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Abstract: The paper deals with an application of the direct scheme method, consisting of immediately
substituting a postulated asymptotic solution into a problem condition and determining a series of
control problems for finding asymptotics terms, for asymptotics construction of a solution of a weakly
nonlinearly perturbed linear-quadratic optimal control problem with three-tempo state variables. For
the first time, explicit formulas for linear-quadratic optimal control problems, from which all terms of
the asymptotic expansion are found, are justified, and the estimates of the proximity between the
asymptotic and exact solutions are proved for the control, state trajectory, and minimized functional.
Non-increasing of the minimized functional, if a next approximation to the optimal control is used,
following from the proposed algorithm of the asymptotics construction, is also established.
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1. Introduction

Systems with two-tempo variables are the main object in the study of singularly
perturbed control problems (see, for instance, the reviews [1–3]). However, many practical
problems contain multi-tempo fast variables. For instance, such variables arise in models
of chain chemical reactions [4], fuel cells with a proton membrane [5], electrical chains [6],
electromechanical processes in a synchronous machine [7], power systems [8], nuclear
reactors [9], aircraft [10], ocean currents [11], rolling mills [12], two-wheeled carriages [13],
forest pests [14], and epidemics [15].

Various asymptotic and numerical (see, for instance, [16]) methods are used for study-
ing singularly perturbed systems with many small parameters standing before derivatives.
Basic methods of asymptotic analysis are boundary functions method [17] and integral
manifolds method ([18], ch. 7–10), which reduce the considered problem to a problem
of simpler structure. The limit passage of an initial problem solution of a system with
many small parameters at derivatives, when these parameters tend to zero, was studied for
the first time by A.N. Tikhonov [19] and I.S. Gradstein [20]. Asymptotic solution of such
problems was first constructed by A.B. Vasil’eva [21].

There are two approaches to constructing asymptotic solutions of optimal control
problems. The traditional one is based on an asymptotic solution of a system following
from control optimality conditions. Another approach, called the direct scheme method,
consists of immediately substituting a postulated asymptotic expansion of a solution into
the problem condition and receiving a series of problems for finding asymptotic terms.
For two-tempo systems, it is presented, for example, in [22,23]. This method allows for
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establishing non-increasing of values of the minimized functional if a next optimal control
approximation is used. Moreover, standard programs for solving optimal control problems
can be applied for finding asymptotics terms. The direct scheme method has been, for
instance, used in [24] to obtain any order asymptotic solution of a linear-quadratic optimal
control problem with cheap controls of different costs.

The present paper deals with an asymptotic solution construction for the problem Pε

with weak nonlinear perturbations in a quadratic performance index and in a linear state
equation. Namely, the following functional

Jε(u) =
∫ T

0
(1/2(w(t, ε)′W(t)w(t, ε) + u(t, ε)′R(t)u(t, ε)) + εF(w(t, ε), u(t, ε), t, ε)) dt (1)

is minimized on trajectories of three-tempo singularly perturbed system

E(ε)dw(t, ε)

dt
= A(t)w(t, ε) + B(t)u(t, ε) + ε f (w(t, ε), u(t, ε), t, ε), t ∈ [0, T], (2)

with the initial condition
w(0, ε) = w0. (3)

Here, ε is a non-negative small parameter, T > 0 is fixed, the prime means transpo-
sition; w(t, ε) = (x(t, ε)′, y(t, ε)′, z(t, ε)′)′, x(t, ε) ∈ IRn1 , y(t, ε) ∈ IRn2 , z(t, ε) ∈ IRn3 ,
u(t, ε) ∈ IRm; E(ε) = diag(In1 , εIn2 , ε2 In3), Ini is the identity matrix of order ni,

f = (
(1)
f ′ ,

(2)
f ′ ,

(3)
f ′ )′,

(i)
f ∈ IRni , B = (

(1)
B′ ,

(2)
B′ ,

(3)
B′)′,

(i)
B : IRm → IRni , i = 1, 3; all functions in

(1), (2) are sufficiently smooth with respect to their arguments; for all t ∈ [0, T] matrices
W(t), R(t) are symmetric, moreover, W(t), R(t) and S(t) = B(t)R(t)−1B(t)′ are positive
definite.

It is assumed that the stability of the matrices A33 and A22 − A23 A−1
33 A32 takes place.

Here, and further Aij, i, j = 1, 3, mean matrices from a block representation of a matrix A
with number of rows and columns n1, n2, n3.

In contrast to [25], where optimal control problems for finding some zero order asymp-
totics terms for a solution of a nonlinear singularly perturbed problem with three-tempo
state variables were formulated, here, explicit expressions of problems for receiving all
asymptotic terms are obtained. Note that explicit formulas are very useful for research
applying asymptotic methods for solving practical problems.

It should be noted that some results concerning the algorithm of asymptotic solving
problem (1)–(3) have been presented in [26], but rigorous proofs and estimates are absent
there. Note that [26] deal with matrices in (1), (2) depending on ε. However, expanding
these matrices with respect to non-negative integer powers of ε and including terms
depending on ε into the small nonlinearities, we obtain the problem Pε in our statement.

It is well known that, if a linear-quadratic problem is nonsingular, then its solving is
reduced to solving a system of linear differential equations resolved with respect to derivatives.
Under studying nonlinear singularly perturbed optimal control problems, it is ordinarily
assumed that the control problem is nonsingular, i.e., an optimal control is presented as an
explicit function with respect to state and costate variables. See e.g., [27], where, apparently
for the first time, singular perturbations methods were used for optimal control problems. In
the present paper, unlike these cases, we do not assume the non-singularity of the considered
problem for all ε and, for obtaining asymptotic estimates, we analyze a nonlinear singularly
perturbed differential-algebraic system.

The essential new results obtained in this paper for problem (1)–(3) are the following:

1. The rigorous justification of explicit forms of linear-quadratic optimal control prob-
lems, solutions of which are used under constructing an asymptotic solution of
nonlinear problem (1)–(3);
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2. The proof of estimates of the proximity between the exact solution and asymptotic
one obtained by the direct scheme method for the control, state trajectory of system
(2), (3), and functional (1);

3. The proof of non-increasing values of functional (1) under using new asymptotic
approximations to the optimal control and constructing minimized sequences.

Throughout the paper, the coefficient with εi in an expansion of a function ω = ω(ε)
in a series in powers of ε will be denoted by ωi or [ω]i. The k-th partial sum of a series
will be denoted by upper wave and the low index k or by braces with the low index k, i.e.,
ω̃k = {ω}k = ∑k

j=0 εjωj. The functions with negative indices will be considered equal to
zero. Positive constants in estimates will be denoted as c and æ.

The paper is organized as follows: in Section 2, we present a formalism of asymp-
totics construction. Optimal control problems for finding asymptotic terms are given in
Section 3. Section 4 is devoted to justification of such a choice of control problems. Namely,
transformations of coefficients of expansion of minimized functional with respect to powers
of ε with even and odd indices are considered. Asymptotic estimates of the proximity
between the asymptotic and exact solutions are proved in Section 5. Non-increasing of the
minimized functional, if a next optimal control approximation is used, is also discussed in
this section. The last Section 6 contains conclusions.

2. Formalism of Asymptotics Construction

Following the boundary function method by A.B. Vasil’eva (see, for instance, [28]), we
will seek a solution of problem (1)–(3) in the form

ϑ(t, ε) = ϑ(t, ε) +
1

∑
i=0

(Πiϑ(τi, ε) + Qiϑ(σi, ε)). (4)

Here, ϑ(t, ε) = (w(t, ε)′, u(t, ε)′)′, ϑ(t, ε) = ∑j≥0 εjϑj(t), Πiϑ(τi, ε) = ∑j≥0 εjΠijϑ(τi), Qiϑ(σi,
ε) = ∑j≥0 εjQijϑ(σi), τi = t/εi+1, σi = (t− T)/εi+1, i = 0, 1, ϑj(t) are regular functions,
Πijϑ(τi) and Qijϑ(σi) are boundary functions of exponential type in neighborhoods t = 0
and t = T, respectively, i.e.,

‖Πijϑ(τi)‖ 6 c exp (−æτi), τi > 0, ‖Qijϑ(σi)‖ 6 c exp (æσi), σi 6 0,

where c and æ are positive constants independent of the arguments of functions under study.
For any sufficiently smooth function G(w(t, ε), u(t, ε), t, ε), we will use the notation

G(ϑ(t, ε), t, ε) and the asymptotic representation

G(ϑ, t, ε) = G(t, ε) +
1

∑
i=0

(ΠiG(τi, ε) + QiG(σi, ε)), (5)

G(t, ε) = G(ϑ(t, ε), t, ε) = ∑j≥0 εjGj(t), Π0G(τ0, ε) = G(ϑ(ετ0, ε) + Π0ϑ(τ0, ε), ετ0, ε)

− G(ϑ(ετ0, ε), ετ0, ε) = ∑j≥0 εjΠ0jG(τ0), Π1G(τ1, ε) = G(ϑ(ε2τ1, ε) + Π0ϑ(ετ1, ε)

+ Π1ϑ(τ1, ε), ε2τ1, ε)− G(ϑ(ε2τ1, ε) + Π0ϑ(ετ1, ε), ε2τ1, ε) = ∑j≥0 εjΠ1jG(τ1),
Q0G(σ0, ε) = G(ϑ(T + εσ0, ε) + Q0ϑ(σ0, ε), T + εσ0, ε)− G(ϑ(T + εσ0, ε), T + εσ0, ε)
= ∑j≥0 εjQ0jG(σ0), Q1G(σ1, ε) = G(ϑ(T + ε2σ1, ε) + Q0ϑ(εσ1, ε) + Q1ϑ(σ1, ε), T + ε2σ1, ε)

− G(ϑ(T + ε2σ1, ε) + Q0ϑ(εσ1, ε), T + ε2σ1, ε) = ∑j≥0 εjQ1jG(σ1).

Substitute (4) in (1) and present the integrand in the form of sum (4). Passing in
the integrals from the expressions depending on τi, σi, i = 0, 1, to integrals over the
corresponding intervals [0,+∞) and (−∞, 0], we obtain the following expansion of the
functional (1)

Jε(u) = ∑
j≥0

εj Jj. (6)
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Substituting expansion (4) into system (2) and initial value (3), using (5), then equating
terms of the same powers of ε, separately depending on regular and different boundary
functions, we obtain relations for defining asymptotics terms.

Introducing the notation E1 = diag(In1 , 0, 0), E2 = diag(0, In2 , 0), E3 = diag(0, 0, In3),
and φ(ϑ, t, ε) = A(t)w(t, ε) + B(t)u(t, ε) + ε f (w(t, ε), u(t, ε), t, ε), we obtain the following
equations:

E1
dwj(t)

dt
+ E2

dwj−1(t)
dt

+ E3
dwj−2(t)

dt
= [φ(t, ε)]j, (7)

(E1 + E2)
dΠ0jw(τ0)

dτ0
+ E3

dΠ0(j−1)w(τ0)

dτ0
= E1[Π0φ(τ0, ε)]j−1

+(E2 + E3)[Π0φ(τ0, ε)]j,
(8)

(E1 + E2)
dQ0jw(σ0)

dσ0
+ E3

dQ0(j−1)w(σ0)

dσ0
= E1[Q0φ(σ0, ε)]j−1

+(E2 + E3)[Q0φ(σ0, ε)]j,
(9)

dΠ1jw(τ1)

dτ1
= E1[Π1φ(τ1, ε)]j−2 + E2[Π1φ(τ1, ε)]j−1 + E3[Π1φ(τ1, ε)]j, (10)

dQ1jw(σ1)

dσ1
= E1[Q1φ(σ1, ε)]j−2 + E2[Q1φ(σ1, ε)]j−1 + E3[Q1φ(σ1, ε)]j. (11)

From Equations (8)–(11) at j = 0, (10) and (11) at j = 1, we found the corresponding
boundary functions

E1Π00w(τ0) = 0, E1Π10w(τ1) = E1Π11w(τ1) = 0, E1Q00w(σ0) = 0,

E1Q10w(σ1) = E1Q11w(σ1) = 0, E2Π10w(τ1) = 0, E2Q10w(σ1) = 0.
(12)

In view of the last equalities, from (3), we obtain relations for initial values

E1w0(0) = E1w0, E1(w1(0) + Π01w(0)) = 0, (13)

E1(wj(0) + Π0jw(0) + Π1jw(0)) = 0, j ≥ 2, (14)

E2(w0(0) + Π00w(0)) = E2w0, (15)

E2(wj(0) + Π0jw(0) + Π1jw(0)) = 0, j ≥ 1, (16)

E3(wj(0) + Π0jw(0) + Π1jw(0)) =

{
E3w0, j = 0,
0, j ≥ 1.

(17)

Remark 1. If boundary functions Πijw, Qijw, i = 0, 1, j = 0, n− 1 have been found, then,
from Equations (8)–(11), it follows the corollary that functions E1Πinw(τi), E1Qinw(σi), i = 0, 1,
E2Π1nw(τ1), E2Q1nw(σ1), and E1Π1(n+1)w(τ1), E1Q1(n+1)w(σ1) are known.

3. Optimal Control Problems for Finding Asymptotics Terms

In this section, forms of control problems for finding asymptotics terms will be given.
In contrast to [26], the justification of these relations will be presented.

With the help of the notations,

ρ(ϑ, ψ, t, ε) = W(t)w(t, ε)− A(t)′ψ(t, ε) + ε(Fw(ϑ, t, ε)′ − fw(ϑ, t, ε)′ψ(t, ε)),

χ(ϑ, ψ, t, ε) = R(t)u(t, ε)− B(t)′ψ(t, ε) + ε(Fu(ϑ, t, ε)′ − fu(ϑ, t, ε)′ψ(t, ε)),

five optimal control problems Pj, ΠijP, QijP, i = 0, 1, for determining asymptotics terms in
expansion (4) will be written. Costate variables in these problems will be denoted as ψj(t),
Πijψ(τi), Qijψ(σi), i = 0, 1, respectively.
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Furthermore, the hat and the low index k in a function notation will mean that the
function is calculated with the functional argument equal to the k-th partial sum of the

corresponding expansion, e.g., f̂ k(t, ε) = f (ϑ̃k(t, ε), t, ε).
In the following expressions with ρ and χ in the performance indices of the formulated

optimal control problems, we take ψ(t, ε) = ∑∞
j=0 εj(ψj(t) + (εE1 + E2 + E3)(Π0jψ(τ0) +

Q0jψ(σ0)) + (ε2E1 + εE2 + E3)(Π1jψ(τ1) + Q1jψ(σ1))).
Regular functions ϑj(t), t ∈ [0, T], are determined as solutions of problems Pj, which

consist of minimizing the functional

J j(uj) = wj(T)′E1(Q0(j−1)ψ(0) + Q1(j−2)ψ(0)) +
T∫

0

(wj(t)′(
1
2

W(t)wj(t)

+[ρ̂j−1(t, ε)]j − E2
dψj−1(t)

dt
− E3

dψj−2(t)

dt
) + uj(t)′(

1
2

R(t)uj(t) + [χ̂j−1(t, ε)]j)) dt

on trajectories of system (7) with initial conditions from (13) or (14) in dependence on j.
The boundary functions Π0jϑ(τ0), τ0 ∈ [0,+∞) are determined from optimal control

problems Π0jP consisting of minimizing the functional

Π0j J(Π0ju) =
+∞∫
0

(Π0jw(τ0)
′(

1
2

W(0)Π0jw(τ0) + [Π̂0(j−1)ρ(τ0, ε)]j − E3
dΠ0(j−1)ψ(τ0)

dτ0
)

+Π0ju(τ0)
′(

1
2

R(0)Π0ju(τ0) + [Π̂0(j−1)χ(τ0, ε)]j)) dτ0

on trajectories of system (8) with the conditions Π0jx(+∞) = 0 and (15) or (16) in depen-
dence on j.

