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Abstract: We establish a non-linear diffusion partial differential equation (PDE) model to depict the
dynamic mechanism of Internet gaming disorder (IGD). By constructing appropriate super- and
sub-solutions and applying Schauder’s fixed point theorem and continuation method, we study the
existence and asymptotic stability of traveling wave solutions to probe into the oscillating behavior
of IGD. An example is numerically simulated to examine the correctness of our outcomes.
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1. Introduction
1.1. Background and Model

In the past decade, with the continuous popularization of the Internet, the number of
Internet users has increased sharply. The convenience and other benefits of the Internet
are obvious to all. However, there is also some harmful content on the Internet, such as
pornography, violence, online games and so on. In particular, various types of Internet
games are full of major Internet websites with legal identities. These Internet games have
attracted a large number of game players, especially teenagers. Many game players become
addicted to Internet games. People with Internet gaming addiction tend to be impulsive,
violent, misanthropic and withdrawn. This not only brings great harm to the physical and
mental health of Internet game addicts but also endangers society and their families. In
recent years, the number of Internet game addicts has continued to rise. This phenomenon
has been widely concerning and studied. The World Health Organization [1] has pointed
out that Internet game addiction is a new disease. The disease is named Internet gaming
disorder (IGD) and is characterized by “Persistent and recurrent use of the Internet to
engage in games, often with other players, leading to clinically significant impairment or
distress” [2]. IGD is often referred to as a mental illness. The Diagnostic and Statistical
Manual of Mental Disorders [3,4] provides some classifications of IGD. In order to cure and
reduce the number of people with IGD, scholars from all walks of life have begun to study
IGD from various aspects. Some researchers [5–9] use mathematical theories and methods
to study IGD by establishing mathematical models.

In this context, we also try to use calculus methods to establish a differential equation
model to study IGD. To this end, we make the underlying assumptions as follows:

(i) Internet game players are simply divided into two categories: moderate gamers M
and addictive gamers A;

(ii) Because it is very difficult to stop playing games through self-control, Internet game
players M and A are treated.

(iii) The spatial distribution of the number of Internet game players is very uneven, which
is concentrated in places such as Internet cafes and schools, and then gradually
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decreases outward. Based on this, we assume that the population distribution of the
two types of Internet game players is diffuse in space.

Below, we give the state changes in Internet game players, as shown in the Figure 1.

New gamer Moderate  gamer Addictive  gamer
Self  transformation

Transformation after 
treatment

Stop playing 
after treatment

Stop playing 
after treatment

Figure 1. General scheme of the state transition of Internet gamers in our modeling.

Based on the assumptions (i)–(iii), we explain the process described in Figure 1 in
detail. M(x, t) and A(x, t) stand for the population density of moderate gamers and addic-
tive gamers at time t and position x, respectively. In time period ∆t, the moderate gamers
M have increased by αM(x, t)∆t and δA(x, t)∆t because some non-gamers have become
new gamers and some addictive gamers have converted to moderate gamers after treat-
ment. In the meantime, the moderate gamers M have declined by βM(x, t)A(x, t)∆t and
γ1M(x, t)∆t because some moderate gamers have become addictive gamers and another
moderate gamers have converted to non-gamers after treatment. Vice versa, the addictive
gamers A have only raised by βM(x, t)A(x, t)∆t because of the transformation from moder-
ate gamers to addictive gamers. At the same time, the addictive gamers M have reduced by
δA(x, t)∆t and γ2 A(x, t)∆t because some addictive gamers have become moderate gamers
and another addictive gamers have converted to non-gamers after treatment. Furthermore,
we added the diffusion terms d1

∂2 M
∂x2 ∆t and d2

∂2 A
∂x2 ∆t, where d1 and d2 are the diffusion

coefficients. Through the above analysis, we build a new model as follows:{
∂M
∂t = d1

∂2

∂x2 M(x, t) + α− βM(x, t)A(x, t)− γ1M(x, t) + δA(x, t),
∂A
∂t = d2

∂2

∂x2 A(x, t) + βM(x, t)A(x, t)− (γ2 + δ)A(x, t),
(1)

where (x, t) ∈ R× (0, ∞), α, β, δ, γ1, γ2, d1, d2 > 0 are some constants.

Remark 1. In (1), if there is lack of treatment and diffusion, then M + A = M(0) + A(0) + αt→
+∞, as t → +∞. This will lead to everyone eventually becoming a gamer. Therefore, proper
treatment is necessary. Moreover, there are two kinds of healing effects on addicted gamers. One is
to cure them completely and make them non-gamers. The other is to reduce their addiction and make
them moderate gamers. This shows that game addiction is a stubborn psychological disease. It is
difficult to eradicate completely.

