space E3,3 with signature (3, 3) is proposed as
a model of real physical space at the subparticle scale. The conserved quantum characteristics
of elementary particles, such as spin, isospin, electric and baryon charges, and hypercharge, are
expressed through the symmetries of this space. The symmetries are brought out by the various
representation of the metric in E3,3 with the aid of spinors and hyperbolic complex numbers. The
properties of the metric allow predicting the number of quarks equal to 18. The violation of strong
conservation laws in weak interactions is treated through compactifying the three-dimensional
temporal subspace at the subparticle scale into single-dimensional time at bigger scales, which
reduces symmetry from the spherical to axial type.
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1. Introduction

In the theory of grand unification based on the structural group SU(3)× SU(2)×U(1),
the mathematical number of space dimensions is equal to 11. In this case, four dimensions
refer to real physical space–time, whereas the remaining seven correspond to some abstract
space [1], within the framework of which one can introduce such quantum characteris-
tics of elementary particles as isospin, hypercharge, colour, flavour, etc. The number of
dimensions of that additional abstract space may increase as ever new conserved quantum
characteristics of elementary particles are discovered. This scheme of development of
the theory is rather simple; however, one cannot get reed of the feeling that it is ad hoc
and strained.

There were several attempts to introduce additional dimensions: supermembranes [2,3],
extending M-theory [4], F-theory [5,6], strings [7], 12D super Yang–Mills and supergravity
theories for constant lightlike vectors [8,9]. An elaborate theory is proposed in [10] and then
developed in respect to elementary particles in [11] and gravity [12]. The efforts of introducing
additional dimensions in various ways were presented in the review [13].

From the literature, one can see that the standard theory itself, as well as most of
alternative ways introduce many additional dimensions to form a mathematical struc-
ture, which is able to support necessary quantum characteristics. Even if the increase in
dimensions is moderate as in [10], the proposed modifications seem arbitrary from the
mathematical point of view and look more like a fitting to explain certain features.

Our key idea here is to recall the basic principle of relativity theory: the funda-
mental equality in treatment of space and time, which is reflected in the formula of the
invariant interval:

∆s2 = ∆t2 − ∆x2 (1)
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in the system where c ≡ 1. So far, t was perceived as a single-dimensional time and x was a
three-dimensional space, giving

∆s2 = ∆t2 − ∆x2
1 − ∆x2

2 − ∆x2
3 . (2)

Despite the declared principle, time and space are no longer handled equally in (2). We
propose to establish the equality truly, to obtain a really symmetric scheme, where each
spatial dimension has its temporal counterpart:

∆s2 =
n

∑
i=1

∆t2
i −

n

∑
i=1

∆x2
i . (3)

It turns out that n = 3 is sufficient to construct a space, the symmetry groups of which
describe known quantum characteristics.

In [14], the six-dimensional manifold of symmetric signature (3, 3) and the special
metric is proposed to build a unified theory of gravity and electromagnetism. Here, we
consider its typical tangential layer, which is pseudo-Euclidean space E3,3, as being the real
physical space–time in the microcosm.

The article has the following structure. At first, E3,3 is considered as an image of
spinor space, and its hidden groups of proper motions are examined. It is shown that these
motions constitute the SU(4) group. Taking this, the conserved quantum characteristics
generated by SU(4) are derived in a standard way. The simplest non-trivial representation
of SU(4) is built as an example. It is shown that starting from E3,3, one can obtain known
conserved quantum characteristics and quarks in a mathematically rigorous way. Then, the
representations of E3,3 through hyperbolic numbers are considered. The properties of the
metric in this space allow predicting the number of quarks equal to 18. The appropriate
scheme is presented. Finally, the question of a reduction from E3,3 space to our usual E1,3
space is examined. It is assumed that the world time flows along a certain axis in the
three-dimensional temporal subspace of the six-dimensional space. For physical processes
in very small time intervals, the temporal subspace is isotropic with fair accuracy. However,
for a larger time duration, the presence of a certain time axis leads to the violation of
spherical symmetry. Some symmetries are lost, which leads to the violation of conservation
laws for a bigger time scale. This behaviour can be an explanation of the violation of some
laws in weak interactions (weak decay time is above 10−13 s [15]; typical weak interaction
time is 10−10 s [16]), while these laws hold in strong interactions (strong decay time is
around 10−23 s [15]).