The boundary functions Q0jϑ(σ0), σ0 ∈ (−∞, 0], are determined from optimal control
problems Q0jP consisting of minimizing the functional

Q0j J(Q0ju) = Q0jw(0)′E2(ψj(T) + Q1(j−1)ψ(0))

+

0∫
−∞

(Q0jw(σ0)
′(

1
2

W(T)Q0jw(σ0) + [Q̂0(j−1)ρ(σ0, ε)]j − E3
dQ0(j−1)ψ(σ0)

dσ0
)

+Q0ju(σ0)
′(

1
2

R(T)Q0ju(σ0) + [Q̂0(j−1)χ(σ0, ε)]j)) dσ0

on trajectories of system (9) with the condition (E1 + E2)Q0jw(−∞) = 0.
The boundary functions Π1jϑ(τ1), τ1 ∈ [0,+∞), are determined from optimal control

problems Π1jP consisting of minimizing the functional

Π1j J(Π1ju) =
+∞∫
0

(Π1jw(τ1)
′(

1
2

W(0)Π1jw(τ1) + [Π̂1(j−1)ρ(τ1, ε)]j)

+Π1ju(τ1)
′(

1
2

R(0)Π1ju(τ1) + [Π̂1(j−1)χ(τ1, ε)]j)) dτ1

on trajectories of system (10) with the conditions (E1 + E2)Π1jw(+∞) = 0 and (17).
The boundary functions Q1jϑ(σ1), σ1 ∈ (−∞, 0], are determined from optimal control

problems Q1jP consisting of minimizing the functional

Q1j J(Q1ju) = Q1jw(0)′E3(ψj(T) + Q0jψ(0)) +
0∫

−∞

(Q1jw(σ1)
′(

1
2

W(T)Q1jw(σ1)
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+[Q̂1(j−1)ρ(σ1, ε)]j) + Q1ju(σ1)
′(

1
2

R(T)Q1ju(σ1) + [Q̂1(j−1)χ(σ1, ε)]j)) dσ1

on trajectories of system (11) with the condition Q1jw(−∞) = 0.

Remark 2. Though the original problem (1)–(3) is nonlinear, the considered optimal control
problems Pj, ΠijP, QijP, i = 0, 1, are linear-quadratic.

Solutions of the formulated optimal control problems can be found from the control
optimality conditions in the Pontryagin maximum principle form. Namely, a solution of
the problem Pj can be found from (7), (13), or (14) in dependence on j, and the relations

B(t)′ψj(t)− R(t)uj(t)− [χ̂j−1(t, ε)]j = 0, (18)

E1
dψj(t)

dt
= W(t)wj(t)− A(t)′ψj(t) + [ρ̂j−1(t, ε)]j − E2

dψj−1(t)

dt
− E3

dψj−2(t)

dt
, (19)

E1ψj(T) = −E1(Q0(j−1)ψ(0) + Q1(j−2)ψ(0)). (20)

A solution of the problem Π0jP with E1Π0jw(+∞) = 0 can be found from (8), (12)
and (15) or (16) in dependence on j, and the relations

B(0)′(E2 + E3)Π0jψ− R(0)Π0ju− [Π̂0(j−1)χ(τ0, ε)]j = 0, (21)

(E1 + E2)
dΠ0jψ

dτ0
= W(0)Π0jw− A(0)′(E2 + E3)Π0jψ

+[Π̂0(j−1)ρ(τ0, ε)]j − E3
dΠ0(j−1)ψ

dτ0
,

(22)

(E1 + E2)Π0jψ(+∞) = 0.

A solution of the problem Q0jP with (E1 + E2)Q0jw(−∞) = 0 can be found from (9),
(12) and the relations

B(T)′(E2 + E3)Q0jψ− R(T)Q0ju− [Q̂0(j−1)χ(σ0, ε)]j = 0,

(E1 + E2)
dQ0jψ

dσ0
= W(T)Q0jw− A(T)′(E2 + E3)Q0jψ

+[Q̂0(j−1)ρ(σ0, ε)]j − E3
dQ0(j−1)ψ

dσ0
,

E1Q0jψ(−∞) = 0, E2Q0jψ(0) = −E2(ψj(T) + Q1(j−1)ψ(0)). (23)

A solution of the problem Π1jP with (E1 + E2)Π1jw(+∞) = 0 can be found from (10),
(12), (17) in dependence on j, and the relations

B(0)′E3Π1jψ− R(0)Π1ju− [Π̂1(j−1)χ(τ1, ε)]j = 0, (24)

dΠ1jψ

dτ1
= W(0)Π1jw− A(0)′E3Π1jψ + [Π̂1(j−1)ρ(τ1, ε)]j, (25)

Π1jψ(+∞) = 0.

A solution of the problem Q1jP with Q1jw(−∞) = 0 can be found from (11), (12) in
dependence on j, and the relations

B(T)′E3Q1jψ− R(T)Q1ju− [Q̂1(j−1)χ(σ1, ε)]j = 0,

dQ1jψ

dσ1
= W(T)Q1jw− A(T)′E3Q1jψ + [Q̂1(j−1)ρ(σ1, ε)]j,
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(E1 + E2)Q1jψ(−∞) = 0, E3Q1jψ(0) = −E3(ψj(T) + Q0jψ(0)). (26)

In view of the control optimality condition in the Pontryagin maximum principle, a
solution of the problem (1)–(3) satisfies (2), (3) and the following relations, including the
costate variable ϕ(t, ε) = (ζ(t, ε)′, η(t, ε)′, θ(t, ε)′)′,

B(t)′ϕ− R(t)u− ε(Fu(ϑ, t, ε)′ − fu(ϑ, t, ε)′ϕ) = 0, (27)

E(ε)dϕ

dt
= W(t)w− A(t)′ϕ + ε(Fw(ϑ, t, ε)′ − fw(ϑ, t, ε)′ϕ), (28)

ϕ(T, ε) = 0. (29)

An asymptotic solution of problems (2), (3), (27)–(29) can be constructed in the form (4),
i.e., in addition, we set

ϕ(t, ε) = ϕ(t, ε) +
1

∑
i=0

(Πi ϕ(τi, ε) + Qi ϕ(σi, ε)), (30)

where all terms have the properties of the corresponding terms in (4).
Substitute asymptotic expansions (4), (30) into (27)–(29) and use presentation (5).

Introducing the notation g(ϑ, ϕ, t, ε) = ρ(ϑ, ϕ, t, ε), h(ϑ, ϕ, t, ε) = χ(ϑ, ϕ, t, ε) and equating
terms of the same power of ε separately depending on t, τi, σi, i = 0, 1, we obtain the
relations

B(t)′ϕj − R(t)uj − [ĥj−1(t, ε)]j = 0,

E1
dϕj

dt
+ E2

dϕj−1

dt
+ E3

dϕj−2

dt
= W(t)wj − A(t)′ϕj + [ĝj−1(t, ε)]j,

B(0)′Πij ϕ− R(0)Πiju− [Π̂i(j−1)h(τi, ε)]j = 0,

E1
dΠij ϕ

dτi
+ E2

dΠi(j−1)ϕ

dτi
+ E3

dΠi(j−2)ϕ

dτi
= W(0)Πi(j−i−1)w

−A(0)′Πi(j−i−1)ϕ + [Π̂i(j−i−2)g(τi, ε)]j−i−1,
(31)

B(T)′Qij ϕ− R(T)Qiju− [Q̂i(j−1)h(σi, ε)]j = 0,

E1
dQij ϕ

dσi
+ E2

dQi(j−1)ϕ

dσi
+ E3

dQi(j−2)ϕ

dσi
= W(T)Qi(j−i−1)w

−A(T)′Qi(j−i−1)ϕ + [Q̂i(j−i−2)g(σi, ε)]j−i−1,
(32)

ϕj(T) + Q0j ϕ(0) + Q1j ϕ(0) = 0. (33)

It follows from (31), (32) with j = 0 and i = j = 1 that

E1Π00 ϕ(τ0) = 0, E1Π10 ϕ(τ1) = E1Π11 ϕ(τ1) = 0, E1Q00 ϕ(σ0) = 0,

E1Q10 ϕ(σ1) = E1Q11 ϕ(σ1) = 0, E2Π10 ϕ(τ1) = 0, E2Q10 ϕ(σ1) = 0.

4. Justification of Formalism of Asymptotics Construction

This section deals with the establishment of a relation between the forms of coefficients
in the expansion (6) of the minimized functional with respect to powers of ε and the
expressions of the performance indices in optimal control problems formulated in the
previous section. The following theorem, which was given in [26] without any rigorous
proof, will be further justified.

Theorem 1. The sum J j + Π1(j−1) J + Q1(j−1) J of the performance indices in problems Pj, Π1(j−1)P,
Q1(j−1)P is obtained by transforming the coefficient J2j in expansion (6) and dropping terms, which
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are known after solving problems Pk, Π0kP, Q0kP, k = 0, j− 1, Π1kP, Q1kP, k = 0, k− 2. The
sum Π0j J + Q0j J of the performance indices in problems Π0jP, Q0jP is obtained by transforming
the coefficient J2j+1 in expansion (6) and dropping terms, which are known after solving problems
Pk, k = 0, j, ΠikP, QikP, i = 0, 1, k = 0, j− 1.

Proof. Denote the integrand in (1) by means F(ϑ, t, ε). In view of (5), we can present Jk in
the form

Jk =
∫ T

0
Fk(t) dt +

∫ +∞

0
Π0(k−1)F(τ0) dτ0

+
∫ 0

−∞
Q0(k−1)F(σ0)dσ0+

∫ +∞

0
Π1(k−2)F(τ1)dτ1+

∫ 0

−∞
Q1(k−2)F(σ1) dσ1.

(34)

It is clear that the last expression contains the asymptotics terms with numbers more

than it is necessary in this theorem, for instance, F2n(t) = [F(ϑ̃2n(t, ε), t, ε)]2n. In order to
prove the theorem, we will use control optimality conditions for formulated previously
control problems.

It is evident that the coefficient J0 in (6) is the performance index in problem P0.
We will analyze the coefficient J1. In view of (34) with k = 1, we have

J1 =
∫ T

0
F1(t) dt +

∫ +∞

0
Π00F(τ0) dτ0 +

∫ 0

−∞
Q00F(σ0) dσ0

=
∫ T

0
(w1(t)′W(t)w0(t) + u1(t)′R(t)u0(t) + [F̂0(t, ε)]1) dt

+
∫ +∞

0
(

1
2
(Π00w(τ0)

′W(0)Π00w(τ0) + Π00u(τ0)
′R(0)Π00u(τ0))

+Π00w(τ0)
′W(0)w0(0) + Π00u(τ0)

′R(0)u0(0)) dτ0

+
∫ 0

−∞
(

1
2
(Q00w(σ0)

′W(T)Q00w(σ0) + Q00u(σ0)
′R(T)Q00u(σ0))

+Q00w(σ0)
′W(T)w0(T) + Q00u(σ0)

′R(T)u0(T)) dσ0.

Transforming the following expression from J1 with the help of control optimality
conditions for the problem P0 (see (18)–(20) with j = 0), the integration by parts, and
also (12), (7) with j = 1, (8), (9) with j = 0 and j = 1, and (15), we have∫ T

0
(w1(t)′W(t)w0(t) + u1(t)′R(t)u0(t)) dt +

∫ +∞

0
(Π00w(τ0)

′W(0)w0(0)

+Π00u(τ0)
′R(0)u0(0)) dτ0 +

∫ 0

−∞
(Q00w(σ0)

′W(T)w0(T) + Q00u(σ0)
′R(T)u0(T)) dσ0

=
∫ T

0
(w1(t)′(E1

dψ0(t)
dt

+ A(t)′ψ0(t)) + u1(t)′B(t)′ψ0(t)) dt

+
∫ +∞

0
(Π00w(τ0)

′(E1
dψ0
dt

(0) + A(0)′ψ0(0)) + Π00u(τ0)
′B(0)′ψ0(0)) dτ0

+
∫ 0

−∞
(Q00w(σ0)

′(E1
dψ0
dt

(T) + A(T)′ψ0(T)) + Q00u(σ0)
′B(T)′ψ0(T)) dσ0

= w1(t)′E1ψ0(t)|
T
0 +

∫ T

0
ψ0(t)

′(−E1
dw1

dt
(t) + A(t)w1(t) + B(t)u1(t)) dt

+
∫ +∞

0
ψ0(0)

′(A(0)Π00w(τ0) + B(0)Π00u(τ0)) dτ0

+
∫ 0

−∞
ψ0(T)

′(A(T)Q00w(σ0) + B(T)Q00u(σ0)) dσ0

= Π01w(0)′E1ψ0(0) +
∫ T

0
ψ0(t)

′(E2
dw0

dt
(t)− [φ̂0(t, ε)]1) dt
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+
∫ +∞

0
ψ0(0)

′(E1
dΠ01w(τ0)

dτ0
+ E2

dΠ00w(τ0)

dτ0
) dτ0

+
∫ 0

−∞
ψ0(T)

′(E1
dQ01w(σ0)

dσ0
+ E2

dQ00w(σ0)

dσ0
) dσ0

= Π01w(0)′E1ψ0(0) +
∫ T

0
ψ0(t)

′(E2
dw0

dt
(t)− [φ̂0(t, ε)]1) dt

−ψ0(0)
′(E1Π01w(0) + E2Π00w(0)) + ψ0(T)

′E2Q00w(0)

= ψ0(T)
′E2Q00w(0) +

∫ T

0
ψ0(t)

′(E2
dw0

dt
(t)− [φ̂0(t, ε)]1) dt− ψ0(0)

′E2(w0 − w0(0)).