1.2. Significance and Contribution

The traveling wave solutions of non-linear reaction–diffusion equations have im-
portant applications in many disciplines, such as biological dynamics [10,11], epidemic
dynamics [12–14] and tumor dynamics [15,16]. Therefore, the study of traveling wave
solutions and their properties of diffusion of non-linear partial differential equation models
has attracted the attention of many scholars. There have been many good works [17–23]
dealing with the traveling wave of reaction–diffusion equations. Enlightened by the ideas
and methods in these references, this paper focuses on the existence of traveling wave
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solutions to Equation (1). So, let M(x, t) = M̃(ξ), A(x, t) = Ã(ξ), ξ = x + ct(c > 0), then
(1) becomes {

cM̃′(ξ)− d1M̃′′(ξ) = α− βM̃(ξ)Ã(ξ)− γ1M̃(ξ) + δÃ(ξ),
cÃ′(ξ)− d2 Ã′′(ξ) = βM̃(ξ)Ã(ξ)− (γ2 + δ)Ã(ξ).

(2)

It is easy to verify that Equation (2) has a unique non-negative constant solution
(M̃(ξ), Ã(ξ)) = ( α

γ1
, 0). LetM(ξ) = M̃(ξ)− α

γ1
, A(ξ) = Ã(ξ), then Equation (2) changes

into {
cM′(ξ)− d1M′′(ξ) = −βM(ξ)A(ξ)− γ1M(ξ)− (αβγ−1

1 − δ)A(ξ),
cA′(ξ)− d2A′′(ξ) = βM(ξ)A(ξ) + (αβγ−1

1 − γ2 − δ)A(ξ). (3)

The whole paper requires the following assumptions.

(A) For some given constants α, β, δ, γ1, γ2, d1, d2 > 0 and an unknown constant c > 0,

there are γ2 + δ < αβγ−1
1 and c > 2

√
d2(αβγ−1

1 − γ2 − δ).

The paper mainly includes the following contributions. (a) We propose a novel diffu-
sion PDE (1) modeling Internet game addiction, which is rare in previous papers. (b) Based
on Schauder’s fixed point theorem and continuation method, we study the existence and
asymptotic stability of traveling waves of the model (1) to reveal the oscillating behavior of
IGD. (c) Our research provides some theoretical help for the study and treatment of IGD.
The remaining structure of the paper is as follows. Section 2 introduces super- and sub-
solutions and their properties. Section 3 gives the detailed proof process of the existence
of traveling waves. Section 4 studies the global asymptotic stability of traveling waves.
In Section 5, we provide an example and carry out numerical simulation to examine the
validity of our results. Section 6 is a brief summary.

2. Super- and Sub-Solutions

This section provides the upper and lower solutions of (3) and their properties. Define
the super-solutions P(ξ) = eλξ , and Q(ξ) = eµξ , where

λ =
c +

√
c2 + 4d1γ1

2d1
, µ =

c +
√

c2 − 4d2(αβγ−1
1 − γ2 − δ)

2d2
.

By the condition (B), one has λ, µ > 0, and

cP′(ξ)− d1P′′(ξ) = −γ1P(ξ), cQ′(ξ)− d2Q′′(ξ) = (αβγ−1
1 − γ2 − δ)Q(ξ).

Take the sub-solutions P(ξ) = eλξ − Pe(λ−ε)ξ and Q(ξ) = eµξ − Qe(µ−ε)ξ , where
P ,Q > 1 and ε ∈ (0, min{λ, µ}) are small enough such that

ρ = −d1(λ− ε)2 + c(λ− ε) > 0, $ = −d2(µ− ε)2 + c(µ− ε)− (αβγ−1
1 − γ2 − δ) > 0,

ξ , max
{

lnP
ε

,
lnQ

ε

}
< min

{
1
λ

ln
ρ(αβγ−1

1 − δ)

βγ1
,

1
µ

ln
Pγ1

αβγ−1
1 − δ

}
, ξ.
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When ξ < ξ < ξ, we obtain P(ξ), Q(ξ) > 0, and

cP′(ξ)− d1P′′(ξ) + βP(ξ)Q(ξ) + γ1P(ξ) + (αβγ−1
1 − δ)Q(ξ)

=c
[
λeλξ −P(λ− ε)e(λ−ε)ξ

]
− d1

[
λ2eλξ −P(λ− ε)2e(λ−ε)ξ

]
+ γ1

[
eλξ −Pe(λ−ε)ξ

]
+ β

[
eλξ −Pe(λ−ε)ξ

][
eµξ −Qe(µ−ε)ξ

]
+
(
αβγ−1

1 − δ
)[

eµξ − be(µ−ε)ξ
]