2. Pseudo-Euclidean Space E3,3 as an Image of the Spinor Space

Consider the pseudo-Euclidean space E3,3, and let ηij designate the metric there, i.e.,

ηij =


0 , i 6= j ,
+1 , i = j = 1, 2, 3 ,
−1 , i = j = 4, 5, 6 .

(4)

The squared interval in E3,3 is given by

s2 = ηkl xkxl , k, l = 1, . . . , 6 , (5)

where ~x = (x1, . . . , x6) is a vector in E3,3, and summation is meant by the same upper and
lower indices. The group of proper motions of metric (5) in E3,3 is given by a group of
proper pseudo-Euclidean rotations SO(3, 3).

Let us now introduce the four-dimensional complex space C4, whose elements are the
four-component complex vectors, called spinors ~ξ = (ξ1, . . . , ξ4), and the space C4 itself is
referred to as spinor space [17]. Now, denote t1 = x4, t2 = x5, t3 = x6.
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For any vector ~x ∈ E3,3, one can find such a spinor ~ξ ∈ C4 such that the following
will hold:

t1 = ξ1ξ
2
+ ξ

1
ξ2 , t2 =

ξ1ξ
2 − ξ

1
ξ2

i
, t3 = ξ1ξ

1 − ξ2ξ
2

,

x1 = ξ3ξ
4
+ ξ

3
ξ4 , x2 =

ξ3ξ
4 − ξ

3
ξ4

i
, x3 = ξ3ξ

3 − ξ4ξ
4

,

(6)

where ξ
µ

is the complex conjugate to the ξµ spinor component and i is the imaginary unit.
Formula (6) may be rewritten in a more elegant form. To do so, consider the complex matrix
algebra M(4,C) in spinor space C4. In this algebra, let us choose the matrices

σ̂p =


(

σp 0
0 0

)
, p = 1, 2, 3,(

0 0
0 σp−3

)
, p = 4, 5, 6,

(7)

where

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(8)

are Pauli matrices. The matrices (7) form the six-dimensional basis in the subalgebra L of
the algebra M(4,C). The following commutation relationships take place:

σ̂kσ̂l − σ̂l σ̂k = 2iσ̂mεklm , (9)

where k, l, m = 1, . . . , 6, εklm is the completely antisymmetric tensor, product σ̂kσ̂l is zero if
indices of the pair belong to different triplets (k = 1, 2, 3; l = 4, 5, 6), and

σ̂kσ̂l + σ̂l σ̂k = 2δkl pm , (10)

where pm is the two-dimensional orthogonal projector in the spinor space C4. At that, if
k, l = 1, 2, 3, then m = 2; if k, l = 4, 5, 6 then m = 1, p1(C4) = {~ξ ∈ C4;~ξ = (ξ1, ξ2, 0, 0)},
p2(C4) = {~ξ ∈ C4;~ξ = (0, 0, ξ3, ξ4)}.

According to the relationships (8), (9), and (10), the Lie algebra (7) is reducible. To
each pair (σ̂m,~ξ) ∈ M(4,C)×C4 there is a corresponding m-th coordinate of the vector
~x ∈ E3,3 according to the formula:

xm = 〈~ξ, σ̂m~ξ〉 , m = 1, . . . , 6 , (11)

where 〈·, ·〉 is the scalar product in C4, given by 〈~ξ,~η〉 = δνµξ
ν
ηµ.

One can readily notice that the representations (6) and (11) are equivalent. Thus, the
material coordinates of the vectors of pseudo-Euclidean space E3,3 can be represented as
the average values of the Hermitian operators of the form (7) upon spinors in C4 space.

3. Hidden Groups of Proper Motions of the Metric

From Formula (11), it follows that, if an arbitrary vector ~x ∈ E3,3 with coordinates
(x1, . . . , x6) is set, then in the general case, there exists a pair (σ̂m,~ξ) ∈ M(4,C) × C4,
determinable to within the unitary equivalence with respect to the group SU(4), and the
relation (11) holds. This means that the pseudo-Euclidean metric (5) in spinor space C4 is
invariant relative to the action of the group SU(4), which may be regarded as the hidden
proper motions of this metric. Before studying the relation of the group SU(4) with the
conserved quantum characteristics of elementary particles, we consider simpler groups,
leading us to conservation laws of such characteristics as spin, “weak” isospin, electric
charge, and “weak” hypercharge.
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Consider the two-parameter group of unitary transformations U(1)×U(1), which is
represented in M(4,C) as unitary matrices of the following kind:

eiϕ 0 0 0
0 eiϕ 0 0
0 0 eiψ 0
0 0 0 eiψ

 , (12)

