Article

On h-Quasi-Hemi-Slant Riemannian Maps

Mohd Bilal ${ }^{1(D)}$, Sushil Kumar ${ }^{2}{ }^{(D)}$, Rajendra Prasad ${ }^{3}\left(\mathbb{D}\right.$, Abdul Haseeb ${ }^{4, *(D)}$ and Sumeet Kumar ${ }^{5}$ (D)
1 Department of Mathematical Sciences, Faculty of Applied Sciences, Umm Al Qura University, Makkah 21955, Saudi Arabia
2 Department of Mathematics, Shri Jai Narain Post Graduate College, University of Lucknow (U.P.), Lucknow 226001, India
3 Department of Mathematics and Astronomy, University of Lucknow (U.P.), Lucknow 226007, India
4 Department of Mathematics, College of Science, Jazan University, Jazan 45142, Saudi Arabia
5 Department of Mathematics, Dr. Shree Krishna Sinha Women's College Motihari, Babasaheb Bhimrao Ambedkar University, Muzaffarpur 845401, India
* Correspondence: haseeb@jazanu.edu.sa or malikhaseeb80@gmail.com

Abstract

In the present article, we indroduce and study h-quasi-hemi-slant (in short, h-qhs) Riemannian maps and almost h-qhs Riemannian maps from almost quaternionic Hermitian manifolds to Riemannian manifolds. We investigate some fundamental results mainly on h-qhs Riemannian maps: the integrability of distributions, geometry of foliations, the condition for such maps to be totally geodesic, etc. At the end of this article, we give two non-trivial examples of this notion.

Keywords: Riemannian map; hyperkähler manifold; h-quasi-hemi-slant Riemannian map
MSC: 53C15; 53C26; 53C43

Citation: Bilal, M.; Kumar, S.; Prasad, R.; Haseeb, A.; Kumar, S. On h-Quasi-Hemi-Slant Riemannian Maps. Axioms 2022, 11, 641. https:// doi.org/10.3390/axioms11110641

Academic Editor: Mica Stankovic

Received: 19 October 2022
Accepted: 11 November 2022
Published: 14 November 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

In Riemannian geometry, there are few appropriate maps among Riemannian manifolds that compare their geometric properties. In this direction, as a generalization of the notions of isometric immersions and Riemannian submersions, Riemannian maps between Riemannian manifolds were initiated by Fischer [1], while isometric immersions and Riemannian submersions were widely studied in [2] and [3], respectively. However, the notion of Riemannian maps is a new research topic for geometers. More precisely, a differentiable map $\pi:\left(N_{1}, g_{1}\right) \rightarrow\left(N_{2}, g_{2}\right)$ between Riemannian manifolds $\left(N_{1}, g_{1}\right)$ and $\left(N_{2}, g_{2}\right)$ is called a Riemannian map $\left(0<\operatorname{rank} \pi_{*}<\min \{m, n\}\right.$, where $\operatorname{dim} N_{1}=m$ and $\left.\operatorname{dim} N_{2}=n\right)$ if it satisfies the following equation:

$$
\begin{equation*}
g_{2}\left(\pi_{*} W_{1}, \pi_{*} W_{2}\right)=g_{1}\left(W_{1}, W_{2}\right), \text { for } W_{1}, W_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp} \tag{1}
\end{equation*}
$$

where π_{*} is the differentiable map of π.
Consequently, isometric immersions and Riemannian submersions are particular cases of Riemannian maps with ker $\pi_{*}=0$ and $\left(\operatorname{range}_{*}\right)^{\perp}=0$, respectively [1].

The other prominent basic map for comparing geometric structures between Riemannian manifolds is Riemannian submersion, and it was studied by O'Neill [4] and Gray [5]. In 1976, Watson [6] studied Riemannian submersion between Riemannian manifolds equipped with differentiable structures. After that, several kinds of Riemannian submersions were introduced and studied, including Riemannian submersion [3], H-anti-invariant submersion [7], H-semi-invariant submersion [8] and H-semi-slant submersion [9].

Currently, one of the most inventive topics in differential geometry is the theory of Riemannian maps between different Riemannian manifolds. It is well known that differentiable maps between Riemannian manifolds have wide applications in differential geometry as well as in physics, such as in Yang-Mills theory [10], Kaluza-Klein theory [11], and supergravity and superstring theories [12].