<
[
Pd1(λ− ε)2 −Pc(λ− ε)−Pγ1

]
e(λ−ε)ξ + βeλξ eµξ +

(
αβγ−1

1 − δ
)
eµξ

<−
[
Pρ− βeλξ eµξ + Pγ1 −

(
αβγ−1

1 − δ
)
eµξ
]
e(λ−ε)ξ

<−
[
Pρ− β ·

ρ(αβγ−1
1 − δ)

βγ1
· Pγ1

αβγ−1
1 − δ

+ Pγ1 −
(
αβγ−1

1 − δ
)
· Pγ1

αβγ−1
1 − δ

]
e(λ−ε)ξ = 0,

cQ′(ξ)− d2Q′′(ξ)− βP(ξ)Q(ξ)− (αβγ−1
1 − γ2 − δ)Q(ξ)

=c
[
µeµξ −Q(µ− ε)e(µ−ε)ξ

]
− d2

[
µ2eµξ −Q(µ− ε)2e(µ−ε)ξ

]
− β

[
eλξ −Pe(λ−ε)ξ

][
eµξ −Qe(µ−ε)ξ

]
− (αβγ−1

1 − γ2 − δ)
[
eµξ −Qe(µ−ε)ξ

]
<−Q

[
− d2(µ− ε)2 + c(µ− ε)− (αβγ−1

1 − γ2 − δ)
]
e(µ−ε)ξ = −Q$e(µ−ε)ξ < 0.

Let P̃(ξ) = max{0, P(ξ)}, Q̃(ξ) = max{0, Q(ξ)}, ξ ∈ R, then, we have

cP̃′(ξ)− d1P̃′′(ξ) + βP̃(ξ)Q̃(ξ) + γ1P̃(ξ) + (αβγ−1
1 − δ)Q̃(ξ) ≤ 0, ∀ ξ 6= lnP

ε
,

cQ̃′(ξ)− d2Q̃′′(ξ)− βP̃(ξ)Q̃(ξ)− (αβγ−1
1 − γ2 − δ)Q̃(ξ) ≤ 0, ∀ ξ 6= lnQ

ε
.

3. Existence of Traveling Wave

This section mainly discusses the existence and non-existence of traveling waves and
some properties of traveling waves. We boil them down to the following theorem.

Theorem 1. Assume that (A) holds, then the following assertions are true:

(a) For any c > c∗ = 2
√

d2(αβγ−1
1 − γ2 − δ), there is a traveling wave solution (M̃∗(ξ),

Ã∗(ξ)) of model (1) satisfying lim
ξ→−∞

M̃∗(ξ) = α
γ1

, lim
ξ→−∞

Ã∗(ξ) = 0.

(b) ∃ ξ0 > 0, when ξ ∈ (−∞,−ξ0), M̃∗(ξ) and Ã∗(ξ) are monotone increasing functions.
(c) There is no traveling wave solution of model (1) provided that c < c∗.
(d) lim inf

ξ→+∞
M̃∗(ξ) > α

γ1
, lim inf

ξ→+∞
Ã∗(ξ) > 0.

Proof. (1) The proof of assertion (a). Here, we prove it in two steps.

Step 1: Local existence of traveling wave. For c > 2
√

d2(αβγ−1
1 − γ2 − δ), consider a

two-point BVP in (−l, l) of the form
cM′(ξ)− d1M′′(ξ) = −βM(ξ)A(ξ)− γ1M(ξ)− (αβγ−1

1 − δ)A(ξ)
, F(M(ξ),A(ξ)),

cA′(ξ)− d2A′′(ξ) = βM(ξ)M(ξ) + (αβγ−1
1 − γ2 − δ)A(ξ) , G(M(ξ),A(ξ)),

M(±l) = P̃(±l), A(±l) = Q̃(±l), M′(±l) = P̃′(±l), A′(±l) = Q̃′(±l),

(4)

where l > ξ, and

M(ξ) =


M(−l), ξ < −l,
M(ξ), −l ≤ ξ ≤ l,
M(l), ξ > l,

A(ξ) =


A(−l), ξ < −l,
A(ξ), −l ≤ ξ ≤ l,
A(l), ξ > l.