and which operates in C4. The transformations of the group U(1)×U(1) leave the right-
hand sides of the relations (6) invariant, i.e., the coordinates of the vectors in E3,3 remain
unchanged under such transformations. Therefore, the metric (5) itself of the space E3,3
remains invariant. We will say that the transformations of the kind (12) of the group
U(1)×U(1) represent hidden motions of the metric (5). Group U(1)×U(1) generates two
conservation laws. The first law generated by the operator 1

i
∂

∂ϕ will be interpreted as the
law of conservation of “weak” hypercharge. The second law, induced by the generator
of the group 1

i
∂

∂ψ will be interpreted as the law of conservation of the electric charge.
The appearance of the “weak” hypercharge conservation law is related to the hidden
symmetries in the three-dimensional temporal subspace, which for the sake of brevity will
be referred to as isospace.

Let us now proceed to the consideration of the more complicated unitary group.
The representation of the unitary group with the Lie algebra, which is determined by
the generators (7) and which operates in the space C4, is quite reducible and may be
expressed in the form of the direct sum of irreducible representations SU(2)× SU(2). Each
of the irreducible representations corresponds to the group SU(2) of unitary unimodular
matrices U of dimension two, i.e., U†U = 1, det U = 1. In the case of the first irreducible
representation, such matrices may be represented in the form U = eiσkak , k = 1, 2, 3, where
σk are the Hermitian Pauli matrices and ak are arbitrary real numbers. These matrices
implement the identical representation of dimension two in the two-dimensional isospin

space p1(C4) with elements
(

ξ1
ξ2

)
put over the two basis spinors

(
1
0

)
and

(
0
1

)
.

In the case of the second irreducible representation, we will obtain the similar group of
unitary unimodular matrices U = eσl al , l = 4, 5, 6, where the same Pauli matrices σl appear
as generators according to the relation (7). These matrices realize a group of dimension

two in the two-dimensional spinor space p2(C4) with elements
(

ξ3
ξ4

)
put over two basis

spinors. Thus, the isospace is the spin space related to the three-dimensional temporal
subspace. Therefore, such an important characteristic of elementary particles as weak
isospin has a pure geometric nature, and its conservation law is related to the invariance of
the metric of the six-dimensional space E3,3 with respect to the group of rotations in the
three-dimensional temporal subspace.

4. Group SU(4) and the Conserved Quantum Characteristics It Generates

It has been shown above that the group SU(4) leaves the metric of space E3,3 in-
variant. Let us now proceed to study in more detail the properties of the group SU(4)
and its Lie algebra for the necessity of giving their physical interpretations. The gen-
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erators λi, i = 1, . . . , 15 of the Lie algebra may be represented as 15 traceless Hermitian
four-dimensional matrices:

λ1 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

, λ2 =


0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

, λ3 =


1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

,

λ4 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

, λ5 =


0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0

, λ6 =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

,

λ7 =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

, λ8 =
1√
3


1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0

, λ9 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

,

λ10 =


0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0

, λ11 =


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

, λ12 =


0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0

,

λ13 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

, λ14 =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

, λ15 =
1√
6


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

.

(13)

We note that the Lie algebra for the group SU(4) contains the Gell-Mann subalgebra
for the group SU(3), assigned by the generators λ1, . . . , λ8, as well as the Pauli subalgebra
for the group SU(2), assigned by generators λ1, . . . , λ3. Let us introduce the following
designations:

Fi =
1
2

λi , i = 1, . . . , 15 ,

I± = F1 ± iF2 , I3 = F3 ,

V± = F4 ± iF5 , U± = F6 ± iF7 , Y =
2√
3

F8

N± = F9 ± iF10 , M± = F11 ± iF12 , W± = F13 ± iF14 , B =
4√
6

F15 ,

(14)

where I± are the raising and lowering operators for isospin projection, Y is the Hermitian
hypercharge operator, and B is the Hermitian baryon charge operator. Among the operators
given by (13), there is not one for the electrical charge Q. It can be assigned by the following
Hermitian traceless matrix:

Q =
1
3


2 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 0

 . (15)

Then, the relation:

Q = I3 +
Y
2

, (16)

takes place, which was discovered phenomenologically by Gell-Mann [18] and Nishi-
jima [19].