We also note that quarternionic manifolds have many applications, including for nonlinear σ models with super symmetry [12], in the theory of harmonic differential forms [13] and obtaining estimates for the Betti numbers of the manifold [14,15]. In this paper, we have for the first time investigated h-qhs Riemannian maps from almost quarternionic manifolds to Riemannian manifolds. Here, we mainly focus on the most fundamental and interesting geometric properties on the fibers and distributions of these maps.

Nowadays, Riemannian maps and related topics have been actively studied by many authors, such as invariant and anti-invariant Riemannian maps [16], semi-invariant Riemannian maps [17], slant Riemannian maps [18], semi-slant Riemannian maps [19,20], hemislant Riemannian maps [21], quasi-hemi-slant Riemannian maps [22], almost h-semi-slant Riemannian maps [23], V-quasi-bi-slant Riemannian maps [24] and Clairaut semi-invariant Riemannian maps [25]. As a generalization of h-slant Riemannian maps [26], h-semi-slant Riemannian maps [9] and h-hemi-slant Riemannian maps, we define and study h-qhs Riemannian maps from almost Hermitian manifolds to Riemannian manifolds. In the near future, we plan to work on conformal h-qhs submersions, conformal h-qhs submersions, h-qhs semi-Riemannian submersions, etc.

This paper is structured as follows. In Section 2, we recall basic facts about Riemannian maps and almost Hermitian manifolds. In Section 3, we define h-qhs Riemannian maps and study the geometry of leaves of distributions that are involved in the definition of such maps. We give necessary and sufficient conditions for h-qhs Riemannian maps to be totally geodesic. Finally, we provide two concrete examples of h-qhs Riemannian maps.

2. Preliminaries

Let $\left(N_{1}, g_{1}\right)$ and $\left(N_{2}, g_{2}\right)$ be Riemannian manifolds and $\pi:\left(N_{1}, g_{1}\right) \rightarrow\left(N_{2}, g_{2}\right)$ be a C^{∞}-Riemannian map [1].

We define O'Neill's tensors \mathcal{T} and \mathcal{A} [4] by

$$
\begin{align*}
& \mathcal{A}_{F_{1}} F_{2}=\mathcal{H} \nabla_{\mathcal{H} F_{1}} \mathcal{V} F_{2}+\mathcal{V} \nabla_{\mathcal{H} F_{1}} \mathcal{H} F_{2}, \tag{2}\\
& \mathcal{T}_{F_{1}} F_{2}=\mathcal{H} \nabla_{\mathcal{V} F_{1}} \mathcal{V} F_{2}+\mathcal{V} \nabla_{\mathcal{V} F_{1}} \mathcal{H} F_{2}, \tag{3}
\end{align*}
$$

for any vector fields F_{1}, F_{2} on N_{1}, where ∇ is the Levi-Civita connection of g_{1}.
From Equations (2) and (3), we have

$$
\begin{align*}
\nabla_{Y_{1}} Y_{2} & =\mathcal{T}_{Y_{1}} Y_{2}+\mathcal{V} \nabla_{Y_{1}} Y_{2} \tag{4}\\
\nabla_{Y_{1}} U_{1} & =\mathcal{T}_{Y_{1}} U_{1}+\mathcal{H} \nabla_{Y_{1}} U_{1}, \tag{5}\\
\nabla_{U_{1}} Y_{1} & =\mathcal{A}_{U_{1}} Y_{1}+\mathcal{V} \nabla_{U_{1}} Y_{1} \tag{6}\\
\nabla_{U_{1}} U_{2} & =\mathcal{H} \nabla_{U_{1}} U_{2}+\mathcal{A}_{U_{1}} U_{2} \tag{7}
\end{align*}
$$

for $Y_{1}, Y_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)$ and $U_{1}, U_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$, where $\mathcal{H} \nabla_{Y_{1}} U_{1}=\mathcal{A}_{U_{1}} Y_{1}$ and U_{1} is basic.
Let $\pi:\left(N_{1}, E, g_{1}\right) \rightarrow\left(N_{2}, g_{2}\right)$ be a C^{∞} map. The second fundamental form of π is given by

$$
\begin{equation*}
\left(\nabla \pi_{*}\right)\left(V_{1}, V_{2}\right)=\nabla_{V_{1}}^{\pi} \pi_{*}\left(V_{2}\right)-\pi_{*}\left(\nabla_{V_{1}}^{N_{1}} V_{2}\right) \tag{8}
\end{equation*}
$$

for $V_{1}, V_{2} \in \Gamma\left(T N_{1}\right)$, where ∇^{π} is the pullback connection [27]. The map π is said to be a total geodesic if $\left(\nabla \pi_{*}\right)\left(V_{1}, V_{2}\right)=0$ for $V_{1}, V_{2} \in \Gamma\left(T N_{1}\right)$.