(5)
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By Section 2, for a solution (M(ξ),A(ξ)) of (4), one has P̃(ξ) ≤ M(ξ) ≤ P(ξ),
Q̃(ξ) ≤ A(ξ) ≤ Q(ξ). Introducing a norm

‖(u, v)‖ = max
{

sup
ξ∈[−l,l]

|u(ξ)|, sup
ξ∈[−l,l]

|v(ξ)|, sup
ξ∈[−l,l]

|u′(ξ)|, sup
ξ∈[−l,l]

|v′(ξ)|
}

,

for (u, v) ∈ C2([−l, l],R2), then C2([−l, l],R2) is a Banach space. Let ‖(P̃, Q̃)‖ = R1,

‖(P, Q)‖ = R2, R3 = R1 + R1d1c−1(e 2cl
d1 − 1

)
+ d1R2c−2(βR2 + γ1 + αβγ−1

1 − δ)
(
e

cl
d1 −

1
)(

e
cl
d1 − e−

cl
d1
)
, R4 = R1 + R1d1c−1(e 2cl

d2 − 1
)
+ d2R2c−2(βR2 + αβγ−1

1 − γ2 − δ)
(
e

cl
d2 −

1
)(

e
cl
d2 − e−

cl
d2
)
, R = max{R1, R2, R3, R4}, Ω = {(u, v) ∈ C2([−l, l],R2) : ‖(u, v)‖ < R+ 1}.

For (u, v) ∈ Ω, define a mapping L = (L1, L2)
T : Ω→ R2 as

(L (u, v))(ξ) =
(

(L (u, v))(ξ)
(L (u, v))(ξ)

)
, (6)

where

(L1(u, v))(ξ) = u(−l) + u′(−l)e
cl
d1

∫ ξ

−l
e

c
d1

τdτ − 1
d1

∫ ξ

−l

[ ∫ τ

−l
e−

c
d1
(s−τ)F(u(s), v(s))ds

]
dτ,

(L2(u, v))(ξ) = v(−l) + v′(−l)e
cl
d2

∫ ξ

−l
e

c
d2

τdτ − 1
d2

∫ ξ

−l

[ ∫ τ

−l
e−

c
d2
(s−τ)G(u(s), v(s))ds

]
dτ.

By the boundary conditions, (A) and (6), we have

|(L1(u, v))(ξ)|

=

∣∣∣∣P̃(−l) + P̃′(−l)e
cl
d1

∫ ξ

−l
e

c
d1

τdτ − 1
d1

∫ ξ

−l

[ ∫ τ

−l
e−

c
d1
(s−τ)F(u(s), v(s))ds

]
dτ

∣∣∣∣
≤|P̃(−l)|+ |P̃′(−l)|e

cl
d1

∫ l

−l
e

c
d1

τdτ +
1
d1

∫ l

−l

[ ∫ τ

−l
e−

c
d1
(s−τ)|F(u(s), v(s))|ds

]
dτ

≤R1 + R1
d1

c
(
e

2cl
d1 − 1

)
+

1
d1

∫ l

−l

[ ∫ l

−l
e−

c
d1
(s−τ)

[β|u(s)||v(s))|

+ γ1|u(s)|+ (αβγ−1
1 − δ)|v(s)|]ds

]
dτ

≤R1 + R1d1c−1(e 2cl
d1 − 1

)
+ d1R2c−2(βR2 + γ1 + αβγ−1

1 − δ)
(
e

cl
d1 − 1

)(
e

cl
d1 − e−

cl
d1
)

=R3 < R + 1. (7)

Similar to (7), we obtain

|(L2(u, v))(ξ)|

=

∣∣∣∣v(−l) + v′(−l)e
cl
d2

∫ ξ

−l
e

c
d2

τdτ − 1
d2

∫ ξ

−l

[ ∫ τ

−l
e−

c
d2
(s−τ)G(u(s), v(s))ds

]
dτ

∣∣∣∣
≤R1 + R1d1c−1(e 2cl

d2 − 1
)
+ d2R2c−2(βR2 + αβγ−1

1 − γ2 − δ)
(
e

cl
d2 − 1

)(
e

cl
d2 − e−

cl
d2
)

=R4 < R + 1. (8)

From (7) and (8), one knows that L (Ω) ⊂ Ω. Obviously, L is continuous. Moreover,
it is easy to prove by Arzela–Ascoli theorem that L is compact. Therefore, by applying
Schauder’s fixed point theorem, L exists as a fixed point (M∗

l (ξ),A
∗
l (ξ)) ∈ Ω, which is the

solution of (4). Furthermore, 0 ≤ P̃(ξ) ≤M∗
l (ξ) < R + 1 and 0 ≤ Q̃(ξ) ≤ A∗l (ξ) < R + 1.
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Step 2: Global continuation of traveling wave. For (Ml(ξ),Al(ξ)), from the standard
elliptic estimates, one derives that there is N0 > 0 such that