Hermitian operators I3, Y, Q, and B satisfy the following commutation relations:

[I3, Y] = [I3, Q] = [I3, B] = [Y, Q] = [Y, B] = [Q, B] = 0 , (17)

i.e., all four operators commutate. This means that the physical characteristics of elementary
particles given by the eigenvalues of these operators are simultaneously observable. Let
us now find the expressions to describe the relationship of the commutating Hermitian
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operators. We write out the commutators for the operators of creation and annihilation
given by (14):

[I+, I−] = 2I3 , [V+, V−] = I3 +
3
2

Y , [U+, U−] = −I3 +
3
2

Y

[N+, N−] = I3 +
1
2

Y + B , [M+, M−] = −I3 +
1
2

Y + B ,

[W+, W−] = −Y + B .

(18)

Operator Q may be used also, for instance [V+, V−] = 3Q− 2I3.
Let us tabulate the commutators, which are useful for constructing finite-dimensional

representations of SU(4) group. The first component is given by the row, and the second is
assigned as the column. The commutators of I3, Y, Q, and B with the rest are presented in
the Table 1.

Table 1. Commutators of operators (14).

〈a, ·〉

〈·, b〉
I± V± U± N± M± W±

I3 ±I± ± 1
2 V± ∓ 1

2 U± ± 1
2 N± ∓ 1

2 M± 0

Y 0 ±V± ±U± ± 1
3 N± ± 1

3 M± ∓ 2
3 W±

Q ±I± ±V± 0 ± 2
3 N± ∓ 1

3 M± ∓ 1
3 W±

B 0 0 0 ± 4
3 N± ± 4

3 M± ± 4
3 W±

From the commutation relations given above, it follows that operators I+, V+, U−, N+,
and M− are raising and I−, V−, U+, N−, and M+ lowering the eigenvalues of I3. Operators
U+, V+, N+, M+, and W− are raising and U−, V−, N−, M−, and W+ are lowering the
eigenvalues of Y. Operators I+, V+, N+, M−, and W− are raising and I−, V−, N−, M+, and
W+ are lowering the eigenvalues of Q. Operators N+, M+, and W+ are raising, N−, M−,
and W− are lowering, and I±, V±, and U± keep unchanged the eigenvalues of B.

Commutators of the rest of operators are given in Table 2.

Table 2. Commutators of operators (14), continued.

〈a, ·〉

〈·, b〉
V+ V− U+ U− N+ N− M+ M− W+ W−

I+ 0 −U− V+ 0 0 −M− N+ 0 0 0

I− U+ 0 0 −V− M+ 0 0 −N− 0 0

V+ 0 (18) 0 I+ 0 −W− 0 0 N+ 0

V− (18) 0 −I− 0 W+ 0 0 0 0 −N−

U+ 0 I− 0 (18) 0 0 0 −W− M+ 0

U− −I+ 0 (18) 0 0 0 W+ 0 0 −M−

N+ 0 −W+ 0 0 0 (18) 0 I+ 0 V+

N− W− 0 0 0 (18) 0 −I− 0 −V− 0

M+ 0 0 0 −W+ 0 I− 0 (18) 0 U+

M− 0 0 W− 0 −I+ 0 (18) 0 −U− 0

W+ −N+ 0 −M+ 0 0 V− 0 U− 0 (18)

W− 0 N− 0 M− −V+ 0 −U+ 0 (18) 0
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It is worth noting here that the studied quantum characteristics I3, Q, Y, and B or
the notion of quarks are not derived or dependent on the standard theory. For instance,
isospin was introduced in 1932 by Heisenberg to explain symmetries of the then newly
discovered neutron [20]. They were introduced before, and the standard theory presents
some scheme of them. Here, we propose an alternative description based on the six-
dimensional E3,3 space.

5. Simplest Irreducible Representation of SU(4)

Using the commutation relations from Tables 1 and 2, we will construct, as an example,
the simplest irreducible finite-dimensional representation for the SU(4) group. The states
that are contained in the representations are characterized by a set of values of the quantum
characteristics (I3, Y, Q, B). Transitions between various states are introduced with the aid
of the raising and lowering operators given above.

Let us introduce four orthogonal vectors:
1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1

 (19)

in the four-dimensional space induced by the set of quantum characteristics (I3, Y, Q, B).
These vectors are the eigenvectors of the Hermitian operators I3, Y, Q, and B, given by
the matrices of the type of (14) and with the following eigenvalues: I3: ( 1

2 ,− 1
2 , 0, 0), Y:

( 1
3 , 1

3 ,− 2
3 , 0), Q: ( 2

3 ,− 1
3 ,− 1

3 , 0), B: ( 1
3 , 1

3 , 1
3 ,−1). Let the state Ψu = Ψ 1

2 , 1
3 , 2

3 , 1
3

be set. It is
determined as a representation vector, which satisfies the following relations:

I3Ψu =
1
2

Ψu ,

YΨu =
1
3

Ψu ,

QΨu =
2
3

Ψu ,

BΨu =
1
3

Ψu .