Let $\left(N_{1}, E, g_{1}\right)$ be an almost quaternionic Hermitian manifold, where g_{1} is a Riemanian metric on the maniifold N_{1} and E is a rank 3 subbundle of $\operatorname{End}\left(T N_{1}\right)$ such that for any point $p \in N_{1}$ within some neighborhood U, there exists a local basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of sections of E on U satisfying all $\alpha \in\{1,2,3\}$ in which

$$
\begin{gather*}
J_{\alpha}^{2}=-i d, \quad J_{\alpha} J_{\alpha+1}=-J_{\alpha+1} J_{\alpha}=J_{\alpha+2}, \tag{9}\\
g_{1}\left(J_{\alpha} X_{2}, J_{\alpha} X_{1}\right)=g_{1}\left(X_{1}, X_{2}\right), \tag{10}
\end{gather*}
$$

for $X_{1}, X_{2} \in \Gamma\left(T N_{1}\right)$, where the indices are taken from $\{1,2,3\}$ modulo 3 and $\left\{J_{1}, J_{2}, J_{3}\right\}$ is called the quaternionic Hermitian basis. The structure $\left(N_{1}, E, g_{1}\right)$ is called a quaternionic kähler manifold if there exist locally defined 1 forms $\omega_{1}, \omega_{2}, \omega_{3}$ such that for $\alpha \in\{1,2,3\}$, we have

$$
\begin{equation*}
\nabla_{X_{1}} J_{\alpha}=\omega_{\alpha+2}\left(X_{1}\right) J_{\alpha+1}-\omega_{\alpha+1}\left(X_{1}\right) J_{\alpha+2} \tag{11}
\end{equation*}
$$

for $X_{1} \in \Gamma\left(T N_{1}\right)$, where the indices are taken from $\{1,2,3\}$ modulo 3. If there exists a global parallel quaternionic Hermitian basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of sections of E on N_{1}, then $\left(N_{1}, E, g_{1}\right)$ is called a hyperkähler. The structure $\left\{J_{1}, J_{2}, J_{3}, g_{1}\right\}$, where g_{1}, a hyperkähler metric, is called a hyperkähler structure on N_{1}.

A map $\pi:\left(N_{1}, E_{1}, g_{1}\right) \rightarrow\left(N_{2}, E_{2}, g_{2}\right)$ is called an $\left(E_{1}, E_{2}\right)$-holomorphic map if for any point $p \in N_{1}$ and $J \in\left(E_{1}\right)_{p}$, there exists $J^{\prime} \in\left(E_{2}\right)_{\pi(p)}$ such that

$$
\pi_{*} \circ J=J^{\prime} \circ \pi_{*} .
$$

A Riemannian submersion between quaternionic kähler manifolds $\pi:\left(N_{1}, E_{1}, g_{1}\right) \rightarrow$ $\left(N_{2}, E_{2}, g_{2}\right)$, which is an (E_{1}, E_{2})-holomorphic map, is known as a quaternionic kähler submersion (or a hyperkähler submersion) [9]:

Definition 1 ([23]). A Riemannian map π from the almost quaternionic Hermitian manifold $\left(N_{1}, E, g_{1}\right)$ to the Riemannian manifold $\left(N_{2}, g_{2}\right)$ is called an h-semi-slant Riemannian map if, given a point $p \in N_{1}$ with a neighborhood U, there exists a quaternionic Hermitian basis $\{I, J, K\}$ of sections of E on U such that for any $R \in\{I, J, K\}$, the following is true:

$$
\operatorname{ker} \pi_{*}=D_{1} \oplus D_{2}, R\left(D_{1}\right)=D_{1}
$$

in which the angle $\theta_{R}=\theta_{R}\left(Z_{1}\right)$ between $R Z_{1}$ and the space $\left(D_{2}\right)_{q}$ is constant for a non-zero $Z_{1} \in\left(D_{2}\right)_{q}$ and $q \in U$, where D_{2} is an orthogonal complement of D_{1} in $\operatorname{ker} \pi_{*}$.