‖Ml(ξ)‖C2,ν(− l
2 , l

2 )
≤ N0, ‖Al(ξ)‖C2,ν(− l

2 , l
2 )
≤ N0, ∀ l > max

{
lnP

ε
,

lnQ
ε

}
,

where ν ∈ (0, 1) is a constant. Taking l → +∞, then, one hasM∗
l (ξ)→M

∗(ξ), A∗l (ξ)→
A∗(ξ) in C2

loc(R), and (M∗(ξ),A∗(ξ)) satisfies Equation (3). Noticing that 0 ≤ P̃(ξ) ≤
M∗(ξ) ≤ eλξ = P(ξ) and 0 ≤ Q̃(ξ) ≤ A∗(ξ) ≤ eµξ = Q(ξ), we have lim

ξ→−∞
M∗(ξ) =

lim
ξ→−∞

A∗(ξ) = 0. Thus, M̃∗(ξ) =M∗(ξ) + α
γ1

and Ã∗(ξ) = A∗(ξ) satisfy the Equation (2).

Therefore, (M̃∗(ξ), Ã∗(ξ)) is a traveling wave solution of (1) and satisfies lim
ξ→−∞

M̃∗(ξ) =

α
γ1

and lim
ξ→−∞

Ã∗(ξ) = 0.

(2) The proof of assertion (b). For this purpose, we adopt the reduction to absurdity.
Assume that, ∀ ξ > 0, M∗(ξ), and A∗(ξ) is non-monotonic in (−∞, ξ), then, there are
two infinite points sequences {ξk}∞

k=1 and {ηk}∞
k=1 satisfying lim

k→∞
ξk = lim

k→∞
ηk = −∞,

lim
k→∞
M∗(ξk) = lim

k→∞
A(ηk) = 0, andM∗(ξ) taking the maximum at ξ = ξk(k ∈ N+) and

A∗(ξ) taking the minimum at ξ = ηk(k ∈ N+). Thus, we have

(M∗)′(ξk) = (A∗)′(ηk) = 0, (M∗)′′(ξk) < 0, (A∗)′′(ηk) > 0,

which, together with (A), implies that

0 < c(M∗)′(ξk)− d1(M∗)′′(ξk) = −βM∗(ξk)A∗(ξk)− γ1M∗(ξk) < 0, (9)

and

0 > c(A∗)′(ηk)− d2(A∗)′′(ηk) = βM∗(ηk)A∗(ηk) + (αβγ−1
1 − γ2 − δ)A∗(ηk) > 0. (10)

Obviously, (9) and (10) are contradictory in themselves. So, there is a constant ξ0 > 0
such that M∗(ξ) and A∗(ξ) are all monotonous in (−∞,−ξ0). Moreover, assume that
M∗(ξ) and A∗(ξ) are all monotonically decreasing in (−∞,−ξ0), then, for any −ξ0 > ξ >
−∞, we have 0 <M∗(ξ) <M∗(−∞) = 0 and 0 < A∗(ξ) < A∗(−∞) = 0, which is an
evident fallacy. Therefore,M∗(ξ) andA∗(ξ) are all monotonically increasing in (−∞,−ξ0).
By M̃∗(ξ) = M∗(ξ) + α

γ1
and Ã∗(ξ) = A∗(ξ), one knows that M̃∗(ξ) and Ã∗(ξ) are all

monotonically increasing in (−∞,−ξ0) as well.
(3) The proof of assertion (c). We still adopt the fallacy reduction. Assume that, when

c < c∗, the model (1) has a traveling wave solution (M̃(ξ), Ã(ξ)), then, the Equation (3)
has a traveling wave solution M(ξ) = M̃(ξ) − α

γ1
, A(ξ) = Ã(ξ). Choose an infinite

point sequence {ξk}∞
k=1 such that lim

k→∞
ξk = −∞, and let Mk(ξ) = M(ξ+ξk)

M(ξk)
, Ak(ξ) =

A(ξ+ξk)
A(ξk)

, M̂k(ξ) =M(ξ + ξk) and Âk(ξ) = A(ξ + ξk), then, M̂k(ξ) and Âk(ξ) satisfy the
Equation (3), which yields

cÂ′k(ξ)− d2Â′′k (ξ) = βM̂k(ξ)Âk(ξ) + (αβγ−1
1 − γ2 − δ)Âk(ξ). (11)