(20)

This state is an eigenvector of operators I3, Y, Q, and B and corresponds to the u quark.
Subjecting this state to the operator V−, we obtain new state Ψs = Ψ0,− 2

3 ,− 1
3 , 1

3
, which

corresponds to the s quark:

I3V−Ψ 1
2 , 1

3 , 2
3 , 1

3
= (V− I3 −

1
2

V−)Ψ 1
2 , 1

3 , 2
3 , 1

3
= 0 ·V−Ψ 1

2 , 1
3 , 2

3 , 1
3

,

YV−Ψ 1
2 , 1

3 , 2
3 , 1

3
= (V−Y−V−)Ψ 1

2 , 1
3 , 2

3 , 1
3
= −2

3
V−Ψ 1

2 , 1
3 , 2

3 , 1
3

,

QV−Ψ 1
2 , 1

3 , 2
3 , 1

3
= (V−Q−V−)Ψ 1

2 , 1
3 , 2

3 , 1
3
= −1

3
V−Ψ 1

2 , 1
3 , 2

3 , 1
3

,

BV−Ψ 1
2 , 1

3 , 2
3 , 1

3
= V−BΨ 1

2 , 1
3 , 2

3 , 1
3
=

1
3

V−Ψ 1
2 , 1

3 , 2
3 , 1

3
.

(21)

This can be written briefly as
V−Ψu = Ψs . (22)

The state with the same set of characteristics corresponds to the b quark. It may be
obtained by applying N−W+ operators subsequently to Ψu:

N−W+Ψu = Ψb . (23)
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Next, applying the U+ operator to the Ψs state and using the commutators from Table 2,
one can obtain a state Ψd = Ψ− 1

2 , 1
3 ,− 1

3 , 1
3
, corresponding to the d quark:

U+Ψs = Ψd . (24)

From the Ψd state using the I+ operator, one may transfer to the Ψu state, or with the
help of the M− operator, a state Ψa = Ψ0,0,0,−1 may be obtained, which corresponds to the
anti-baryon with the characteristics of I3 = 0, Y = 0, Q = 0, and B = −1:

I+Ψd = Ψu , M−Ψd = Ψa . (25)

Four states Ψu, Ψs, Ψd, and Ψa establish a space of the simplest irreducible finite-
dimensional representation of the SU(4) group. In this space, a state Ψc = Ψ0, 4

3 , 2
3 , 1

3
also

exists. It corresponds to the c quark and can be reached from Ψd by the V+ operator or
from Ψu with the help of the U+ operator:

V+Ψd = Ψc , U+Ψu = Ψc . (26)

The state with the same set of characteristics (I3, Y, Q, B), which is related to the t quark,
can be obtained from Ψd and Ψu as

N+W−Ψd = Ψt , M+W−Ψu = Ψt . (27)

These results can be illustrated in the form of the transition diagram (Figure 1).

I+I−

W−

W+

M−

M+ N+

N−

U−

U+ V+

V−

d
(
−1

2 , 1
3 ,−1

3 , 1
3

)
u
(

1
2 , 1

3 , 2
3 , 1

3

)

a(0, 0, 0,−1)

s, b
(

0,−2
3 ,−1

3 , 1
3

)
Figure 1. Simplest irreducible non-trivial representation of the SU(4) group.

Figure 1 shows the simplest irreducible non-trivial representation of the SU(4) group,
containing four quarks in three states and one anti-baryon with the proper state Ψ0,0,0,−1.
This figure can be thought of as a tetrahedron in some abstract 3D space. The triangle
containing the quarks forms a plane with baryon charge B = 1/3. The operators U±, V±,
and I± are moving between states in this plane. The other three operator pairs (M±, N±,
W±) are changing the baryon charge.
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6. Representation of the Metric of the E3,3 Space Using Hyperbolic Complex Numbers

Let us define the algebra H of hyperbolic complex numbers as a two-dimensional
R-module with a pair of generatrices {1, j} and the following multiplication table:

1 j
1 1 j
j j 1

(28)