Furthermore, assume we have

$$
\theta=\theta_{I}=\theta_{J}=\theta_{K}
$$

Then, we call the map $\pi:\left(N_{1}, E, g_{1}\right) \rightarrow\left(N_{2}, g_{2}\right)$ a strictly h-semi-slant Riemannian map, the basis $\{I, J, K\}$ a strictly h-semi-slant basis and the angle θ a strictly h-semi-slant angle.

3. h-Quasi-Hemi-Slant Riemannian Maps

Motivated by the studies given in Section 2, we give the definition of the h-qhs Riemannian map as follows:

Definition 2. A Riemannian map π from the almost quaternionic Hermitian manifold $\left(N_{1}, E, g_{1}\right)$ to the Riemannian manifold $\left(N_{2}, g_{2}\right)$ is called an h-qhs Riemannian map if, given a point $p \in N_{1}$ with a neighborhood U, there exists a quaternionic Hermitian basis $\{I, J, K\}$ of sections of E on U such that for any $R \in\{I, J, K\}$, there is a distribution $D \subset\left(\operatorname{ker} \pi_{*}\right)$ on U such that

$$
\operatorname{ker} \pi_{*}=D \oplus D_{1} \oplus D_{2}, R(D)=D, R\left(D_{2}\right) \subset\left(\operatorname{ker} \pi_{*}\right)^{\perp}
$$

and the angle $\theta_{R}=\theta_{R}\left(Z_{1}\right)$ between $R Z_{1}$ and the space $\left(D_{1}\right)_{q}$ is constant for a non-zero $Z_{1} \in\left(D_{1}\right)_{q}$ and $q \in U$, where ker π_{*} admits three orthogonal complementary distributions D, D_{1} and D_{2} such that D is invariant, D_{1} is a slant with an angle θ_{R} and D_{2} is anti-invariant.

We call the basis $\{I, J, K\}$ an h-qhs basis and the angles $\left\{\theta_{I}, \theta_{J}, \theta_{K}\right\} h$-qhs angles. Furthermore, let us say we have

$$
\theta=\theta_{I}=\theta_{J}=\theta_{K}
$$

Then, we call the map $\pi:\left(N_{1}, E, g_{1}\right) \rightarrow\left(N_{2}, g_{2}\right)$ a strictly h-qhs Riemannian map, the basis $\{I, J, K\}$ a strictly quasi-hemi-slant basis and the angle θ a strictly quasi-hemislant angle:

Definition 3. A Riemannian map π from the almost quaternionic Hermitian manifold $\left(N_{1}, E, g_{1}\right)$ to the Riemannian manifold $\left(N_{2}, g_{2}\right)$ is called an almost h-qhs Riemannian map if, given a point $p \in N_{1}$ with a neighborhood U, there exists a quaternionic Hermitian basis $\{I, J, K\}$ of sections of E on U such that for any $R \in\{I, J, K\}$, there is a distribution $D^{R} \subset\left(\operatorname{ker} \pi_{*}\right)$ on U such that

$$
\operatorname{ker} \pi_{*}=D^{R} \oplus D_{1}^{R} \oplus D_{2}^{R}, R\left(D^{R}\right)=D^{R}, R\left(D_{2}^{R}\right) \subset\left(\operatorname{ker} \pi_{*}\right)^{\perp}
$$

and the angle $\theta_{R}=\theta_{R}\left(Z_{1}\right)$ between $R Z_{1}$ and the space $\left(D_{1}^{R}\right)_{q}$ is constant for a non-zero $Z_{1} \in$ $\left(D_{1}^{R}\right)_{q}$ and $q \in U$, where the vertical distribution ker π_{*} admits three orthogonal complementary distributions D^{R}, D_{1}^{R} and D_{2}^{R} such that D^{R} is invariant, D_{1}^{R} is a slant with an angle θ_{R} and D_{2}^{R} is anti-invariant.