Dividing by A(ξk) at both ends of (11) leads to

cA′k(ξ)− d2A′′k (ξ) = βM̂k(ξ)Ak(ξ) + (αβγ−1
1 − γ2 − δ)Ak(ξ). (12)
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In addition,Mk(0) = Ak(0) = 1 and (M̂k(ξ), Âk(ξ)) → (0, 0) as k → ∞ because of
(M(ξ),A(ξ)) → (0, 0) as ξ → −∞. Setting k → ∞ on both sides of (12), and denoting
lim
k→∞
Ak(ξ) = A0(ξ) in C2

loc(R), then, we obtain

cA′0(ξ)− d2A′′0 (ξ) = (αβγ−1
1 − γ2 − δ)A0(ξ). (13)

The general solution of ODE (13) is

A0(ξ) = C1eµ1ξ + C2eµ2ξ , (14)

where C1, C2 are two arbitrary constants, and the characteristic roots

µ1,2 =
c±

√
c2 − 4d2(αβγ−1

1 − γ2 − δ)

2d2
.

Moreover, Ak(0) = 1 implies A0(0) = 1. Since Ak(ξ) > 0 is monotonically increasing,
A0(ξ) > 0 is monotonically increasing, too, which indicates that µ1,2 ∈ R. Thus, we obtain

c > c∗ = 2
√

d2(αβγ−1
1 − γ2 − δ), which is contradictory to c < c∗. So, the model (1) has no

traveling wave solution when c < c∗.
(4) The proof of assertion (d). Let us first prove that lim inf

ξ→+∞
[M∗(ξ) +A∗(ξ)] > 0.

Indeed, since M∗(ξ),A∗(ξ) > 0, one has lim inf
ξ→+∞

[M∗(ξ) + A∗(ξ)] ≥ 0. Now, we just

need to prove lim inf
ξ→+∞

[M∗(ξ) + A∗(ξ)] 6= 0. By application of fallacy reduction, sup-

pose that the conclusion is not true, then, there is an infinite point sequence {ζk})∞
k=1

such that lim
k→∞

ζk = +∞ and lim
k→∞

[M∗(ζk) +A∗(ζk)] = 0, which deduces lim
k→∞
M∗(ζk) =

lim
k→∞
A∗(ζk) = 0. Let ζk = −ωk, M∗(ζk) = M̂∗(−ζk) and A∗(ζk) = Â∗(−ζk), then

lim
k→∞

ωk = −∞, lim
k→∞
M̂∗(ωk) = lim

k→∞
Â∗(ωk) = 0, M̂∗(ωk) and Â∗(ωk) satisfy

(−c)Â′(ωk)− d2Â′′(ωk) = βM̂(ωk)Â(ωk) + (αβγ−1
1 − γ2 − δ)Â(ωk). (15)

Meanwhile, from the assertion (b), we know that M∗(ωk) and A∗(ωk) are mono-
tonically increasing in (−∞, ξ0). Similar to the proof process of assertion (c), only when

−c > 2
√

d2(αβγ−1
1 − γ2 − δ),M∗(ωk) and A∗(ωk) satisfying (15) are monotonically in-

creasing in (−∞, ξ0). Thus, we obtain c < 2
√

d2(αβγ−1
1 − γ2 − δ) = c∗, which is contradic-

tory to the hypothesis c > c∗.
Next, we show that lim inf

ξ→+∞
M∗(ξ) > 0 and lim inf

ξ→+∞
A∗(ξ) > 0. One can easily obtain

lim inf
ξ→+∞

M∗(ξ) ≥ 0 and lim inf
ξ→+∞

A∗(ξ) ≥ 0 due toM∗(ξ),A∗(ξ) > 0. Now, we apply the

proof by contradiction to prove that lim inf
ξ→+∞

M∗(ξ) 6= 0 and lim inf
ξ→+∞

A∗(ξ) 6= 0. Consider

lim inf
ξ→+∞

M∗(ξ) 6= 0 at first, if lim inf
ξ→+∞

M∗(ξ) = 0, there exists an infinite point {ξk}∞
k=1 such

that lim
k→∞

ξk = +∞ and lim
k→∞
M∗(ξk) = 0. For A∗(ξ), there are two cases, namely, Case 1:

lim inf
k→∞

A∗(ξk) = 0 and Case 2: lim inf
k→∞

A∗(ξk) > 0. In Case 1, there is a sub-sequence {ξ∗k} ⊂
{ξk} such that lim

k→∞
A∗(ξ∗k ) = lim

k→∞
M∗(ξ∗k ) = 0. Similar to the proof of lim inf

ξ→+∞
[M∗(ξ) +

A∗(ξ)] > 0, we find the contradiction between c > c∗ and c < c∗. In Case 2, there is a
sub-sequence {ξ∗∗k } ⊂ {ξk} such that lim

k→∞
A∗(ξ∗∗k ) > 0 and lim

k→∞
M∗(ξ∗∗k ) = 0 and satisfies

c(M∗)′(ξ∗∗k )− d1(M∗)′′(ξ∗∗k )