The elements h ∈ H are written in the form h = 1x + jt, where x, t ∈ R, and j
is the imaginary unity in H. Real numbers <h = x and =h = t are called the real and
imaginary parts of the hyperbolic complex number h, respectively. The involutive operation
of complex conjugation is defined as h = x + jt → h = x− jt. In a plane, the algebra of
hyperbolic complex numbers induces a two-dimensional pseudo-Euclidean geometry with

metric ηij =

(
1 0
0 −1

)
. Consider now the n-dimensional space of hyperbolic complex

numbers Hn. Here, we can introduce the scalar product of vectors 〈·, ·〉. If~h = (h1, . . . , hn),
~g = (g1, . . . , gn) ∈ Hn, then the scalar product is given by a bilinear form as:

〈~h,~g〉 = h1g1 + · · ·+ hngn . (29)

The form (29) is not positively defined. In the case of H3, we have

〈~h,~h〉 = h1h
1
+ h2h

2
+ h3h

3
. (30)

Taking into account that hk = xk + jtk, k = 1, 2, 3, we obtain

〈~h,~h〉 = (x1)2 + (x2)2 + (x3)2 − (t1)2 − (t2)2 − (t3)2 , (31)

i.e., the scalar product of the hyperbolic complex vectors from H3 assigns the square bilinear
form (pseudo-Euclidean metric) in the E3,3 space. Now, we consider some symmetry groups
of the form (30).

7. Hyperbolic Groups of Unitary Symmetry and Their Representations

The metric of the six-dimensional pseudo-Euclidean space E3,3 is invariant relative
to a number of hidden symmetry groups, which emerge as a result of representing the
pseudo-Euclidean metric with the aid of hyperbolic complex numbers in the H3 space
according to (30). Consider the unitary hyperbolic group U(1,H3), which operates in the
H3 space. It is a three-parameter group of H-unitary matrices:

U =

 ejϕ1 0 0
0 ejϕ2 0
0 0 ejϕ3

 , (32)

which leave the bilinear form (30) invariant. The Hermitian-conjugated matrix

U† =

 e−jϕ1 0 0
0 e−jϕ2 0
0 0 e−jϕ3

 (33)

is inverse of U, and UU† = 1. The Lie algebra of this group is commutative, and its basis is
formed as

e1 =

 1 0 0
0 0 0
0 0 0

 , e2 =

 0 0 0
0 1 0
0 0 0

 , e3 =

 0 0 0
0 0 0
0 0 1

 . (34)
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The identical representation (32) of the group U(1,H3) is reducible as a direct sum of
irreducible representations, which operate in invariant single-dimension subspaces H:

U(1,H3) = U(1,H)×U(1,H)×U(1,H) . (35)

The generators of this group induce three conservation laws. Running a little bit ahead,
we note that these conservation laws are associated with the three colour quantum char-
acteristics of quarks. A more detailed discussion can be found in [21]. The unitary
transformations of the group U(1,H) in the H space correspond to the Lorenz transforma-
tions in the pseudo-Euclidean space E1,1.

Consider now the hyperbolic group of unitary matrices SU(2,H), which operates in
the three-dimensional hyperbolic space H3. This group SU(2,H) consists of hyperbolic
matrices U with dimension four, which are unitary unimodular, i.e., they satisfy the
conditions U†U = 1, |det U| = 1. Such a matrix may be represented as U = ejσkak ,
U† = e−jσkak , where σk are Hermitian traceless matrices, having the form of

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −j
j 0

)
, σ3 =

(
1 0
0 −1

)
, (36)

where ak are arbitrary real numbers.
The matrices (36) form a three-dimensional basis in the Lie algebra of the SU(2,H)

group and differ from the Pauli matrices only by replacing the imaginary unit i with the
hyperbolic imaginary unit j. The basis elements (36) of the Lie algebra satisfy the following
commutation relations:

[σk, σl ] = 2jκklmσm , (37)

where κklm is a third-rank tensor with values κ123 = 1, κ132 = 1, κ231 = 1, κ312 = −1,
κ213 = −1, κ321 = −1.

The structural constants of the Lie algebra of the group SU(2,H) coincide with that of
the group SU(2) to within a sign.

From the components of the six-dimensional vector ~x = (x1, x2, x3, t1, t2, t3) ∈ E3,3,
one can choose three so as to avoid all three being of the same type, i.e., triplets (x1, x2, x3)
and (t1, t2, t3) are excluded. There are eighteen such triplets. They can be joined in pairs so
as to have all six components in a pair. For instance, for the triplet (x1, x3, t2), its pair will
be (x2, t1, t3). Thus, there are nine pairs.