We call the basis $\{I, J, K\}$ an almost h-qhs basis and the angles $\left\{\theta_{I}, \theta_{J}, \theta_{K}\right\}$ almost h-qhs angles.

Let $\pi:\left(N_{1}, E, g_{1}\right) \rightarrow\left(N_{2}, g_{2}\right)$ be an almost h-qhs Riemannian map. We can easily observe the following:
(a) If $\operatorname{dim} D^{R} \neq 0, \operatorname{dim} D_{1}^{R} \neq 0,0<\theta_{R}<\frac{\pi}{2}$ and $\operatorname{dim} D_{2}^{R}=0$, then π is an almost proper h-semi-slant Riemannian map with a semi-slant angle θ_{R};
(b) If $\operatorname{dim} D^{R}=0, \operatorname{dim} D_{1}^{R} \neq 0,0<\theta_{R}<\frac{\pi}{2}$ and $\operatorname{dim} D_{2}^{R} \neq 0$, then π is an almost h-hemi-slant Riemannian map.
We say that the almost h-qhs Riemannian map $\pi:\left(N_{1}, E, g_{1}\right) \rightarrow\left(N_{2}, g_{2}\right)$ is proper if $D^{R} \neq\{0\}, D_{2}^{R} \neq\{0\}$ and $\theta_{R} \neq 0, \frac{\pi}{2}$. Thus, one can easily see that the h-hemi-slant Riemannian map, h-semi-invariant Riemannian map and h-semi-slant Riemannian map are examples of h-qhs Riemannian maps.

Thus, we have

$$
\left(\operatorname{ker} \pi_{*}\right)^{\perp}=\omega_{R}\left(D_{1}^{R}\right) \oplus R\left(D_{2}^{R}\right) \oplus \mu_{R}
$$

Obviously, μ_{R} is an invariant sub-bundle of $\left(\operatorname{ker} \pi_{*}\right)^{\perp}$ with respect to the complex structure R.

For $V_{1} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)$, we have

$$
\begin{equation*}
V_{1}=P_{R} V_{1}+Q_{R} V_{1}+S_{R} V_{1} \tag{12}
\end{equation*}
$$

where $P_{R} V_{1} \in \Gamma\left(D^{R}\right), Q_{R} V_{1} \in \Gamma\left(D_{1}^{R}\right), S_{R} V_{1} \in \Gamma\left(D_{2}^{R}\right)$ and $R \in\{I, J, K\}$.
For $Z_{1} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)$, we obtain

$$
\begin{equation*}
R Z_{1}=\phi_{R} Z_{1}+\omega_{R} Z_{1} \tag{13}
\end{equation*}
$$

where $\phi_{R} Z_{1} \in \Gamma\left(\operatorname{ker} \pi_{*}\right), \omega_{R} Z_{1} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$ and $R \in\{I, J, K\}$.
For $X_{1} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$, we have

$$
\begin{equation*}
R X_{1}=B_{R} X_{1}+C_{R} X_{1} \tag{14}
\end{equation*}
$$

where $B_{R} X_{1} \in \Gamma\left(\operatorname{ker} \pi_{*}\right), C_{R} X_{1} \in \Gamma\left(\mu_{R}\right)$ and $R \in\{I, J, K\}$.
We will denote an almost h-qhs Riemannian map from a hyperkähler manifold (N_{1}, I, J, K, g_{1}) onto a Riemannian manifold $\left(N_{2}, g_{2}\right)$ such that (I, J, K) is an almost h-qhs basis by π.

The following lemmas can be easily obtained:
Lemma 1. For $\pi:\left(N_{1}, g_{1}, E_{1}\right) \rightarrow\left(N_{2}, g_{2}, E_{2}\right)$, we get

$$
\phi_{R} D^{R}=D^{R}, \omega_{R} D^{R}=0, \phi_{R} D_{2}^{R}=0, \omega_{R} D_{2}^{R} \subset\left(\operatorname{ker} \pi_{*}\right)^{\perp}
$$

where $R \in\{I, J, K\}$.
Lemma 2. For $\pi:\left(N_{1}, g_{1}, E_{1}\right) \rightarrow\left(N_{2}, g_{2}, E_{2}\right)$, we have