Taking into account this relation and the previous expression for J1, and also drop-
ping terms, which are known after solving the problem P0, we see that the transformed
expression for J1 is the sum Π00 J + Q00 J.

Assuming that the problems P0, Π00P, Q00P have been solved, we transform by similar
way the coefficient J2 in (6). According to (34), J2 has the form:∫ T

0
F2(t) dt +

∫ +∞

0
Π01F(τ0) dτ0 +

∫ 0

−∞
Q01F(σ0) dσ0

+
∫ +∞

0
Π10F(τ1) dτ1 +

∫ 0

−∞
Q10F(σ1) dσ1.

Write down the unknown terms in F2(t)

w2(t)′W(t)w0(t) + u2(t)′R(t)u0(t) + w1(t)′(1/2W(t)w1(t) + Fw0(t)
′)

+u1(t)′(1/2R(t)u1(t) + Fu0(t)
′).

Transforming
∫ T

0 (w′2Ww0 + u′2Ru0) dt with the help of optimality conditions (18),
(19) at j = 0, integrating by parts, (7) at j = 2, (20) at j = 0, and dropping known terms,
we obtain−ψ0(0)

′(E1w2(0) + E2w1(0)) +ψ0(T)
′E2w1(T)−

∫ T
0 (w′1E2dψ0/dt+ψ

′
0( f w0

w1 +

f u0
u1)) dt.

The unknown expression in Π01F(τ0) is

Π01w(τ0)
′W(0)(w0(0) + Π00w(τ0)) + Π00w(τ0)

′W(0)w1(0)

+Π01u(τ0)
′R(0)(u0(0) + Π01u(τ0)) + Π00u(τ0)

′R(0)u1(0).

The integral of this expression will be transformed using control optimality conditions
for problems P0 and Π00P, Equations (7) at j = 1, (8) at j = 1, 2, the formula of integration
by parts and Remark 1. Dropping known terms, we have −Π00ψ(0)′((E1 + E2)w1(0) +
E2Π01w(0))− ψ0(0)

′(E2Π01w(0) + E1Π02w(0)).
Similarly, we transform the third integral in J2, depending on an unknown expression∫ 0

−∞
(Q01w(σ0)

′W(T)(w0(T) + Q00w(σ0)) + Q00w(σ0)
′W(T)w1(T)

+Q01u(σ0)
′R(T)(u0(T) + Q00u(σ0)) + Q00u(σ0)

′R0(T)u1(T)) dσ0

= Q00ψ(0)′((E1 + E2)w1(T) + E2Q01w(0)) + ψ0(T)
′E2Q01w(0).

The unknown expression in Π10F(τ1) is

Π10w(τ1)
′W(0)(w0(0) + Π00w(0)) + Π10u(τ1)

′R(0)(u0(0) + Π00u(0))

+1/2(Π10w(τ1)
′W(0)Π10w(τ1) + Π10u(τ1)

′R(0)Π10u(τ1)).
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Transform the integral∫ +∞

0
(Π10w(τ1)

′W(0)(w0(0) + Π00w(0)) + Π10u(τ1)
′R(0)(u0(0) + Π00u(0))) dτ1

with the help of optimality conditions for problems P0, Π00P, (10) at j = 0, 1, 2, (12) and
integration by parts. Dropping known terms, we have −ψ0(0)

′(E1Π12w(0) + E2Π11w(0) +
E3Π10w(0))−Π00ψ(0)′(E2Π11w(0) + E3Π10w(0)).

Transforming in a similar way the fifth integral in J2, depending on unknown terms,
we obtain∫ 0

−∞
(Q10w(σ1)

′W(T)(w0(T) + Q00w(0)) + Q10u(σ1)
′R(T)(u0(T) + Q00u(0))

+1/2(Q10w(σ1)
′W(T)Q10w(σ1) + Q10u(σ1)

′R(T)Q10u(σ1))) dσ1

= ψ0(T)
′(E2Q11w(0) + E3Q10w(0)) + Q00ψ(0)′(E2Q11w(0) + E3Q10w(0))

+1/2
∫ 0

−∞
(Q10w(σ1)

′W(T)Q10w(σ1) + Q10u(σ1)
′R(T)Q10u(σ1)) dσ1.

Substituting the transformed relations into J2, taking into account the second equality
in (13), (14) at j = 2, (16) at j = 1, (17) and (23) at j = 0, and also Remark 1, and finally
dropping known terms, we obtain the theorem statement for the coefficient J2.

Introduce the notation

ϑ(t, ε)− ϑ̃j−1(t, ε) = ∆jϑ(t, ε) +
1

∑
i=0

(∆jΠiϑ(τi, ε) + ∆jQiϑ(σi, ε)), (35)

where ∆jϑ(t, ε) = ϑ(t, ε) − ϑ̃j−1(t, ε) = εjϑj(t) + α(εj+1), ∆jΠiϑ(τi, ε) = Πiϑ(τi, ε) −
Π̃i(j−1)ϑ(τi, ε) = εjΠijϑ(τi) + α(εj+1), ∆jQiϑ(σi, ε) = Qiϑ(τi, ε)− Q̃i(j−1)ϑ(σi, ε) = εjQijϑ

(σi) + α(εj+1), i = 0, 1, α(εj+1) is a sum of the expansion terms of order εj+1 and higher.
Assuming that the problems Pj, Π0jP, Q0jP and Π1(j−1)P, Q1(j−1)P, j = 0, n− 1 have

been solved, we will transform each term in the coefficient J2n, having the presentation (34)
with k = 2n.

Using the notation (35), we can see that the unknown terms in F2n(t) are the following:

wn(t)′(1/2W(t)wn(t) + [F̂w(n−1)(t, ε)′]n−1)

+un(t)′(1/2R(t)un(t) + [F̂u(n−1)(t, ε)′]n−1)

+[∆n+1w(t, ε)′(W(t)w̃n−1(t, ε) + {εF̂w(n−1)(t, ε)′}n−1)]2n

+[∆n+1u(t, ε)′(R(t)ũn−1(t, ε) + {εF̂u(n−1)(t, ε)′}n−1)]2n.

Multiplying the Equations (18), (19) by εj, j = 0, k, and summing up the obtained
equations, we obtain the following relations

{R(t)ũk(t, ε) + εF̂u(k−1)(t, ε)′}k = {B(t)′ψ̃k(t, ε) + ε f̂ u(k−1)(t, ε)′ψ̃k−1(t, ε)}k,

{W(t)w̃k(t, ε) + εF̂w(k−1)(t, ε)′}k = {E(ε)
dψ̃k(t, ε)

dt
}k

+{A(t)′ψ̃k(t, ε) + ε f̂ w(k−1)(t, ε)′ψ̃k−1(t, ε)}k.

(36)
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Substituting ϑ(t, ε) from (35) with j = n + 1 into (2) and equating terms depending on
t, we obtain the equation

E(ε)(dw̃n(t, ε)

dt
+

d∆n+1w(t, ε)

dt
) = A(t)(w̃n(t, ε) + ∆n+1w(t, ε))

+B(t)(ũn(t, ε) + ∆n+1u(t, ε)) + ε f (ϑ̃n(t, ε) + ∆n+1ϑ(t, ε), t, ε).
(37)

We will use the next easily proved formula from [29], which is valid for any sufficiently
smooth vector functions a(t, ε), b(t, ε) and a matrix D(t, ε) of the corresponding size,

k = [{b(t, ε)}′lD(t, ε)a(t, ε)]k

−[{b(t, ε)}′lD(t, ε){a(t, ε)}k−l−1]k, k, l ∈ IN, k > l.
(38)

Using (36) with k = n− 1, (37), (38) with l = n− 1, k = 2n, we can rewrite∫ T

0
([∆n+1w(t, ε)′(W(t)w̃n−1(t, ε) + {εF̂w(n−1)(t, ε)′}n−1)]2n

+[∆n+1u(t, ε)′(R(t)ũn−1(t, ε) + {εF̂u(n−1)(t, ε)′}n−1)]2n) dt

in the following way

∫ T

0
([∆n+1w(t, ε)′{E(ε)

dψ̃n−1(t, ε)

dt
}n−1]2n + [ψ̃n−1(t, ε)′(A(t)∆n+1w(t, ε)

+B(t)∆n+1u(t, ε)]2n + [∆n+1w(t, ε)′{ε f̂ w(n−1)(t, ε)′ψ̃n−1(t, ε)}n−1]2n

+[∆n+1u(t, ε)′{ε f̂ u(n−1)(t, ε)′ψ̃n−1(t, ε)}n−1〉]2n) dt

=
∫ T

0
([∆n+1w(t, ε)′{E(ε)

dψ̃n−1(t, ε)

dt
}n−1]2n + [ψ̃n−1(t, ε)′(E(ε)(d∆n+1w(t, ε)

dt

+
dw̃n(t, ε)

dt
)− A(t)w̃n(t, ε)− B(t)ũn(t, ε)− ε f (ϑ̃n(t, ε) + ∆n+1ϑ(t, ε), t, ε))]2n

+[ψ̃n−1(t, ε)′({ε f̂ w(n−1)(t, ε)}n−1∆n+1w(t, ε) + {ε f̂ u(n−1)(t, ε)}n−1∆n+1u(t, ε))]2n) dt.

Integrating by parts in the first term of the last expression, taking into account the

equality ∆n+1ϑ(t, ε) = ∆nϑ(t, ε)− εnϑn(t), decomposing f (ϑ̃n(t, ε) + ∆n+1ϑ(t, ε), t, ε) in the

neighborhood of ϑ̃n−1(t, ε), and omitting known terms, we obtain

[∆n+1w(t, ε)′E(ε)ψ̃n−1(t, ε)]2n|T0 + (ψn−1(t)
′E2wn(t) + ψn−2(t)

′E3wn(t))|T0

+
∫ T

0
(w′n(−E2

dψn−1
dt

− E3
dψn−2

dt
− [{ψ̃n−1(t, ε)′ε f̂ ϑ(n−1)(t, ε)}n(ε

nϑn + ∆n+1ϑ(t, ε))]2n

+[ψ̃n−1(t, ε)′({ε f̂ w(n−1)(t, ε)}n−1∆n+1w(t, ε) + {ε f̂ u(n−1)(t, ε)}n−1∆n+1u(t, ε))]2n) dt

= [∆nw(t, ε)′(
1
ε

E1 + E2 + εE3)ψ̃n−1(t, ε)]2n−1|T0

−
∫ T

0
(wn(t)′(E2

dψn−1
dt

+ E3
dψn−2

dt
+ [ε f̂ w(n−1)(t, ε)′ψ̃n−1(t, ε)]n)

+[un(t)′([ε f̂ u(n−1)(t, ε)′ψ̃n−1(t, ε)]n) dt.

Taking into account the last relation, omitting known terms, we obtain the following
expression for the first term of J2n:∫ T

0
F2n(t) dt = [∆nw(t, ε)′(

1
ε

E1 + E2 + εE3)ψ̃n−1(t, ε)]2n−1|T0 + Jn
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−wn(T)′E1(Q0(n−1)ψ(0) + Q1(n−2)ψ(0)).

The next step is the transformation of the unknown parts of Π0(2n−1)F(τ0), which,
after substituting (35) and some transformations, is given below

[∆nΠ0w(τ0, ε)′({W(ετ0)w̃n−1(ετ0, ε)}n−1 + {εF̂w(n−1)(ετ0, ε)′}n−1)]2n−1

+[∆nΠ0u(τ0, ε)′({R(ετ0)ũn−1(ετ0, ε)}n−1 + {εF̂u(n−1)(ετ0, ε)′}n−1)]2n−1

+[(∆nw(ετ0, ε) + ∆nΠ0w(τ0, ε))′({W(ετ0)Π̃0(n−1)w(τ0, ε)}n−1

+{εΠ̂0(n−1)Fw(τ0, ε)′}n−1)]2n−1 + [(∆nu(ετ0, ε)

+∆nΠ0u(τ0, ε))′({R(ετ0)Π̃0(n−1)u(τ0, ε)}n−1 + {εΠ̂0(n−1)Fu(τ0, ε)′}n−1)]2n−1.

Substituting ϑ(t, ε) from (35) into (2) and considering terms depending on τ0, we
obtain the equation

(
1
ε

E1 + E2 + εE3)(
dΠ̃0(n−1)w(τ0, ε)

dτ0
+

d∆nΠ0w(τ0, ε)

dτ0
)

= A(ετ0)(Π̃0(n−1)w(τ0, ε) + ∆nΠ0w(τ0, ε)) + B(ετ0)(Π̃0(n−1)u(τ0, ε)

+∆nΠ0u(τ0, ε)) + ε( f (ϑ̃n−1(ετ0, ε) + Π̃0(n−1)ϑ(τ0, ε)

+∆nϑ(ετ0, ε) + ∆nΠ0ϑ(τ0, ε), ετ0, ε)− f (ϑ̃n−1(ετ0, ε) + ∆nϑ(ετ0, ε), ετ0, ε)).

(39)

Using (36) with k = n− 1, (39) and (38), we transform the following expression:∫ +∞

0
([∆nΠ0w(τ0, ε)′({W(ετ0)w̃n−1(ετ0, ε)}n−1 + {εF̂w(n−1)(ετ0, ε)′}n−1)]2n−1

+[∆nΠ0u(τ0, ε)′({R(ετ0)ũn−1(ετ0, ε)}n−1 + {εF̂u(n−1)(ετ0, ε)′}n−1)]2n−1) dτ0.

Omitting known terms, we have

∫ +∞

0
([∆nΠ0w(τ0, ε)′({E(ε)

dψ̃n−1
dt

(ετ0, ε)}n−1 + {A(ετ0)
′ψ̃n−1(ετ0, ε)}n−1

+{ε f̂ w(n−1)(ετ0, ε)′ψ̃n−1(ετ0, ε)}n−1)]2n−1 + [∆nΠ0u(τ0, ε)′({B(ετ0)
′ψ̃n−1(ετ0, ε)}n−1

+{ε f̂ u(n−1)(ετ0, ε)′ψ̃n−1(ετ0, ε)}n−1)]2n−1) dτ0 =
∫ +∞

0
(Π0nw′E1

dψn−1
dt

(0)

+[∆nΠ0w(τ0, ε)′{(1
ε

E1 + E2 + εE3)
dψ̃n−2

dt
(ετ0, ε)}n−2]2n−2

+[ψ̃n−1(ετ0, ε)′(
1
ε

E1 + E2 + εE3)
d∆nΠ0w

dτ0
(τ0, ε)]2n−1

−[ψ̃n−1(ετ0, ε)′(εΠ̂0(n−1) fϑ(τ0, ε)∆nϑ(ετ0, ε) + ε fϑ(ϑ̃n−1(ετ0, ε)

+Π̃0(n−1)ϑ(τ0, ε), ετ0, ε)∆nΠ0ϑ(τ0, ε))]2n−1 + [ψ̃n−1(ετ0, ε)′(ε f̂ w(n−1)(ετ0, ε)∆nΠ0w(τ0, ε)

+ε f̂ u(n−1)(ετ0, ε)∆nΠ0u(τ0, ε))]2n−1) dτ0.