=− βM∗(ξ∗∗k )A∗(ξ∗∗k )− γ1M(ξ∗∗k )− (αβγ−1
1 − δ)A∗(ξ∗∗k ). (16)
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It is worth noting that we apply lim
k→∞
M∗(ξ∗∗k ) = 0 and Taylor expansion formula

to obtain lim
k→∞

(M∗)′(ξ∗∗k ) = lim
k→∞

(M∗)′′(ξ∗∗k ) = 0. So, taking the limit k → ∞ at both

ends of (16), we have 0 = 0− (αβγ−1
1 − δ) lim

k→∞
A∗(ξ∗∗k ) < 0, which is an evident false-

hood. Thus, we completed the proof of lim inf
ξ→+∞

M∗(ξ) > 0. Similar discussions can prove

that lim inf
ξ→+∞

A∗(ξ) > 0 hold, and the specific proof process is omitted. Noticing the trans-

formation M(ξ) = M̃(ξ) − α
γ1

and A(ξ) = Ã(ξ), one obtains lim inf
ξ→+∞

Ã∗(ξ) > α
γ1

and

lim inf
ξ→+∞

Ã∗(ξ) > 0.

So far, we completed the proof of all the propositions of the Theorem 1.

4. Asymptotical Stability of Traveling Wave

This section focuses on the stability of the traveling wave solution of the model (1).
Some preparatory work is necessary. According to the actual situation, our model considers
the distribution and change in the number of Internet game addicts in a fixed spatial area,
so we assume that there is no flow between the population in the spatial area and the
outside of the area. Based on this assumption, we give the initial and boundary value
conditions for the model (1) as follows:{

∂M(x,t)
∂−→ν = ∂A(x,t)

∂−→ν = 0, (x, t) ∈ ∂Λ×R+,
M(x, 0) = φ1(x), A(x, 0) = φ2(x), x ∈ Λ,

(17)

here, R+ = (0, ∞), Λ ⊂ R is bounded with smooth boundary ∂Λ, −→ν is outer normal vector
of ∂Λ and φ1(x), φ2(x) > 0 are continuous.

Let X = C3(Λ×R+,R2) be a Banach space, then X + = {(u, v) ∈ X : u > 0, v > 0}
is a closed positive cone of X . We discuss the stability of traveling wave solutions of model (1).
Obviously, (M(x, t), A(x, t)) = ( α

γ1
, 0) is a non-negative constant stationary solution of model

(1). Here, we have the following result about the stability of the model (1).

Theorem 2. If (A) is true, then the traveling wave solution (M∗(x, t), A∗(x, t)) of model (1)
satisfying condition (17) is globally asymptotically stable in X +.

Proof. LetM(x, t) = M(x, t)− α
γ1

and A(x, t) = A(x, t), then system (1) and condition
(17) change into

∂M
∂t = d1∆M− βMA− γ1M− (αβγ−1

1 − δ)A, (x, t) ∈ Λ×R+,
∂A
∂t = d2∆A+ βMA+ (αβγ−1

1 − γ2 − δ)A, (x, t) ∈ Λ×R+,
∂M(x,t)

∂−→ν = ∂A(x,t)
∂−→ν = 0, (x, t) ∈ ∂Λ×R+,

M(x, 0) = φ1(x)− α
γ1

, A(x, 0) = φ2(x), x ∈ Λ.

(18)

Now, it suffices to prove that the traveling wave solution (M∗(x, t),A∗(x, t)) of
(18) is globally asymptotically stable in X +. To this end, build a functional V(t) =∫

Λ[M(x, t) +A(x, t)]dx. Obviously, V(t) is smooth, V(t) > 0 for all t 6= 0 and V(0) = 0 in
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X +. It follows from [24] that {t ∈ R : V(t) ≤ µ} is bounded for µ ≥ 0. Thus, calculating
the derivative of V(t) along (18), we have

dV
dt

=
∫

Λ

[
∂M
∂t

+
∂A
∂t

]
dx =

∫
Λ

[
d1∆M− βMA− γ1M− (αβγ−1

1 − δ)A

+ d2∆A+ βMA+ (αβγ−1
1 − γ2 − δ)A

]
dx

=
∫

Λ

[
d1∆M+ d2∆A− γ1M− γ2A

]
dx

=
∫

Λ

[
d1∆M+ d2∆A

]
dx−

∫
Λ

[
γ1M+ γ2A

]
dx. (19)