$$
\begin{aligned}
\phi_{R}^{2} Z_{1}+B_{R} \omega_{R} Z_{1} & =-Z_{1}, \omega_{R} \phi_{R} Z_{1}+C_{R} \omega_{R} Z_{1}=0, \\
\phi_{R} B_{R} Z_{2}+B_{R} C_{R} Z_{2} & =0, \omega_{R} B_{R} Z_{2}+C_{R}^{2} Z_{2}=-Z_{2},
\end{aligned}
$$

for any $Z_{1} \in \Gamma\left(\operatorname{ker} \pi_{*}\right), Z_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$ and $R \in\{I, J, K\}$.
Proof. Using Equations (9), (13) and (14), we can find all equations of Lemma 2:
Lemma 3. With $\pi:\left(N_{1}, I, J, K, g_{1}\right) \rightarrow\left(N_{2}, g_{2}\right)$ being an almost h-qhs Riemannian map, we then obtain

$$
\begin{gather*}
\mathcal{V} \nabla_{X_{1}} \phi_{R} X_{2}+\mathcal{T}_{X_{1}} \omega_{R} X_{2}=B_{R} \mathcal{T}_{X_{1}} X_{2}+\phi_{R} \mathcal{V} \nabla_{X_{1}} X_{2}, \tag{15}\\
\mathcal{T}_{X_{1}} \phi_{R} X_{2}+\mathcal{H} \nabla_{X_{1}} \omega_{R} X_{2}=C_{R} \mathcal{T}_{X_{1}} X_{2}+\omega_{R} \mathcal{V} \nabla_{X_{1}} X_{2}, \tag{16}\\
\mathcal{T}_{X_{1}} B_{R} Z_{1}+\mathcal{H} \nabla_{X_{1}} C_{R} Z_{1}=C_{R} \mathcal{H} \nabla_{X_{1}} Z_{1}+\omega_{R} \mathcal{T}_{X_{1}} Z_{1}, \tag{17}\\
\mathcal{V} \nabla_{X_{1}} B_{R} Z_{1}+\mathcal{T}_{X_{1}} C_{R} Z_{1}=B_{R} \mathcal{H} \nabla_{X_{1}} Z_{1}+\phi \mathcal{T}_{X_{1}} Z_{1}, \tag{18}\\
\mathcal{V} \nabla_{Z_{1}} \phi_{R} X_{1}+\mathcal{A}_{Z_{1}} \omega_{R} X_{1}=B_{R} \mathcal{A}_{Z_{1}} X_{1}+\phi_{R} \mathcal{V} \nabla_{Z_{1}} X_{1}, \tag{19}\\
\mathcal{A}_{Z_{1}} \phi_{R} X_{1}=C_{R} \mathcal{A}_{Z_{1}} X_{1}+\omega_{R} \mathcal{V} \nabla_{Z_{1}} X_{1}, \tag{20}\\
\mathcal{A}_{Z_{1}} B_{R} Z_{2}+\mathcal{H} \nabla_{Z_{1}} C_{R} Z_{2}=C_{R} \mathcal{H} \nabla_{Z_{1}} Z_{2}+\omega_{R} \mathcal{A}_{Z_{1}} Z_{2}, \tag{21}\\
\mathcal{V} \nabla_{Z_{1}} B_{R} Z_{2}+\mathcal{A}_{Z_{1}} C_{R} Z_{2}=B_{R} \mathcal{H} \nabla_{Z_{1}} Z_{2}+\phi_{R} \mathcal{A}_{Z_{1}} Z_{2}, \tag{22}
\end{gather*}
$$

for $X_{1}, X_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right), Z_{1}, Z_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$ and $R \in\{I, J, K\}$.
Proof. Using Equations (4)-(7), (13) and (14), we can easily obtain Equations (15)-(22).
Now, we define