From here, applying the formula of integrating by parts and Remark 1, omitting
known terms, we obtain

−[∆nΠ0w(0, ε)′(
1
ε

E1 + E2 + εE3)ψ̃n−1(0, ε)]2n−1

−
∫ +∞

0
([ψ̃n−1(ετ0, ε)′(εΠ̂0(n−1) fϑ(∆nϑ(ετ0, ε) + ∆nΠ0ϑ(τ0, ε))]2n−1) dτ0.
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Multiplying the Equations (21), (22) by εj, j = 0, k, and summing up the obtained
equations, we obtain the equalities

{R(ετ0)Π̃0ku}k + {εΠ̂0(k−1)Fu(τ0, ε)′}k

= {B(ετ0)
′(εE1 + E2 + E3)Π̃0kψ}k + {εΠ̂0(k−1) fu(τ0, ε)′ψ̃k−1(ετ0, ε)}k

+{ε fu(ϑ̃k−1(ετ0, ε) + Π̃0(k−1)ϑ(τ0, ε), ετ0, ε)′(εE1 + E2 + E3)Π̃0(k−1)ψ}k,

{W(ετ0)Π̃0kw}k + {εΠ̂0(k−1)Fw(τ0, ε)′}k = {(E1 + E2 + εE3)
dΠ̃0kψ

dτ0
}k

+{A(ετ0)
′(εE1 + E2 + E3)Π̃0kψ}k + {εΠ̂0(k−1) fw(τ0, ε)′ψ̃k−1(ετ0, ε)}k

+{ε fw(ϑ̃k−1(ετ0, ε) + Π̃0(k−1)ϑ(τ0, ε), ετ0, ε)′(εE1 + E2 + E3)Π̃0(k−1)ψ}k.

(40)

We transform∫ +∞

0
([(∆nw(ετ0, ε) + ∆nΠ0w(τ0, ε))′({W(ετ0)Π̃0(n−1)w(τ0, ε)}n−1

+{εΠ̂0(n−1)Fw(τ0, ε)′}n−1)]2n−1 + [(∆nu(ετ0, ε)

+∆nΠ0u(τ0, ε))′({R(ετ0)Π̃0(n−1)u(τ0, ε)}n−1 + {εΠ̂0(n−1)Fu(τ0, ε)′}n−1)]2n−1) dτ0.

Using (40) and (38), as a result, we obtain

∫ +∞

0
([(∆nw(ετ0, ε) + ∆nΠ0w(τ0, ε))′{(E1 + E2 + εE3)

dΠ̃0(n−1)ψ

dτ0
}n−1]2n−1

+[Π̃0(n−1)ψ
′(εE1 + E2 + E3)(A(ετ0)∆nw(ετ0, ε) + B(ετ0)∆nu(ετ0, ε))]2n−1

+[Π̃0(n−1)ψ
′(εE1 + E2 + E3)(A(ετ0)∆nΠ0w(τ0, ε) + B(ετ0)∆nΠ0u(τ0, ε))]2n−1

+[ψ̃n−1(ετ0, ε)′({εΠ̂0(n−1) fw(τ0, ε)}n−1(∆nw(ετ0, ε) + ∆nΠ0w(τ0, ε))

+{εΠ̂0(n−1) fu(τ0, ε)}n−1(∆nu(ετ0, ε) + ∆nΠ0u(τ0, ε)))]2n−1

+[Π̃0(n−1)ψ
′(εE1 + E2 + E3)({ε fw(ϑ̃n−1(ετ0, ε) + Π̃0(n−1)ϑ, ετ0, ε)}n−1(∆nw(ετ0, ε)

+∆nΠ0w(τ0, ε)) + {ε fu(ϑ̃n−1(ετ0, ε) + Π̃0(n−1)ϑ, ετ0, ε)}n−1(∆nu(ετ0, ε)

+∆nΠ0u(τ0, ε)))]2n−1) dτ0.

In view of (37) and (39), we obtain from the last expression, omitting known terms,
the following:

∫ +∞

0
([(∆nw(ετ0, ε) + ∆nΠ0w(τ0, ε))′{(E1 + E2 + εE3)

dΠ̃0(n−1)ψ(τ0, ε)

dτ0
}n−1]2n−1

+[Π̃0(n−1)ψ(τ0, ε)′(εE1 + E2 + E3)((E1 + εE2 + ε2E3)(
dw̃n−1(ετ0, ε)

dt

+
d∆nw(ετ0, ε)

dt
)− A(ετ0)w̃n−1(ετ0, ε)− B(ετ0)ũn−1(ετ0, ε)

−{ε f̂ ϑ(n−1)(ετ0, ε)}n−1∆nϑ(ετ0, ε))]2n−1

+[Π̃0(n−1)ψ(τ0, ε)′(εE1 + E2 + E3)((
1
ε

E1 + E2 + εE3)(
dΠ̃0(n−1)w(τ0, ε)

dτ0
+

d∆nΠ0w(τ0, ε)

dτ0
)

−A(ετ0)Π̃0(n−1)w(τ0, ε)− B(ετ0)Π̃0(n−1)u(τ0, ε)− {εΠ̂0(n−1) fϑ(τ0, ε)}n−1∆nϑ(ετ0, ε)

−{ε fϑ(ϑ̃n−1(ετ0, ε) + Π̃0(n−1)ϑ(τ0, ε), ετ0, ε)}n−1∆nΠ0ϑ(τ0, ε))]2n−1

+[ψ̃n−1(ετ0, ε)′({εΠ̂0(n−1) fw(τ0, ε)}n−1(∆nw(ετ0, ε) + ∆nΠ0w(τ0, ε))
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+{εΠ̂0(n−1) fu(τ0, ε)}n−1(∆nu(ετ0, ε) + ∆nΠ0u(τ0, ε)))]2n−1

+[Π̃0(n−1)ψ(τ0, ε)′(εE1 + E2 + E3)({ε fw(ϑ̃n−1(ετ0, ε)

+Π̃0(n−1)ϑ(τ0, ε), ετ0, ε)}n−1(∆nw(ετ0, ε) + ∆nΠ0w(τ0, ε)) + {ε fu(ϑ̃n−1(ετ0, ε)

+Π̃0(n−1)ϑ(τ0, ε), ετ0, ε)}n−1(∆nu(ετ0, ε) + ∆nΠ0u(τ0, ε)))]2n−1) dτ0.

Integrating by parts in the last expression and dropping known terms, we obtain

−[(∆nw(0, ε) + ∆nΠ0w(0, ε))′(E1 + E2 + εE3)Π̃0(n−1)ψ(0, ε)]2n−1

+
∫ +∞

0
[ψ̃n−1(ετ0, ε)′{εΠ̂0(n−1) fϑ(τ0, ε)}n−1(∆nϑ(ετ0, ε) + ∆nΠ0ϑ(τ0, ε))]2n−1 dτ0.

Summing up the results, obtained from the transformed terms of the integral∫ +∞
0 Π0(2n−1)F dτ0, after dropping known terms, we have

−[∆nΠ0w(0, ε)′(
1
ε

E1 + E2 + εE3)ψ̃n−1(0, ε)]2n−1

−[(∆nw(0, ε) + ∆nΠ0w(0, ε))′(E1 + E2 + εE3)Π̃0(n−1)ψ(0, ε)]2n−1.

Performing similar transformations for
∫ 0
−∞ Q0(2n−1)F dσ0, we obtain the following

result:

[∆nQ0w(0, ε)′(
1
ε

E1 + E2 + εE3)ψ̃n−1(T, ε)]2n−1

+[(∆nw(T, ε) + ∆nQ0w(0, ε))′(E1 + E2 + εE3)Q̃0(n−1)ψ(0, ε)]2n−1.

Furthermore, we apply the analogous transformations for the forth term of J2n. The
integral over the interval [0,+∞) of unknown terms of Π1(2n−2)F(τ1) is presented as the
sum

4

∑
i=1

si +
∫ +∞

0
(Π1(n−1)w(τ1)

′([W(ε2τ1)w̃n−1(ε
2τ1, ε)]n−1 + [F̂w(n−2)(ε

2τ1, ε)′]n−2)

+Π1(n−1)u(τ1)
′([R(ε2τ1)ũn−1(ε

2τ1, ε)]n−1 + [F̂u(n−2)(ε
2τ1, ε)′]n−2)) dτ1

+
∫ +∞

0
(Π1(n−1)w(τ1)

′([W(ε2τ1)Π̃0(n−1)w(ετ1, ε)]n−1 + [Π̂0(n−2)Fw(ετ1, ε)′]n−2)

+Π1(n−1)u(τ1)
′([R(ε2τ1)Π̃0(n−1)u(ετ1, ε)]n−1 + [Π̂0(n−2)Fu(ετ1, ε)′]n−2)) dτ1

+
∫ +∞

0
(Π1(n−1)w(τ1)

′(1/2W(0)Π1(n−1)w(τ1) + [W(ε2τ1)Π̃1(n−2)w(τ1, ε)]n−1

+[Π̂1(n−2)Fw(τ1, ε)′]n−2) + Π1(n−1)u(τ1)
′(1/2R(0)Π1(n−1)u(τ1)

+[R(ε2τ1)Π̃1(n−2)u(τ1, ε)]n−1 + [Π̂1(n−2)Fu(τ1, ε)′]n−2)) dτ1,

(41)

where the expressions for si, i = 1, 4, will be written later when they will be transformed.
Substituting ϑ(t, ε) from (35) into (2) and considering terms depending on τ1, we

obtain the equation

(
1
ε2 E1 +

1
ε

E2 + E3)(
dΠ̃1(n−1)w(τ1, ε)

dτ1
+

d∆nΠ1w(τ1, ε)

dτ1
)

= A(ε2τ1)(Π̃1(n−1)w(τ1, ε) + ∆nΠ1w(τ1, ε)) + B(ε2τ1)(Π̃1(n−1)u(τ1, ε)

+∆nΠ1u(τ1, ε)) + ε( f (ϑ̃n−1(ε
2τ1, ε) + Π̃0(n−1)ϑ(ετ1, ε) + Π̃1(n−1)ϑ(τ1, ε)

+∆nϑ(ε2τ1, ε) + ∆nΠ0ϑ(ετ1, ε) + ∆nΠ1ϑ(τ1, ε), ε2τ1, ε)

− f (ϑ̃n−1(ε
2τ1, ε) + Π̃0(n−1)ϑ(ετ1, ε) + ∆nϑ(ε2τ1, ε) + ∆nΠ0ϑ(ετ1, ε), ε2τ1, ε)).

(42)
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Using (36) with k = n− 2 and t = ε2τ1 in the expression

s1 =
∫ +∞

0
([∆nΠ1w(τ1, ε)′({W(ε2τ1)w̃n−2(ε

2τ1, ε)}n−2 + {εF̂w(n−2)(ε
2τ1, ε)′}n−2)]2n−2

+[∆nΠ1u(τ1, ε)′({R(ε2τ1)ũn−2(ε
2τ1, ε)}n−2 + {εF̂u(n−2)(ε

2τ1, ε)′}n−2)]2n−2) dτ1,

we obtain

∫ +∞

0
([∆nΠ1w(τ1, ε)′(E1 + εE2 + ε2E3)

dψ̃n−2
dt

(ε2τ1, ε))]2n−2

+[∆nΠ1w(τ1, ε)′({A(ε2τ1)
′ψ̃n−2(ε

2τ1, ε)}n−2 + {ε f̂ w(n−2)(ε
2τ1, ε)′ψ̃n−2(ε

2τ1, ε)}n−2)]2n−2

+[∆nΠ1u(τ1, ε)′({B(ε2τ1)
′ψ̃n−2(ε

2τ1, ε)}n−2 + {ε f̂ u(n−2)(ε
2τ1, ε)′ψ̃n−2(ε

2τ1, ε)}n−2)]2n−2) dτ1.

Then, applying (38) with k = 2n− 2, l = n− 2, and (42), we have

∫ +∞

0
([∆nΠ1w(τ1, ε)′(E1 + εE2 + ε2E3)

dψ̃n−2
dt

(ε2τ1, ε)]2n−2

+[ ψ̃n−2(ε
2τ1, ε)′(A(ε2τ1)∆nΠ1w(τ1, ε) + B(ε2τ1)∆nΠ1u(τ1, ε))]2n−2

+[ψ̃n−2(ε
2τ1, ε)′(ε f̂ w(n−2)(ε

2τ1, ε)∆nΠ1w(τ1, ε) + ε f̂ u(n−2)(ε
2τ1, ε)∆nΠ1u(τ1, ε))]2n−2) dτ1

=
∫ +∞

0
([∆nΠ1w(τ1, ε)′(E1 + εE2 + ε2E3)

dψ̃n−2
dt

(ε2τ1, ε)]2n−2

+[ψ̃n−2(ε
2τ1, ε)′((

1
ε2 E1 +

1
ε

E2 + E3)(
dΠ̃1(n−1)w(τ1, ε)

dτ1
+

d∆nΠ1w(τ1, ε)

dτ1
)

−A(ε2τ1)Π̃1(n−1)w(τ1, ε)− B(ε2τ1)Π̃1(n−1)u(τ1, ε)− ε( f (ϑ̃n−1(ε
2τ1, ε) + Π̃0(n−1)ϑ(ετ1, ε)

+Π̃1(n−1)ϑ(τ1, ε) + ∆nϑ(ε2τ1, ε) + ∆nΠ0ϑ(ετ1, ε) + ∆nΠ1ϑ(τ1, ε), ε2τ1, ε)

− f (ϑ̃n−1(ε
2τ1, ε) + Π̃0(n−1)ϑ(ετ1, ε) + ∆nϑ(ε2τ1, ε) + ∆nΠ0ϑ(ετ1, ε), ε2τ1, ε)))]2n−2

+[ψ̃n−2(ε
2τ1, ε)′ε f̂ ϑ(n−2)(ε

2τ1, ε)∆nΠ1ϑ(τ1, ε)]2n−2) dτ1.