For each triplet of type (xk, xl , tm), which contains two spatial coordinates, we assign
a matrix:

Y =

(
xk xl − jtm

xl + jtm −xk

)
, (38)

and to its pair (xn, tp, tq), n, p, q = 1, 2, 3, n 6= k, l, m 6= p, q, we assign a matrix:

YC =

(
tp tq − jxn

tq + jxn −tp

)
. (39)

The following relation takes place:

det YC − det Y = (x1)2 + (x2)2 + (x3)2 − (t1)2 − (t2)2 − (t3)2 . (40)

For any hyperbolic unitary matrices U1, U2 ∈ SU(2,H), the independent unitary transfor-
mations:

Y′ = U†
1 YU1 , YC′ = U†

2 YCU2 (41)

leave the bilinear square form in the right side of (40) invariant, by the equality:

det YC′ − det Y′ = det YC − det Y . (42)
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Thus, the unitary transformations over the pairs of matrices Y and YC from the
SU(2,H) group correspond to the pseudo-orthogonal transformations in the space E3,3,
leaving the pseudo-Euclidean metric invariant.

There are altogether nine groups of this kind, where each representation of such
groups expands into the direct sum of two irreducible conjugated representations, which
operate in the three-dimensional subspaces of the six-dimensional space–time. To these
eighteen representations of the hyperbolic unitary symmetry groups there should corre-
spond eighteen conservation laws. Running ahead, we note that the conserved quantum
characteristics may be interpreted as quark flavours. The fact that eighteen representations
are paired means that quark flavours appear in pairs (u, d), (s, c), (b, t), etc.

Now, consider the plane B = 1/3 in Figure 1 and the operators U±, V±, and I±. It is
easy to see that applying them as in (24), (22), and (25) repeatedly and in various sequences,
one can construct an infinite hexagonal grid in the plane B = 1/3. Let us select four grid
nodes where six known quarks (u, d, s, b, c, and t) reside and the grid nodes immediately
adjacent to those; see Figure 2.

(
− 1

2 , 7
3 , 2

3

) (
1
2 , 7

3 , 5
3

)

(
−1, 4

3 ,− 1
3

)
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(

0, 4
3 , 2

3

) (
1, 4

3 , 5
3

)

(
− 3

2 , 1
3 ,− 4

3

)
d
(
− 1

2 , 1
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)
u
(

1
2 , 1

3 , 2
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) (
3
2 , 1

3 , 5
3

)

(
−1,− 2

3 ,− 4
3
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s, b
(

0,− 2
3 ,− 1

3

) (
1,− 2

3 , 2
3
)

(
− 1

2 ,− 5
3 ,− 4

3

) (
1
2 ,− 5

3 ,− 1
3

)
U+ V+
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U+ V+

U+ V+

I+

U+ V+

I+

U+ V+

V+

I+

U+ V+

I+

U+ V+

I+

U+

V+

I+

U+ V+

I+

U+

I+

Figure 2. Diagram of 18 quarks.

There are 14 nodes involved. Taking into account that the states in the internal nodes
are multiplied [22], there appear to be in total 18 states described by this grid. The internal
nodes contain known quarks. Node

(
0, 4

3 , 2
3

)
corresponds to quarks c and t, and node(

0,− 2
3 ,− 1

3

)
represents quarks s and b. However, internal nodes

(
− 1

2 , 1
3 ,− 1

3

)
obtain only

one d quark, and the node
(

1
2 , 1

3 , 2
3

)
obtains a single u. One can suppose that other quarks

compose particles with very short decay periods and very big masses. Thus, they have not
been discovered yet. We may call the proposed quark, which shares a node with u as h
(hazy) and the one paired with d as v (vague). Presumably, h and v quarks form the most
long-living particles among others currently undiscovered. Each of the outer nodes of the
diagram contain a single quark.

The Klein–Fock–Gordon equation:(
�+ µ2

)
Ψ(x) = 0 , µ = mc/h̄ (43)
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in the space E3,3 can be written as(
∂2

∂t2
1
+

∂2

∂t2
2
+

∂2

∂t2
3
− ∂2

∂x2
1
− ∂2

∂x2
2
− ∂2

∂x2
3

)
Ψ = µ2Ψ (44)

and treated as an eigenvalue problem. The spectrum of the operator contains particle
masses. The masses of the u − d − s quark triplet, forming long-living particles, were
estimated in [23]. Other components of spectrum might be found further.