From the boundary value condition ∂M(x,t)
∂−→ν = ∂A(x,t)

∂−→ν = 0, we obtain

∫
Λ

∆Mdx =
∂M
∂x

∣∣∣∣
∂Λ

= 0,
∫

Λ
∆Adx =

∂A
∂x

∣∣∣∣
∂Λ

= 0. (20)

(19) and (20) yield

dV
dt

= −
∫

Λ

[
γ1M+ γ2A

]
dx < 0. (21)

In view of (21) and [24], we know that V(t) is a Lyapunov function of (18). From
the parabolic Lp-theory, the Sobolev Embedding Theorem and the standard compactness
argument [25], we conclude that there are some constants N, t0 > 0 such that ‖M‖C2(Λ) +

‖A‖C2(Λ) ≤ N, ∀ t > t0. So, we apply the Sobolev Embedding Theorem [26] to obtain that

(M,A) → (0, 0) in L2(Λ)× L2(Λ), as t → ∞. Additionally, dV
dt = 0 iff (M,A) = (0, 0),

which leads to {(M,A) : dV
dt = 0} = {(0, 0)}. Thus, according to Lyapunov stability

theory, we conclude that the traveling wave solution (M∗(x, t), A∗(x, t)) of (18) is globally
asymptotically stable in X +. The proof is completed.

5. Numerical Simulation

Consider the following non-linear diffusion PDE model of IGD

∂M
∂t = d1∆M + α− βMA− γ1M + δA, (x, t) ∈ Λ×R+,

∂A
∂t = d2∆A + βMA− (γ2 + δ)A, (x, t) ∈ Λ×R+,
∂M(x,t)

∂−→ν = ∂A(x,t)
∂−→ν = 0, (x, t) ∈ ∂Λ×R+,

M(x, 0) = φ1(x), A(x, 0) = φ2(x), x ∈ Λ,

(22)

where R+ = (0, ∞), Λ = (0, 10), α = 10, β = 6, γ1 = 3 γ2 = 2, δ = 3, d1 = 0.5, d2 = 0.8,
φ1(x) = 5 + 3 sin(x), φ2(x) = 7 + 4 cos(x).

A simple calculation gives 5 = γ2 + δ < αβγ−1
1 = 20 and c∗ = 2

√
d2(αβγ−1

1 − γ2 − δ)

= 8. The condition (A) holds. According to Theorem 1 and Theorem 2, for any c >
c∗ = 8, the model (22) has a traveling wave solution (M̃∗(ξ), Ã∗(ξ)), which is globally
asymptotically stable.

Figure 2 shows that when the initial conditions are the periodic functions φ1(x) =
5 + 3 sin(x) and φ2(x) = 7 + 4 cos(x), the system (22) exists as a globally asymptotically
stable oscillatory periodic traveling wave solution.
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Figure 2. Evolutions of M(x, t) and A(x, t) over time t.

6. Conclusions

In the last decade, with the popularity of the Internet, the number of Internet users
has continued to increase. While people enjoy the convenience and benefits brought by
the Internet, some disadvantages brought by the Internet also begin to appear gradually.
For example, Internet game addiction endangers the physical and mental health of players.
In particular, many young addictive gamers are trapped in it. Many scholars, including
mathematicians, have begun to pay attention to and study this phenomenon. Through
the analysis of the dynamic change process of Internet gamers, we put forward a new
non-linear diffusion PDE model (1) of IGD in this paper. By applying fixed point theory and
Lyapunov stability theory, we study the existence and asymptotic stability of the traveling
wave of model (1). With the help of the MATLAB toolbox, an example is numerically
simulated to examine the correctness of our outcomes. The major findings of the paper
provide theoretical help for the research and treatment of Internet game addiction. For
example, our results show that appropriate treatment can ensure that the number of gamers
is bounded without unlimited increase. The population density of gamers will gradually
stabilize at ( α

γ1
, 0), which suggests that we can eventually make the gamers disappear

by reducing the number of moderate gamers and strengthening their treatment. Our
work provides an example for applying mathematical theories and methods to solve social
problems such as Internet game addiction, which makes the study of this kind of problem
transform from qualitative research to quantitative research. In addition, recently published
papers [27–46] enlighten us to discuss the existence, exponential stability and Ulam–Hyers
stability of model (1) in the sense of fractional calculus in the future.
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