Integrating by parts in the last relation, using Remark 1, dropping known terms, we
obtain

−[∆nΠ1w(0, ε)′(
1
ε2 E1 +

1
ε

E2 + E3)ψ̃n−2(0, ε)]2n−2

+
∫ +∞

0
([ψ̃n−2(ε

2τ1, ε)′(
1
ε2 E1 +

1
ε

E2 + E3)
dΠ̃1(n−1)w(τ1, ε)

dτ1
]2n−2︸ ︷︷ ︸

{1}

+[ψ̃n−2(ε
2τ1, ε)′ε f̂ ϑ(n−2)(ε

2τ1, ε)∆nΠ1ϑ(τ1, ε)]2n−2

−[ψ̃n−2(ε
2τ1, ε)′(εΠ̂1(n−2) fϑ(τ1, ε)(∆nϑ(ε2τ1, ε) + ∆nΠ0ϑ(ετ1, ε))

+ε( f̂ ϑ(n−2)(ε
2τ1, ε)︸ ︷︷ ︸

{1}

+ Π̂0(n−2) fϑ(ετ1, ε)︸ ︷︷ ︸
{2}

+Π̂1(n−2) fϑ(τ1, ε))εn−1Π1(n−1)ϑ(τ1)

+ε fϑ(ϑ̃n−2(ε
2τ1, ε) + Π̃0(n−2)ϑ(ετ1, ε) + Π̃1(n−2)ϑ, ε2τ1, ε)∆nΠ1ϑ(τ1, ε))]2n−2

−Π1(n−1)w(τ1)
′[A(ε2τ1)

′ψ̃n−2(ε
2τ1, ε)]n−1︸ ︷︷ ︸

{1}

−Π1(n−1)u(τ1)
′[B(ε2τ1)

′ψ̃n−2(ε
2τ1, ε)]n−1︸ ︷︷ ︸

{1}

) dτ1.

(43)
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Consider together the first integral in (41) and some terms with Π1(n−1)ϑ(τ1, ε) in the
transformed last expression for s1, marked by {1}, namely, the expression of the form∫ +∞

0
(Π1(n−1)w(τ1)

′([W(ε2τ1)w̃n−1(ε
2τ1, ε)]n−1 + [F̂w(n−2)(ε

2τ1, ε)′]n−2

−[A(ε2τ1)
′ψ̃n−2(ε

2τ1, ε)]n−1 − [ f̂ w(n−2)(ε
2τ1, ε)′ψ̃n−2(ε

2τ1, ε)]n−2)

+Π1(n−1)u(τ1)
′([R(ε2τ1)ũn−1(ε

2τ1, ε)]n−1 + [F̂u(n−2)(ε
2τ1, ε)′]n−2

−[B(ε2τ1)
′ψ̃n−2(ε

2τ1, ε)]n−1 − [ f̂ u(n−2)(ε
2τ1, ε)′ψ̃n−2(ε

2τ1, ε)]n−2)

+[ψ̃n−2(ε
2τ1, ε)′(

1
ε2 E1 +

1
ε

E2 + E3)
dΠ̃1(n−1)w(τ1, ε)

dτ1
]2n−2) dτ1.

Transforming this expression with the help of (36) with k = n − 1 and (10) at j =
n− 1, n, n + 1 and omitting some known terms, we have∫ +∞

0
(Π1(n−1)w(τ1)

′[E1
dψ̃n−1

dt
(ε2τ1, ε) + E2

dψ̃n−2
dt

(ε2τ1, ε) + E3
dψ̃n−3

dt
(ε2τ1, ε)]n−1

+ψn−1(0)
′(E1

dΠ1(n+1)w(τ1)

dτ1
+ E2

dΠ1nw(τ1)

dτ1
+ E3

dΠ1(n−1)w(τ1)

dτ1

+[ψ̃n−2(ε
2τ1, ε)′(

1
ε2 E1 +

1
ε

E2 + E3)
dΠ̃1(n−1)w(τ1, ε)

dτ1
)]2n−2) dτ1.

From here, using Remark 1, integrating by parts and omitting known terms, we obtain

−ψn−1(0)
′(E1Π1(n+1)w(0) + E2Π1nw(0) + E3Π1(n−1)w(0)).

Further changes concern the expression

s2 =
∫ +∞

0
([∆nΠ1w(τ1, ε)′({W(ε2τ1)Π̃0(n−2)w(ετ1, ε)}n−2

+{εΠ̂0(n−2)Fw(ετ1, ε)}n−2)]2n−2 + [∆nΠ1u(τ1, ε)′({R(ε2τ1, ε)Π̃0(n−2)u(ετ1, ε)}n−2

+{εΠ̂0(n−2)Fu(ετ1, ε)}n−2)]2n−2) dτ1.

It will be transformed using (40) with k = n− 2 and (38) in the following way:

∫ +∞

0
([∆nΠ1w(τ1, ε)′(E1 + E2 + εE3)

dΠ̃0(n−2)ψ(ετ1, ε)

dτ0
]2n−2

+[Π̃0(n−2)ψ(ετ1, ε)′(εE1 + E2 + E3)(A(ε2τ1)∆nΠ1w(τ1, ε) + B(ε2τ1)∆nΠ1u(τ1, ε))]2n−2

+[∆nΠ1w(τ1, ε)′({εΠ̂0(n−2) fw(ετ1, ε)′ψ̃n−2(ε
2τ1, ε)}n−2

+{ε fw(ϑ̃n−2(ε
2τ1, ε) + Π̃0(n−2)ϑ(ετ1, ε), ε2τ1, ε)′(εE1 + E2 + E3)Π̃0(n−2)ψ(ετ1, ε)}n−2)]2n−2

+[∆nΠ1u(τ1, ε)′({εΠ̂0(n−2) fu(ετ1, ε)′ψ̃n−2(ε
2τ1, ε)}n−2 + {ε fu(ϑ̃n−2(ε

2τ1, ε)

+Π̃0(n−2)ϑ(ετ1, ε), ε2τ1, ε)′(εE1 + E2 + E3)Π̃0(n−2)ψ(ετ1, ε)}n−2)]2n−2) dτ1.

From here, using (42) and omitting some known terms, we have

∫ +∞

0
([∆nΠ1w(τ1, ε)′(E1 + E2 + εE3)

dΠ̃0(n−2)ψ(ετ1, ε)

dτ0
]2n−2 + [Π̃0(n−2)ψ(ετ1, ε)′(εE1

+E2 + E3)((
1
ε2 E1 +

1
ε

E2 + E3)(
dΠ̃1(n−1)w(τ1, ε)

dτ1
+

d∆nΠ1w(τ1, ε)

dτ1
)
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−A(ε2τ1)Π̃1(n−1)w(τ1, ε)− B(ε2τ1)Π̃1(n−1)u(τ1, ε)− εΠ̂1(n−2) fϑ(τ1, ε)(εn−1ϑn−1(ε
2τ1, ε)

+εn−1Π0(n−1)ϑ(ετ1, ε) + ∆nϑ(ε2τ1, ε) + ∆nΠ0ϑ(ετ1, ε))− ε fϑ(ϑ̃n−2(ε
2τ1, ε)

+Π̃0(n−2)ϑ(ετ1, ε) + Π̃1(n−2)ϑ(τ1, ε), ε2τ1, ε)}n−2)(ε
n−1Π1(n−1)ϑ(τ1)

+∆nΠ1ϑ(τ1, ε)))]2n−2 + [∆nΠ1w(τ1, ε)′({εΠ̂0(n−2) fw(ετ1, ε)′ψ̃n−2(ε
2τ1, ε)}n−2

+{ε fw(ϑ̃n−2(ε
2τ1, ε) + Π̃0(n−2)ϑ(ετ1, ε), ε2τ1, ε)′(εE1 + E2 + E3)Π̃0(n−2)ψ(ετ1, ε)}n−2)]2n−2

+[∆nΠ1u(τ1, ε)′({εΠ̂0(n−2) fu(ετ1, ε)′ψ̃n−2(ε
2τ1, ε)}n−2 + {ε fu(ϑ̃n−2(ε

2τ1, ε)

+Π̃0(n−2)ϑ(ετ1, ε), ε2τ1, ε)′(εE1 + E2 + E3)Π̃0(n−2)ψ(ετ1, ε)}n−2)]2n−2) dτ1.

Integrating by parts the first term in the last expression and dropping known terms, we
obtain

−[Π̃0(n−2)ψ(0, ε)′(
1
ε

E1 +
1
ε

E2 + E3)∆nΠ1w(0, ε)]2n−2

+
∫ +∞

0
([Π̃0(n−2)ψ(ετ1, ε)′(

1
ε

E1 +
1
ε

E2 + E3)
dΠ̃1(n−1)w(τ1, ε)

dτ1
]2n−2︸ ︷︷ ︸

{2}

−[Π̃0(n−2)ψ(ετ1, ε)′(εE1 + E2 + E3)(εΠ̂1(n−2) fϑ(τ1, ε)(∆nϑ(ε2τ1, ε) + ∆nΠ0ϑ(ετ1, ε))

+ε(Π̂1(n−2) fϑ(τ1, ε) + fϑ(ϑ̃n−2(ε
2τ1, ε) + Π̃0(n−2)ϑ(ετ1, ε), ε2τ1, ε)︸ ︷︷ ︸

{2}

)εn−1Π1(n−1)ϑ(τ1)

+ε fϑ(ϑ̃n−2(ε
2τ1, ε) + Π̃0(n−2)ϑ(ετ1, ε) + Π̃1(n−2)ϑ(τ1, ε), ε2τ1, ε)∆nΠ1ϑ(τ1, ε))]2n−2

−Π1(n−1)w(τ1)
′[A(ε2τ1)

′(εE1 + E2 + E3)Π̃0(n−2)ψ(ετ1, ε)]n−1︸ ︷︷ ︸
{2}

−Π1(n−1)u(τ1)
′[B(ε2τ1)

′(εE1 + E2 + E3)Π̃0(n−2)ψ(ετ1, ε)]n−1︸ ︷︷ ︸
{2}

+[∆nΠ1ϑ(τ1, ε)′({εΠ̂0(n−2) fϑ(ετ1, ε)′ψ̃n−2(ε
2τ1, ε)}n−2 + {ε fϑ(ϑ̃n−2(ε

2τ1, ε)

+Π̃0(n−2)ϑ(ετ1, ε), ε2τ1, ε)′(εE1 + E2 + E3)Π̃0(n−2)ψ(ετ1, ε)}n−2)]2n−2) dτ1.

(44)

Consider together the second integral in (41) and some terms with Π1(n−1)ϑ(τ1, ε)
from (43) and (44), marked by {2}, namely the expression of the form∫ +∞

0
(Π1(n−1)w(τ1)

′([W(ε2τ1)Π̃0(n−1)w(ετ1, ε)]n−1 + [Π̂0(n−2)Fw(ετ1, ε)′]n−2

−[A(ε2τ1)
′(εE1 + E2 + E3)Π̃0(n−2)ψ(ετ1, ε)]n−1 − [εΠ̂0(n−2) fw(ετ1, ε)′ψ̃n−2(ε

2τ1, ε)]n−1

−[ε fw(ϑ̃n−2(ε
2τ1, ε) + Π̃0(n−2)ϑ(ετ1, ε), ε2τ1, ε)′(εE1 + E2 + E3)Π̃0(n−2)ψ(ετ1, ε)]n−1)

+Π1(n−1)u(τ1)
′([R(ε2τ1)Π̃0(n−1)u(ετ1, ε)]n−1 + [Π̂0(n−2)Fu(ετ1, ε)′]n−2

−[B(ε2τ1)
′(εE1 + E2 + E3)Π̃0(n−2)ψ(ετ1, ε)]n−1 − [εΠ̂0(n−2) fu(ετ1, ε)′ψ̃n−2(ε

2τ1, ε)]n−1

−[ε fu(ϑ̃n−2(ε
2τ1, ε) + Π̃0(n−2)ϑ(ετ1, ε), ε2τ1, ε)′(εE1 + E2 + E3)Π̃0(n−2)ψ(ετ1, ε)]n−1)

+[Π̃0(n−2)ψ(ετ1, ε)′(
1
ε

E1 +
1
ε

E2 + E3)
dΠ̃1(n−1)w(τ1, ε)

dτ1
]2n−2) dτ1.
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We will transform this expression with the help of (40) with k = n− 1 and (10) with
j = n− 1, n. Omitting known terms, we obtain

∫ +∞

0
([Π̃0(n−2)ψ(ετ1, ε)′(

1
ε

E1 +
1
ε

E2 + E3)
dΠ̃1(n−1)w(τ1, ε)

dτ1
]2n−2

+Π1(n−1)w(τ1)
′[(E1 + E2)

dΠ̃0(n−1)ψ

dτ0
(ετ1, ε) + E3

dΠ̃0(n−2)ψ

dτ0
(ετ1, ε)]n−1

+Π0(n−1)ψ(0)
′(E2

dΠ1nw(τ1)

dτ1
+ E3

dΠ1(n−1)w(τ1)

dτ1
)) dτ1.

Integrating by parts, using Remark 1 and omitting known terms, we have

−Π0(n−1)ψ(0)
′(E2Π1nw(0) + E3Π1(n−1)w(0)).

Multiplying Equations (24), (25) by εj, j = 0, n− 2 and summing up the obtained
results, we obtain the equalities

{R(ε2τ1)Π̃1(n−2)u(τ1, ε)}n−2 + {εΠ̂1(n−3)Fu(τ1, ε)′}n−2

= {B(ε2τ1)
′(ε2E1 + εE2 + E3)Π̃1(n−2)ψ(τ1, ε)}n−2

+{εΠ̂1(n−3) fu(τ1, ε)′ψ̃n−3(ε
2τ1, ε)}n−2

+{εΠ̂1(n−3) fu(τ1, ε)′(εE1 + E2 + E3)Π̃0(n−3)ψ(ετ1, ε)}n−2

+{ε fu(ϑ̃n−3(ε
2τ1, ε) + Π̃0(n−3)ϑ(ετ1, ε) + Π̃1(n−3)ϑ(τ1, ε), ε2τ1, ε)′(ε2E1

+εE2 + E3)Π̃1(n−3)ψ(τ1, ε)}n−2,

(45)

{W(ε2τ1)Π̃1(n−2)w(τ1, ε)}n−2 + {εΠ̂1(n−3)Fw(τ1, ε)′}n−2 =
dΠ̃1(n−2)ψ(τ1, ε)

dτ1

+{A(ε2τ1)
′(ε2E1 + εE2 + E3)Π̃1(n−2)ψ(τ1, ε)}n−2

+{εΠ̂1(n−3) fw(τ1, ε)′ψ̃n−3(ε
2τ1, ε)}n−2

+{εΠ̂1(n−3) fw(τ1, ε)′(εE1 + E2 + E3)Π̃0(n−3)ψ(ετ1, ε)}n−2

+{ε fw(ϑ̃n−3(ε
2τ1, ε) + Π̃0(n−3)ϑ(ετ1, ε) + Π̃1(n−3)ϑ(τ1, ε), ε2τ1, ε)′(ε2E1

+εE2 + E3)Π̃1(n−3)ψ(τ1, ε)}n−2.