8. Reduction to Unisotropic Space

So far, in this paper, we have discussed the fully symmetric H3 space or the isomorphic
E3,3 one, i.e., the space with signature (3, 3). However, the commonly known space where
we live has a signature of (1, 3). The question arises about how we come from six to
four dimensions and what are the related effects. Here, we present three of them: weak
interaction asymmetry, treatment of electric charge, and decreasing the number of quarks.

Within the common formalism, there is no explanation of the causes of the violation of
the conservation laws for hypercharge and isospin in weak interactions. In the proposed
approach, this phenomenon has a rather simple explanation. According to the above, the
laws of conservation of isospin and hypercharge appear due to the presence of spherical
symmetry in the three-dimensional temporal subspace. If that space would always remain
isotropic, these laws would be rigorous. However, if a preferable direction appears in
the three-dimensional temporal subspace, then the spherical symmetry is broken and the
laws are violated. Strong interactions run over a time of order 10−24 s. One can propose
that, as this scale, the temporal subspace remains spherically symmetric, and hence, the
conservation laws of hypercharge and isospin stay valid. Weak interactions run much
slower with typical intervals of 10−9 s, and the existence of the preferable time axis cannot
be neglected. This breaks the spherical symmetry, and the conservation laws associated
with it are violated. Only laws based on axial symmetry remain.

Two temporal dimensions may be compactified according to the following model
introduced by the authors in an application to electromagnetism [14]. At a small time scale,
all directions in the temporal subspace (t1, t2, t3) are equal, and the subspace has spherical
symmetry. For a bigger scale, one direction is selected, and let it be the axis t1. The plane
(t2, t3) then has a one-parametric group of rotations, where the parameter can be an angle
of rotation around the origin. Selecting the parameter as ω

c t1, one can write the following
compactification rule:

t2(t1) = t2(0) cos
(ω

c
t1
)
− t3(0) sin

(ω

c
t1
)

,

t3(t1) = t2(0) sin
(ω

c
t1
)
+ t3(0) cos

(ω

c
t1
)

.
(45)

Integral curves t2(t1), t3(t1) compose a vector field, which in the plane (t2, t3) is
(
−ω

c t3, ω
c t2).

In the plane of the tangent splitting, there is a circulation of this field along the circle of
constant radius r0: ω2r2

0 = c2.
Traditionally, Maxwell’s equations of electromagnetism include electric charge and

currents as ontology phenomena without a clear mathematical definition. The proposed ap-
proach gives a more rigorous and consistent understanding of electromagnetism equations
linking the different components of the electromagnetic tensor in six-dimensional space.
Within the framework of this model, a purely geometrical interpretation of the concept
of the electromagnetic field and point electric charge can be derived. The appearance of
the point electric charge is associated with the circulation of the vector potential around
a dedicated time axis in the three-dimensional temporal subspace. This is given in more
detail in [14].

The number of quarks was derived as the number of combinations of coordinate
axes, which satisfy the condition (42). One can note that the obtained result rests on the
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assumption that the temporal subspace is isotropic, i.e., there is no preferable time axis.
However, if this is not so and such a preferable time direction exists, let it be t1, then the
spherical symmetry in the temporal subspace is violated and only axial symmetry remains.
In this case, only three pairs are left:

(t1, x1, x2) ↔ (t2, t3, x3) ;

(t1, x1, x3) ↔ (t2, t3, x2) ;

(t1, x2, x3) ↔ (t2, t3, x1) .

(46)

To each pair there corresponds a pair of conjugated matrices (38) and (39), inducing six
conservation laws for quark flavours. Therefore, only six quarks are possible in a space
with signature (1, 3).

9. Conclusions

In the present paper, we established the relationship between the conserved quan-
tum characteristics of elementary particles and the internal (hidden) symmetries of the six-
dimensional pseudo-Euclidean spaceE3,3, which, as has been supposed, may be a real physical
space of the microcosm, limited by time intervals of 10−24 s. Proceeding from this concept, it is
possible to explain the phenomenon of the violation of the conservation laws for hypercharge
and isospin in weak interactions and keeping these laws in strong interactions, as well as to
predict the number of possible quarks. It is shown that the conservation laws of the electric
and baryon charges, hypercharge, spin, and isospin are induced by the unitary symmetry
group SU(4), which represents the most general group of hidden symmetries of the E3,3
space. The properties of the metric in this space allow predicting the number of quarks to be
equal to 18.
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