(46)

We will transform the expression

s3 =
∫ +∞

0
([(∆nw(ε2τ1, ε) + ∆nΠ0w(ετ1, ε))′({W(ε2τ1)Π̃1(n−2)w(τ1, ε)}n−2

+{εΠ̂1(n−2)Fw(τ1, ε)′}n−2)]2n−2 + [(∆nu(ε2τ1, ε)

+∆nΠ0u(ετ1, ε))′({R(ε2τ1)Π̃1(n−2)u(τ1, ε)}n−2 + {εΠ̂1(n−2)Fu(τ1, ε)′}n−2)]2n−2) dτ1.

Using (45), (46), (38) with k = 2n− 2, l = n− 2, (37), (39) and omitting known terms,
we have

∫ +∞

0
([(∆nw(ε2τ1, ε) + ∆nΠ0w(ετ1, ε))′

dΠ̃1(n−2)ψ(τ1, ε)

dτ1
]2n−2

+[Π̃1(n−2)ψ(τ1, ε)′(ε2E1 + εE2 + E3)((E1 + εE2 + ε2E3)(
dw̃n−1(ε

2τ1, ε)

dt

+
d∆nw(ε2τ1, ε)

dt
)− A(ε2τ1)w̃n−1(ε

2τ1, ε)− B(ε2τ1)ũn−1(ε
2τ1, ε)

−ε f̂ ϑ(n−2)(ε
2τ1, ε)(εn−1ϑn−1(ε

2τ1, ε) + ∆nϑ(ε2τ1, ε)))]2n−2
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+[Π̃1(n−2)ψ(τ1, ε)′(ε2E1 + εE2 + E3)((
1
ε

E1 + E2 + εE3)(
dΠ̃0(n−1)w(ετ1, ε)

dτ0

+
d∆nΠ0w(ετ1, ε)

dτ0
)− A(ε2τ1)Π̃0(n−1)w(ετ1, ε)− B(ε2τ1)Π̃0(n−1)u(ετ1, ε)

−εΠ̂0(n−2) fϑ(ετ1, ε)(εn−1ϑn−1(ε
2τ1, ε) + ∆nϑ(ε2τ1, ε))

−ε fϑ(ϑ̃n−2(ε
2τ1, ε) + Π̃0(n−2)ϑ(ετ1, ε), ε2τ1, ε)(εn−1Π0(n−1)ϑ(ετ1, ε) + ∆nΠ0ϑ(ετ1, ε)))]2n−2

+[(∆nϑ(ε2τ1, ε) + ∆nΠ0ϑ(ετ1, ε))′({εΠ̂1(n−2) fϑ(τ1, ε)′ψ̃n−2(ε
2τ1, ε)}n−2

+{εΠ̂1(n−2) fϑ(τ1, ε)′(εE1 + E2 + E3)Π̃0(n−2)ψ(ετ1, ε)}n−2 + {ε fϑ(ϑ̃n−2(ε
2τ1, ε)

+Π̃0(n−2)ϑ(ετ1, ε) + Π̃1(n−2)ϑ(τ1, ε), ε2τ1, ε)′(ε2E1 + εE2

+E3)Π̃1(n−2)ψ(τ1, ε)}n−2)]2n−2) dτ1.

From here, applying the formula of integrating by parts, and omitting known terms,
we obtain the unknown part from s3

−[(∆nw(0, ε) + ∆nΠ0w(0, ε))′Π̃1(n−2)ψ(0, ε)]2n−2

−
∫ +∞

0
([Π̃1(n−2)ψ(τ1, ε)′(ε2E1 + εE2 + E3)(ε f̂ ϑ(n−2)(ε

2τ1, ε)∆nϑ(ε2τ1, ε)

+εΠ̂0(n−2) fϑ(ετ1, ε)∆nϑ(ε2τ1, ε)

+ε fϑ(ϑ̃n−2(ε
2τ1, ε) + Π̃0(n−2)ϑ(ετ1, ε), ε2τ1, ε)∆nΠ0ϑ(ετ1, ε))]2n−2

−[(∆nϑ(ε2τ1, ε) + ∆nΠ0ϑ(ετ1, ε))′({εΠ̂1(n−2) fϑ(τ1, ε)′ψ̃n−2(ε
2τ1, ε)}n−2

+{εΠ̂1(n−2) fϑ(τ1, ε)′(εE1 + E2 + E3)Π̃0(n−2)ψ(ετ1, ε)}n−2

+{ε fϑ(ϑ̃n−2(ε
2τ1, ε) + Π̃0(n−2)ϑ(ετ1, ε)

+Π̃1(n−2)ϑ(τ1, ε), ε2τ1, ε)′(ε2E1 + εE2 + E3)Π̃1(n−2)ψ(τ1, ε)}n−2)]2n−2) dτ1.

Furthermore, applying the same algorithm, we will transform the expression

s4 =
∫ +∞

0
([∆nΠ1w(τ1, ε)′({W(ε2τ1)Π̃1(n−2)w(τ1, ε)}n−2 + {εΠ̂1(n−2)Fw(τ1, ε)′}n−2)]2n−2

+[∆nΠ1u(τ1, ε)′({R(ε2τ1)Π̃1(n−2)u(τ1, ε)}n−2 + {εΠ̂1(n−2)Fu(τ1, ε)′}n−2)]2n−2) dτ1.

Using (45), (46), (38) with k = 2n− 2, l = n− 2, (42) and omitting known terms, we
obtain

∫ +∞

0
([∆nΠ1w(τ1, ε)′

dΠ̃1(n−2)ψ(τ1, ε)

dτ1
]2n−2 + [Π̃1(n−2)ψ(τ1, ε)′(ε2E1 + εE2 + E3)((

1
ε2 E1

+
1
ε

E2 + E3)(
dΠ̃1(n−1)w(τ1, ε)

dτ1
+

d∆nΠ1w(τ1, ε)

dτ1
)− A(ε2τ1)Π̃1(n−1)w(τ1, ε)

−B(ε2τ1)Π̃1(n−1)u(τ1, ε)− εΠ̂1(n−2) fϑ(τ1, ε)(∆nϑ(ε2τ1, ε) + ∆nΠ0ϑ(ετ1, ε))

−ε fϑ(ϑ̃n−2(ε
2τ1, ε) + Π̃0(n−2)ϑ(ετ1, ε) + Π̃1(n−2)(τ1, ε), ε2τ1, ε)(εn−1Π1(n−1)ϑ(τ1)

+∆nΠ1ϑ(τ1, ε)))]2n−2 + [ ∆nΠ1ϑ(τ1, ε)′({εΠ̂1(n−2) fϑ(τ1, ε)′ψ̃n−2(ε
2τ1, ε)}n−2

+{εΠ̂1(n−2) fϑ(τ1, ε)′(εE1 + E2 + E3)Π̃0(n−2)ψ(ετ1, ε)}n−2 + {ε fϑ(ϑ̃n−2(ε
2τ1, ε)

+Π̃0(n−2)ϑ(ετ1, ε) + Π̃1(n−2)ϑ(τ1, ε), ε2τ1, ε)′(ε2E1 + εE2

+E3)Π̃1(n−2)ψ(τ1, ε)}n−2)]2n−2) dτ1.
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Due to formula of integrating by parts, after omitting known terms, we obtain the
following:

−[∆nΠ1w(0, ε)′Π̃1(n−2)ψ(0, ε)]2n−2

+
∫ +∞

0
(Π1(n−1)w(τ1)

′(−[A(ε2τ1)
′(ε2E1 + εE2 + E3)Π̃1(n−2)ψ(τ1, ε)]n−1

−[ε fw(ϑ̃n−2(ε
2τ1, ε) + Π̃0(n−2)ϑ(ετ1, ε) + Π̃1(n−2)ϑ(τ1, ε), ε2τ1, ε)′(ε2E1 + εE2

+E3)Π̃1(n−2)ψ(τ1, ε)]n−1)−Π1(n−1)u(τ1)
′([B(ε2τ1)

′(ε2E1 + εE2 + E3)Π̃1(n−2)ψ(τ1, ε)]n−1

−[ε fu(ϑ̃n−2(ε
2τ1, ε) + Π̃0(n−2)ϑ(ετ1, ε) + Π̃1(n−2)ϑ(τ1, ε), ε2τ1, ε)′(ε2E1

+εE2 + E3)Π̃1(n−2)ψ(τ1, ε)]n−1)− [Π̃1(n−2)ψ(τ1, ε)′(ε2E1 + εE2

+E3)(εΠ̂1(n−2) fϑ(τ1, ε)(∆nϑ(ε2τ1, ε) + ∆nΠ0ϑ(ετ1, ε))

+ε fϑ(ϑ̃n−2(ε
2τ1, ε) + Π̃0(n−2)ϑ(ετ1, ε) + Π̃1(n−2)ϑ(τ1, ε), ε2τ1, ε)∆nΠ1ϑ(τ1, ε))]2n−2

+[∆nΠ1ϑ(τ1, ε)′({εΠ̂1(n−2) fϑ(τ1, ε)′ψ̃n−2(ε
2τ1, ε)}n−2

+{εΠ̂1(n−2) fϑ(τ1, ε)′(εE1 + E2 + E3)Π̃0(n−2)ψ(ετ1, ε)}n−2 + {ε fϑ(ϑ̃n−2(ε
2τ1, ε)

+Π̃0(n−2)ϑ(ετ1, ε) + Π̃1(n−2)ϑ(τ1, ε), ε2τ1, ε)′(ε2E1 + εE2

+E3)Π̃1(n−2)ψ(τ1, ε)}n−2)]2n−2) dτ1.

Summing up the obtained terms of transformed expressions and considering sepa-
rately four groups of terms, depending on ∆nϑ, ∆nΠ0ϑ, ∆nΠ1ϑ, and without these variables,
we can write out the transformed forth term of J2n in the following form:

−[∆nΠ1w(0, ε)′(
1
ε

E1 + E2 + εE3)ψ̃n−1(0, ε)]2n−1 −Π1(n−1)w(0)′E3(ψn−1(0)

+Π0(n−1)ψ(0))− [∆nΠ1w(0, ε)′(E1 + E2 + εE3)Π̃0(n−1)ψ(0, ε)]2n−1

−[(∆nw(0, ε) + ∆nΠ0w(0, ε) + ∆nΠ1w(0, ε))′Π̃1(n−2)ψ(0, ε)]2n−2 + Π1(n−1) J.

Transforming the fifth term in J2n in the same way, we write the final result as

[∆nQ1w(0, ε)′(
1
ε

E1 + E2 + εE3)ψ̃n−1(T, ε)]2n−1

+[∆nQ1w(0, ε)′(E1 + E2 + εE3)Q̃0(n−1)ψ(0, ε)]2n−1

+[(∆nw(T, ε) + ∆nQ0w(0, ε) + ∆nQ1w(0, ε))′Q̃1(n−2)ψ(0, ε)]2n−2 + Q1(n−1) J.

Substituting w(t, ε) from (35) in (3), we obtain the relation

w̃j−1(0, ε) + ∆jw(0, ε) +
1

∑
i=0

(Π̃i(j−1)w(0, ε) + ∆jΠiw(0, ε)

+Q̃i(j−1)w(−T/εi+1, ε) + ∆jQiw(−T/εi+1, ε)) = w0.

(47)

Summing up (20) and the second relations in (23), (26), we obtain the equality

ψj(T) + E1(Q0(j−1)ψ(0) + Q1(j−2)ψ(0))

+E2(Q0jψ(0) + Q1(j−1)ψ(0)) + E3(Q0jψ(0) + Q1jψ(0)) = 0.

Multiplying this equation by εj, j = 0, n− 1, and summing up the obtained results,
we have

ψ̃n−1(T) + εE1(Q̃0(n−2)ψ(0) + εQ̃1(n−3)ψ(0))

+E2(Q̃0(n−1)ψ(0) + εQ̃1(n−2)ψ(0)) + E3(Q̃0(n−1)ψ(0) + Q̃1(n−1)ψ(0)) = 0.
(48)
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Summing up the remaining parts of the transformed terms for J2n, applying (47), (48)
to the non-integrand terms, taking into account Remark 1 and omitting known terms, we
finally have Jn + Π1(n−1) J + Q1(n−1) J, which proves Theorem 1 for J2n.

In addition to the previous assumption on solvability of the problems Pj, Π0jP, Q0jP
and Π1(j−1)P, Q1(j−1)P, j = 0, n− 1, we will assume that the problems Pn, Π1(n−1)P,
Q1(n−1)P have been solved.

Let us consider the coefficient J2n+1 having the form (34) with k = 2n + 1.
We transform separately the terms of J2n+1 using the previous algorithm for trans-

forming similar terms in J2n. Summing up the obtained expressions for five terms and
dropping known terms, we obtain the sum of the performance indices Π0n J + Q0n J.

Thus, Theorem 1 is completely proved.

5. Asymptotic Estimates

Suppose that the problems Pj, ΠijP, QijP, i = 0, 1, j = 0, n, have been solved. We will
prove asymptotic estimates of the proximity between the asymptotic solution obtained
by the direct scheme method ϑ̃n(t, ε) = ∑n

j=0 εj(ϑj(t) + ∑1
i=0 Πijϑ(τi) + Qijϑ(σi)) and the

exact solution of the problem Pε.
We will use here the notation for asymptotics remainder terms

rnw = w− w̃n = (rnx′, rny′, rnz′)′, rnu = u− ũn, rnϑ = ϑ− ϑ̃n = (rnw′, rnu′)′,

rn ϕ = ϕ− ϕ̃n = (rnζ ′, rnη′, rnθ′)′, X̃n =

(
x̃n

ζ̃n

)
,

Ỹn =

(
ỹn
η̃n

)
, Z̃n =

(
z̃n

θ̃n

)
, rnX =

(
rnx
rnζ

)
, rnY =

(
rny
rnη

)
, rnZ =

(
rnz
rnθ

)
.

(49)

In comparison with the notation in the previous section, we have, e.g., rnu = ∆n+1u
and so on.

Since the matrix R(t) is positive definite, we obtain from (27) the following relation

u(t, ε) = R(t)−1B(t)′ϕ + εR(t)−1( fu(ϑ, t, ε)′ϕ− Fu(ϑ, t, ε)′).

Taking into account this equality and substituting the expressions for ϑ(t, ε), ϕ(t, ε)
from (49) into (2), (27) and (28), we obtain the equations for the remainders

rnu =
(1)
A(t)rnX +

(1)
B (t)rnY +

(1)
C (t)rnZ +

(1)
g (rnϑ, rn ϕ, t, ε), (50)

drnX
dt

=
(2)
A(t)rnX +

(2)
B (t)rnY +

(2)
C (t)rnZ +

(2)
g (rnϑ, rn ϕ, t, ε), (51)

ε
drnY

dt
=

(3)
A(t)rnX +

(3)
B (t)rnY +

(3)
C (t)rnZ +

(3)
g (rnϑ, rn ϕ, t, ε), (52)

ε2 drnZ
dt

=
(4)
A(t)rnX +

(4)
B (t)rnY +

(4)
C (t)rnZ +

(4)
g (rnϑ, rn ϕ, t, ε), (53)

where

(1)
A = (0 R−1

(1)
B′),

(1)
B = (0 R−1

(2)
B′),

(1)
C = (0 R−1

(3)
B′),

(2)
A =

(
A11 S11
W11 −A′11

)
,
(2)
B =

(
A12 S12
W12 −A′21

)
,
(2)
C =

(
A13 S13
W13 −A′31

)
,

(3)
A =

(
A21 S′12
W ′12 −A′12

)
,
(3)
B =

(
A22 S22
W22 −A′22

)
,
(3)
C =

(
A23 S23
W23 −A′32

)
,
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(4)
A =

(
A31 S′13
W ′13 −A′13

)
,
(4)
B =

(
A32 S′23
W ′23 −A′23

)
,
(4)
C =

(
A33 S33
W33 −A′33

)
,

(1)
g (rnϑ, rn ϕ, t, ε) = R(t)−1B(t)′ ϕ̃n + ũn

+εR(t)−1( fu(ϑ̃n + rnϑ, t, ε)′(ϕ̃n + rn ϕ)− Fu(ϑ̃n + rnϑ, t, ε)′),

(2)
g (rnϑ, rn ϕ, t, ε) =

(2)
A(t)X̃n +

(2)
B (t)Ỹn +

(2)
C (t)Z̃n

−dX̃n/dt + ε
(2)
h (ϑ̃n + rnϑ, ϕ̃n + rn ϕ, t, ε),

(3)
g (rnϑ, rn ϕ, t, ε) =

(3)
A(t)X̃n +

(3)
B (t)Ỹn +

(3)
C (t)Z̃n

−εdỸn/dt + ε
(3)
h (ϑ̃n + rnϑ, ϕ̃n + rn ϕ, t, ε),

(4)
g (rnϑ, rn ϕ, t, ε) =

(4)
A(t)X̃n +

(4)
B (t)Ỹn +

(4)
C (t)Z̃n

−ε2dZ̃n/dt + ε
(4)
h (ϑ̃n + rnϑ, ϕ̃n + rn ϕ, t, ε),

(2)
h (ϑ̃n + rnϑ, ϕ̃n + rn ϕ, t, ε) = ((

(1)
B (t)R(t)−1( fu(ϑ̃n + rnϑ, t, ε)′(ϕ̃n + rn ϕ)− Fu(ϑ̃n

+rnϑ, t, ε)′) +
(1)
f (ϑ̃n + rnϑ, t, ε))′, (Fx(ϑ̃n + rnϑ, t, ε)′ −

(1)
fx (ϑ̃n + rnϑ, t, ε)′(ϕ̃n + rn ϕ))′)′,

(3)
h (ϑ̃n + rnϑ, ϕ̃n + rn ϕ, t, ε) = ((

(2)
B (t)R(t)−1( fu(ϑ̃n + rnϑ, t, ε)′(ϕ̃n + rn ϕ)− Fu(ϑ̃n

+rnϑ, t, ε)′) +
(2)
f (ϑ̃n + rnϑ, t, ε))′, (Fy(ϑ̃n + rnϑ, t, ε)′ −

(2)
fy (ϑ̃n + rnϑ, t, ε)′(ϕ̃n + rn ϕ))′)′,

(4)
h (ϑ̃n + rnϑ, ϕ̃n + rn ϕ, t, ε) = ((

(3)
B (t)R(t)−1( fu(ϑ̃n + rnϑ, t, ε)′(ϕ̃n + rn ϕ)− Fu(ϑ̃n

+rnϑ, t, ε)′) +
(3)
f (ϑ̃n + rnϑ, t, ε))′, (Fz(ϑ̃n + rnϑ, t, ε)′ −

(3)
fz (ϑ̃n + rnϑ, t, ε)′(ϕ̃n + rn ϕ))′)′.

For brevity, the arguments t, ε are dropped in some of the last relations.
In view of the algorithm of asymptotics construction, namely Equalities (12)–(17)

and (33), we obtain the boundary conditions

rnw(0, ε) = −Q̃0nw(−T/ε, ε)− Q̃1nw(−T/ε2, ε),

rn ϕ(T, ε) = −Π̃0n ϕ(T/ε, ε)− Π̃1n ϕ(T/ε2, ε).
(54)

Using variables’ changes,

ρnw(t, ε) = rnw(t, ε)− rnw(0, ε), ρn ϕ(t, ε) = rn ϕ(t, ε)− rn ϕ(T, ε) (55)

and the notation ρnυ(t, ε) = (rnu′, ρnw′, ρn ϕ′)′, system (50)–(54) can be written as

rnu =
(1)
A(t)ρnX +

(1)
B (t)ρnY +

(1)
C (t)ρnZ +

(1)
χ (ρnυ, t, ε), (56)
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dρnX
dt

=
(2)
A(t)ρnX +

(2)
B (t)ρnY +

(2)
C (t)ρnZ +

(2)
χ (ρnυ, t, ε), (57)

ε
dρnY

dt
=

(3)
A(t)ρnX +

(3)
B (t)ρnY +

(3)
C (t)ρnZ +

(3)
χ (ρnυ, t, ε), (58)

ε2 dρnZ
dt

=
(4)
A(t)ρnX +

(4)
B (t)ρnY +

(4)
C (t)ρnZ +

(4)
χ (ρnυ, t, ε), (59)

ρnw(0, ε) = 0, ρn ϕ(T, ε) = 0, (60)

where

ρnX =

(
ρnx
ρnζ

)
, ρnY =

(
ρny
ρnη

)
, ρnZ =

(
ρnz
ρnθ

)
,

(i)
χ (ρnυ, t, ε) =

(i)
g (rnu(t, ε), ρnw(t, ε) + rnw(0, ε), ρn ϕ(t, ε) + rn ϕ(T, ε), t, ε)+

+
(i)
A(t)

(
rnx(0, ε)
rnζ(T, ε)

)
+

(i)
B (t)

(
rny(0, ε)
rnη(T, ε)

)
+

(i)
C (t)

(
rnz(0, ε)
rnθ(T, ε)

)
, i = 1, 4.

Taking into account the algorithm of the asymptotics construction and the form of the

functions
(i)
χ , i = 1, 4, we obtain two important properties, namely:

(1) for t ∈ [0, T], 0 < ε 6 ε0, the following inequalities take place

‖
(i)
χ (0, t, ε)‖ ≤ cεn+1, i = 1, 4, ‖

(3)
χ (0, t, ε)‖ ≤ c(εn+1 + εn exp(−æt/ε2)

+εn exp(æ(t− T)/ε2)), ‖
(2)
χ (0, t, ε)‖ ≤ c(εn+1 + εn exp(−æt/ε)

+εn exp(æ(t− T)/ε) + εn−1 exp(−æt/ε2) + εn−1 exp(æ(t− T)/ε2)),

(61)

where c and æ are positive constants independent of t, ε,
(2) for any q > 0, there exist such constants δ = δ(q) and ε0 = ε0(q) that, for ‖υi‖C[0,T]

6
δ, i = 1, 2, 0 < ε 6 ε0

‖
(i)
χ (υ1, t, ε)−

(i)
χ (υ2, t, ε)‖C[0,T]

6 q‖υ1 − υ2‖C[0,T]
, i = 1, 4. (62)

It follows from the form of the matrix
(4)
C (t) that the boundary value problem

ε2 dZ
dt

=
(4)
C (t)Z, Z = (Z′1, Z′2)

′, Z1(0) = 0, Z2(T) = 0, (63)

is uniquely solvable [30]. Therefore, there exists a matrix Green function
(4)
G (t, s, ε) for this

problem.

For eigenvalues of the matrix
(4)
C (t), we suppose the condition:

I. λi(t) 6= λj(t) for i 6= j, t ∈ [0, T].

Then, in the matrix B =

(
B11 B12
B21 B22

)
, consisting of eigenvectors of the matrix

(4)
C (t), the matrices Bii, i = 1, 2, are nondegenerate. Hence, the condition 40 from ([28],
c.125) is valid and therefore due to ([28], n. 9) for sufficiently small ε > 0 the matrix Green

function
(4)
G (t, s, ε) satisfies the inequality

‖
(4)
G (t, s, ε)‖ ≤ c exp(−æ|t− s|/ε2), t, s ∈ [0, T]. (64)
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Furthermore, we need the following three lemmas.

Lemma 1. If G(t, s) is a matrix Green function of the boundary value problem

dx
dt

= A(t)x + f (t), t ∈ [0, T], Px(0) = 0, (I − P)x(T) = 0,

where the matrix A(t) is continuous with respect to t and invertible for all t ∈ [0, T], and P is a
projector, then

∂G(t, s)
∂t

= −A(t)
∂G(t, s)

∂s
A(s)−1, t 6= s.

The proof of this lemma is given in [24]. It follows from the explicit form for the matrix
Green function

G(t, s) =
{ −V(t, 0)((I − P)V(T, 0)(I − P))−1(I − P)V(T, s), t 6 s,

V(t, s)−V(t, 0)((I − P)V(T, 0)(I − P))−1(I − P)V(T, s), t > s,
(65)

where V(t, s) = V(t)V(s)−1, dV(t, s)/dt = A(t)V(t, s), V(s, s) = I.

Lemma 2. The boundary value problem

E(0)dw
dt

= A(t)w + S(t)ϕ,

E(0)dϕ

dt
= W(t)w− A(t)′ϕ,

E(0)w(0) = 0, E(0)ϕ(T) = 0,

where w = (x′, y′, z′)′, ϕ = (ξ
′
, η′, θ

′
)′, is uniquely solvable.

Proof. Multiply scalarly the first equation of the considered system by ϕ and the second
equation in this system by x. Adding the obtained results, we have d/dt(ϕ′E(0)w) =
ϕ′S(t)ϕ + w′W(t)w. Integrating this equality over the interval [0, T], in view of the bound-
ary values, we obtain

∫ T
0 (ϕ′S(t)ϕ + w′W(t)w) dt = 0. Taking into account the positive

definiteness of S(t) and W(t), we obtain w(t) = ϕ(t) = 0, i.e., the unique solvability is
proved.

Lemma 3. If G is a contractive mapping in a Banach space X, x0 = 0, xk = G(xk−1), k = 1, 2, ...,
and ‖x1‖ 6 a, then ‖xk‖ 6 a/(1− q).

See the proof of this lemma in [24].

Theorem 2. Solution ϑ∗(t, ε) of problem Pε for sufficiently small ε > 0, t ∈ [0, T], satisfy the
inequality

‖ϑ∗(t, ε)− ϑ̃n(t, ε)‖ ≤ cεn+1.

Proof. The proof of this theorem is based on transforming systems (56)–(59) with boundary
values (60) to a system of integral equations, using estimates for matrix Green functions
and applying to the obtained system the principle of contractive mappings.

Using Green function
(4)
G (t, s, ε), we have from (59) the integral equation

ρnZ(t, ε) =
1
ε2

T∫
0

(4)
G (t, s, ε)(

(4)
A(s)ρnX +

(4)
B (s)ρnY) ds +

(4)
G (ρnϑ, t, ε), (66)
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where
(4)
G (ρnυ, t, ε) = 1/ε2

∫ T
0

(4)
G (t, s, ε)

(4)
χ (ρnυ, s, ε) ds.

In view of (61), (62), and (64), the function
(4)
G (ρnϑ, t, ε) satisfies the properties (2) and

(3)
(4)
G (0, t, ε) 6 cεn+1.

Furthermore, we will denote functions, appearing under transformations of the problems

(56)–(60) with the properties (2) and (3), by
(j)
G (ϑ, t, ε), j = 1, 4. Specific forms of these

functions are omitted since they are insignificant for the proof.
In transforming (66), we will use the formula following from (63) and Lemma 1

(4)
G (t, s, ε) = −ε2 ∂

∂s
(
(4)
G (t, s, ε)

(4)
C (s)−1) + ε2

(4)
G (t, s, ε)

d
ds

(
(4)
C (s)−1), t 6= s. (67)

We present the integral in (66), containing the first term on the right side in (67) as the
sum of integrals over the intervals [0, t] and [t, T] and integrate by parts. Taking into account

the jump of function
(4)
G (t, s, ε) at s = t, i.e., the equality

(4)
G (t, t + 0, ε)−

(4)
G (t, t− 0, ε) ≡

−I2n3 , following from (65), and estimate (64), we obtain

ρnZ(t, ε) = −
(4)
C (t)−1(

(4)
A(t)ρnX(t, ε) +

(4)
B (t)ρnY(t, ε))

+
(4)
G (t, 0, ε)

(4)
C (0)−1(

(4)
A(0)ρnX(0, ε) +

(4)
B (0)ρnY(0, ε))

−
(4)
G (t, T, ε)

(4)
C (T)−1(

(4)
A(T)ρnX(T, ε) +

(4)
B (T)ρnY(T, ε)) +

(4)
G (ρnυ, t, ε).

(68)

Substitute (68) into (58). Introducing the notation Λ(t) =
(3)
B (t)−

(3)
C(t)

(4)
C (t)−1

(4)
B (t),

we write the obtained equation in the following way:

ε
dρnY

dt
= (

(3)
A(t)−

(3)
C (t)

(4)
C (t)−1

(4)
A(t))ρnX(t, ε) + Λ(t)ρnY(t, ε)

+
(3)
C (t)(

(4)
G (t, 0, ε)

(4)
C (0)−1(

(4)
A(0)ρnX(0, ε) +

(4)
B (0)ρnY(0, ε))

−
(4)
G (t, T, ε)

(4)
C (T)−1(

(4)
A(T)ρnX(T, ε) +

(4)
B (T)ρnY(T, ε))) +

(3)
G (ρnϑ, t, ε).

(69)

Let us study the structure of the matrix Λ = Λ(t).
For brevity, we will sometimes omit the argument t. Due to our assumption, it follows

from [30] that the Hamiltonian matrix
(4)
C (t) is invertible and its inverse has the form

(4)

C−1 =

(
D1 D2
D3 −D′1

)
, where D2 and D3 are symmetric. Similarly to the proof in [30] of

the non-negative definiteness of the matrices D2 and D3, it is proved that, in view of the
positive definiteness of S33 and W33, the matrices D2 and D3 are also positive definite.

Let the matrix Λ(t) have the block presentation
(

Λ1(t) Λ2(t)
Λ3(t) Λ4(t)

)
. Write out the

explicit expressions for Λi(t), i = 1, 4:

Λ1 = A22 − A23(D1 A32 + D2W ′23)− S23(D3 A32 − D′1W ′23),

Λ2 = S22 − A23(D1S′23 − D2 A′23)− S23(D3S′23 + D′1 A′23),

Λ3 = W22 −W23(D1 A32 + D2W ′23) + A′32(D3 A32 − D′1W ′23),

Λ4 = −A′22 −W23(D1S′23 − D2 A′23) + A′32(D3S′23 + D′1 A′23).
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Comparing Λ1(t) with Λ4(t), it is not difficult to see that Λ4(t) = −Λ1(t)′. It also
follows from the form of the matrices Λ2(t) and Λ3(t) that these matrices are symmetric.

Introducing for an arbitrary b ∈ IRn2 the notation

b1 = A′23b, b2 = S′23b, b3 =

(
b

−(D′1b1 + D3b2)

)
,

b4 = A32b, b5 = W ′23b, b6 =

(
b

−(D1b4 + D2b5)

)
,

we obtain

b′Λ2b = b′3

(
S22 S23
S′23 S33

)
b3 + (D1b2 − D2b1)

′W33(D1b2 − D2b1)

+b′1(D2 − D2W33D2 − D1S33D′1)b1 + 2b′1(D2W33D1 − D1S33D3)b2

+b′2(D3 − D′1W33D1 − D3S33D3)b2,

b′Λ3b = b′6

(
W22 W23
W ′23 W33

)
b6 + (D3b4 − D′1b5)

′S33(D3b4 − D′1b5)

+b′4(D3 − D3S33D3 − D′1W33D1)b4 + 2b′4(D3S33D′1 − D′1W33D2)b5

+b′5(D2 − D1S33D′1 − D2W33D2)b5.

Taking into account the equalities

A33D1 + S33D3 = In3 , A33D2 − S33D′1 = 0,

W33D1 − A′33D3 = 0, W33D2 + A′33D′1 = In3 ,

we obtain that three last summands in the expressions for b′Λ2b and b′Λ3b are equal to
zero.

In view of positive definiteness of matrices S(t) and W(t), the matrices
(

S22 S23
S′23 S33

)
,

S33,
(

W22 W23
W ′23 S33

)
, W33 are positive definite too. Then, the positive definiteness of matri-

ces Λ2(t) and Λ3(t) follows from the obtained forms for b′Λ2(t)b and b′Λ3b.

Thus, the matrix Λ(t) has the form
(

Λ1(t) Λ2(t)
Λ3(t) −Λ1(t)′

)
, where Λ2(t) and Λ3(t) are

positive definite.
We will suppose yet one condition

I I. Eigenvalues of the matrix Λ(t) satisfy the condition I.
Then, the boundary value problem

ε
dY
dt

= Λ(t)Y, Y = (Y′1, Y′2)
′, Y1(0) = 0, Y2(T) = 0 (70)

has a unique solution and, for the corresponding matrix Green function
(3)
G (t, s, ε), the

following inequality is valid

‖
(3)
G (t, s, ε)‖ 6 c exp (-æ|t− s|/ε), t, s ∈ [0, T]. (71)

With the help of the Green function
(3)
G (t, s, ε), using (64), (71), we obtain from (69)

the following

ρnY(t, ε) =
1
ε

T∫
0

(3)
G (t, s, ε)(

(3)
A(s)−

(3)
C (s)

(4)
C (s)−1

(4)
A(s))ρnX(s, ε) ds +

(3)
G (ρnϑ, t, ε). (72)
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The following formula follows from Lemma 1 and (70)

(3)
G (t, s, ε) = −ε

∂

∂s
(
(3)
G (t, s, ε)Λ(s)−1) + ε

(3)
G (t, s, ε)

d
ds

(Λ(s)−1), t 6= s. (73)

Using this formula, we present the integral in (72), containing the first term from the
right side (73), as a sum of integrals over the intervals [0, t] and [t, T] and integrate by parts.

In view of the jump of function
(3)
G (t, s, ε) at s = t and estimate (71), we have

ρnY(t, ε) = −Λ(t)−1(
(3)
A(t)−

(3)
C (t)

(4)
C (t)−1

(4)
A(t))ρnX(t, ε)

+
(3)
G (t, 0, ε)Λ(0)−1(

(3)
A(0)−

(3)
C (0)

(4)
C (0)−1

(4)
A(0))ρnX(0, ε)

−
(3)
G (t, T, ε)Λ(T)−1(

(3)
A(T)−

(3)
C (T)

(4)
C (T)−1

(4)
A(T))ρnX(T, ε) +

(3)
G (ρnϑ, t, ε).

(74)

Taking into account (68), (74), we obtain from (57) the following equation:

dρnX(t, ε)

dt
= Ω(t)ρnX(t, ε) + (

(2)
B (t)−

(2)
C (t)

(4)
C (t)−1

(4)
B (t))

×(
(3)
G (t, 0, ε)Λ(0)−1(

(3)
A(0)−

(3)
C (0)

(4)
C (0)−1

(4)
A(0))ρnX(0, 0)

−
(3)
G (t, T, ε)Λ(T)−1(

(3)
A(T)−

(3)
C (T)

(4)
C (T)−1

(4)
A(T))ρnX(T, ε)

+
(2)
C (t)(

(4)
G (t, 0, ε)

(4)
C (0)−1(

(4)
A(0)ρnX(0, ε) +

(4)
B (0)ρnY(0, ε))

−
(4)
G (t, T, ε)

(4)
C (T)−1(

(4)
A(T)ρnX(T, ε) +

(4)
B (T)ρnY(T, ε))

+
(2)
χ (ρnϑ, t, ε) +

(2)
G (ρnϑ, t, ε),

(75)

where

Ω(t) =
(2)
A(t)−

(2)
C (t)

(4)
C (t)−1

(4)
A(t)− (

(2)
B (t)−

(2)
C (t)

(4)
C (t)−1

(4)
B (t))Λ(t)−1(

(3)
A(t)

−
(3)
C (t)

(4)
C (t)−1

(4)
A(t)).

It follows from Lemma 2 that the boundary value problem

d
dt

(
x
ζ

)
= Ω(t)

(
x
ζ

)
, x(0) = 0, ζ(T) = 0

is uniquely solvable. Hence, there exists the matrix Green function
(2)
G (t, s) of the last

boundary value problem, which is bounded, i.e.,

‖
(2)
G (t, s)‖ ≤ c, t, s ∈ [0, T]. (76)

Due to (61), (62), (64), (71), and (76) from the expression of the solution ρnX(t, ε)
of Equation (75) with the boundary values from (60), written by the help of the matrix

Green function
(2)
G (t, s), it follows that ρnX(t, ε) =

(2)
G (ρnϑ, t, ε). Furthermore, from (74),

(68), and (56), and properties (1), (2), we successively obtain ρnY(t, ε) =
(3)
G (ρnϑ, t, ε),
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ρnZ(t, ε) =
(4)
G (ρnϑ, t, ε), rnu(t, ε) =

(1)
G (ρnϑ, t, ε). Thus, for determining ρnϑ, we have in the

space of continuous functions with values in IRm × IRn1 × IRn2 × IRn3 the equation

ρnϑ = G(ρnϑ, t, ε), (77)

where the function G for sufficiently small ε > 0, t ∈ [0, T] satisfies properties (2), (3). If we
will take in condition (2) q < 1, then G is a contraction mapping in C[0,T]. According to the
contractive mappings principle, Equation (77) has a unique solution, and this solution can
be found by the method of successive approximations.

According to (3) and Lemma 3, all successive approximations are not more than cεn+1.
Hence, a solution of the Equation (77) will have the same estimate. Due to (49) and (55), it
proves the theorem statement.

Theorem 3. Under conditions of Theorem 2, for sufficiently small ε > 0, the following inequality
for the performance index is valid

Jε(ũn)− Jε(u∗) ≤ cε2n+2.

Proof. Denoting by s̃ a solution of the problem (2)–(3) at u = ũn, we present the solution
of the problem Pε in the form w∗ = s̃ + δw, u∗ = ũn + ∆u, then δw satisfies the system

E(ε)dδw
dt

= A(t)δw + B(t)∆u + ε( f (w∗, u∗, t, ε)− f (w∗ − δw, u∗ − ∆u, t, ε)),

δw(0, ε) = 0.

In view of Theorem 2,
‖∆u‖ = ‖rnu‖ 6 cεn+1. (78)

Using this estimate and the condition of stability of the matrices A33 and A22 −
A23 A−1

33 A32, we can prove the estimate

‖δw(t, ε)‖ 6 cεn+1. (79)

Introducing the notation ∆J = Jε(ũn)− Jε(u∗), we present it in the form

∆J =
1
2

T∫
0

(δw′W(t)δw + ∆u′R(t)∆u) dt

+

T∫
0

(−δw′W(t)w∗ − ∆u′R(t)u∗ + ε(F(w̃, ũn, t, ε)− F(w∗, u∗, t, ε)) dt.

Using control optimality condition (27), (28) for the problem (1)–(3), after integrating
by parts and taking into account the equation for δw and the boundary values δw(0, ε),
ϕ(T, ε), we have

∆J =
1
2

T∫
0

(δw′W(t)δw + ∆u′R(t)∆u) dt + ε

T∫
0

(ϕ′( f (w∗, u∗, t, ε)

− f (w∗ − δw, u∗ − ∆u, t, ε)− fw(w∗, u∗, t, ε)δw− fu(w∗, u∗, t, ε)∆u)

+F(w∗ − δw, u∗ − ∆u, t, ε)− F(w∗, u∗, t, ε) + Fw(w∗, u∗, t, ε)δw + Fu(w∗, u∗, t, ε)∆u) dt.

From here, in view of (78) and (79), we obtain the theorem assertion.

Denote by ũi∗ the i-th order approximation for an optimal control constructed by the
direct scheme method.
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Theorem 4. For sufficiently small ε > 0, the following inequalities are valid

Jε(ũ∗(n−1)) > Jε(ũ∗(n−1) + εnu∗n)

> Jε(ũ∗(n−1) + εn(u∗n + Π0nu∗ + Q0nu∗)) > Jε(ũ∗n), n > 1.
(80)

If an addition to ũ∗(n−1) is non-zero, then the corresponding inequality is strict.

Proof. The proof of this theorem is based on Theorem 1.
Asymptotic solution of the form (4) can be constructed for a solution of problem

(2), (3) at control u = ũ∗n for each n. Moreover, the terms of these asymptotic solution
coincide with corresponding terms of asymptotic expansion of optimal trajectory to n-th
order inclusively.

Substitute expansions for ũ∗(n−1)(t, ε), ũ∗n(t, ε) and corresponding trajectories into
Jε(u). After applying the expansion (6) and Theorem 1, we see that the first 2n coefficients
from (6) coincided and a difference between Jε(ũ∗(n−1)) and Jε(ũ∗n) appears for the first
time in the coefficient J2n.

Taking into account the equality ũ∗n = ũ∗(n−1) + εn(u∗n + ∑1
i=0(Πinu∗ + Qinu∗)),

consider the expressions for the coefficients J2n, J2n+1 and J2n+2 separately.
If we omit the terms known after solving problems Pj, Π0jP, Q0jP, j = 0, n− 1, Π1jP,

Q1jP, j = 0, n− 2, we obtain from J2n the sum of the performance indices Jn + Π1(n−1) J +
Q1(n−1) J. For Jε(ũ∗n), we have Jn = Jn(un) and, for Jε(ũ∗(n−1)), we have Jn = Jn(0). Since
u∗n is found from the problem of minimizing the functional Jn, we obtain the first inequality
in (80).

By a similar way, we obtain from the form J2n+1 the sum Π0n J + Q0n J. For Jε(ũ∗n), we
have Π0n J = Π0n J(Π0nu∗), Q0n J = Q0n J(Q0nu∗). For Jε(ũ∗(n−1)), we have
Π0n J = Π0n J(0), Q0n J = Q0n J(0). Since Π0nu∗ and Q0nu∗ are found by means of minimiz-
ing the functionals Π0n J and Q0n J, respectively, we obtain the second inequality in (80).

Analogously, the third inequality in (80) follows from the form J2n+2.
The assertion concerning non-zero additions to ũ∗(n−1) follows from the unique solv-

ability of linear-quadratic control problems.

Remark 3. From Theorems 3 and 4, it follows that the sequences {ũ∗(n−1)}, {ũ∗(n−1) + εnu∗n},
{ũ∗(n−1) + εn(u∗n + Π0nu∗ + Q0nu∗)} are minimizing.

6. Conclusions

In this paper, unlike the previous one [26], devoted to a similar problem, detailed
proofs of linear-quadratic optimal control problems forms, from which terms of asymptotic
solution of given nonlinear optimal control problem are found, are presented in Theorem 1.
Note that all problems for finding asymptotic terms are obtained in an explicit form. It is
very comfortable for research applying asymptotic methods for solving practical problems.

For the first time, asymptotic estimates of the proximity between the exact and asymp-
totic solutions are established for the control, state trajectory in Theorem 2 and for the
minimized functional in Theorem 3.

It should be noted that, in view of Theorem 4, values of the minimized functional with
a control, which is an asymptotic approximation to the optimal control u∗ respectively of
the form ũ∗(n−1), ũ∗(n−1) + εnu∗n, ũ∗(n−1) + εn(u∗n + Π0nu∗ + Q0nu∗), ũ∗n, do not increase.
It follows from Theorem 3 that the corresponding sequences of the controls are minimizing.

In the future, it is useful to give a program realization of applying the direct scheme
method for problems of type (1)–(3). The results obtained in the paper can be used for
constructing asymptotic solutions of practical optimal control problems with three-tempo
state variables and weak nonlinear perturbations in a linear state equation and a quadratic
performance index.

The advantage of applying a direct scheme method is the possibility to use standard
software packages for solving optimal control problems in order to find terms of asymptotic
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solution. As it is proved in this paper, for problems with three-tempo state variables, the
found sequence of approximations to the optimal control {ũ∗n} is minimizing.
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