$$
\begin{align*}
\left(\nabla_{X_{1}} \phi_{R}\right) X_{2} & =\mathcal{V} \nabla_{X_{1}} \phi_{R} X_{2}-\phi_{R} \mathcal{V} \nabla_{X_{1}} X_{2}, \tag{23}\\
\left(\nabla_{X_{1}} \omega_{R}\right) X_{2} & =\mathcal{H} \nabla_{X_{1}} \omega_{R} X_{2}-\omega_{R} \mathcal{V} \nabla_{X_{1}} X_{2} \tag{24}\\
\left(\nabla_{Z_{1}} B_{R}\right) Z_{2} & =\mathcal{V} \nabla_{Z_{1}} B_{R} Z_{2}-B_{R} \mathcal{H} \nabla_{Z_{1}} Z_{2} \tag{25}\\
\left(\nabla_{Z_{1}} C_{R}\right) Z_{2} & =\mathcal{H} \nabla_{Z_{1}} C_{R} Z_{2}-C_{R} \mathcal{H} \nabla_{Z_{1}} Z_{2}, \tag{26}
\end{align*}
$$

for $X_{1}, X_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right), Z_{1}, Z_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$ and $R \in\{I, J, K\}$.
Lemma 4. For $\pi:\left(N_{1}, I, J, K, g_{1}\right) \rightarrow\left(N_{2}, g_{2}\right)$, we find

$$
\begin{aligned}
& \left(\nabla_{X_{1}} \phi_{R}\right) X_{2}=B_{R} \mathcal{T}_{X_{1}} X_{2}-\mathcal{T}_{X_{1}} \omega_{R} X_{2}, \quad\left(\nabla_{X_{1}} \omega_{R}\right) X_{2}=C_{R} \mathcal{T}_{X_{1}} X_{2}-\mathcal{T}_{X_{1}} \phi_{R} X_{2} \\
& \left(\nabla_{Z_{1}} C_{R}\right) Z_{2}=\omega_{R} \mathcal{A}_{Z_{1}} Z_{2}-\mathcal{A}_{Z_{1}} B_{R} Z_{2}, \quad\left(\nabla_{Z_{1}} B_{R}\right) Z_{2}=\phi_{R} \mathcal{A}_{Z_{1}} Z_{2}-\mathcal{A}_{Z_{1}} C_{R} Z_{2}
\end{aligned}
$$

for all $X_{1}, X_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right), Z_{1}, Z_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$ and $R \in\{I, J, K\}$.
Proof. Using Equations (15) and (16) as well as Equations (21)-(26), Lemma 4 follows.
If the tensors ϕ_{R} and ω_{R} are parallel with respect to the linear connection ∇ on N_{1}, then

$$
B_{R} \mathcal{T}_{X_{1}} X_{2}=\mathcal{T}_{X_{1}} \omega_{R} X_{2}, C_{R} \mathcal{T}_{X_{1}} X_{2}=\mathcal{T}_{X_{1}} \phi_{R} X_{2},
$$

for all $X_{1}, X_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)$ and $R \in\{I, J, K\}$:

Lemma 5. Let $\pi:\left(N_{1}, E, g_{1}\right) \rightarrow\left(N_{2}, g_{2}\right)$, be an almost h-qhs Riemannian map. Then, we obtain

$$
\begin{equation*}
\phi_{R}^{2} V_{1}=-\cos ^{2} \theta_{R} V_{1}, \tag{27}
\end{equation*}
$$

for any non-zero vector field $V_{1} \in \Gamma\left(D_{1}^{R}\right)$ and $R \in\{I, J, K\}$, where $\{I, J, K\}$ is an almost h-qhs basis with the almost h-qhs angles $\left\{\theta_{I}, \theta_{J}, \theta_{K}\right\}$.

Proof. For any non-zero vector field $V_{1} \in \Gamma\left(D_{1}^{R}\right)$ and $R \in\{I, J, K\}$, we have

$$
\begin{equation*}
\cos \theta_{R}=\frac{\left\|\phi_{R} V_{1}\right\|}{\left\|R V_{1}\right\|} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
\cos \theta_{R}=\frac{g_{1}\left(R V_{1}, \phi_{R} V_{1}\right)}{\left\|\phi_{R} V_{1}\right\|\left\|R V_{1}\right\|} \tag{29}
\end{equation*}
$$

where $\theta_{R}\left(V_{1}\right)$ is the h-qhs angle.
Using Equations (9) and (13), we obtain

$$
\begin{equation*}
\cos \theta_{R}=-\frac{g_{1}\left(V_{1}, \phi_{R}^{2} V_{1}\right)}{\left\|\phi_{R} V_{1}\right\|\left\|R V_{1}\right\|} \tag{30}
\end{equation*}
$$

From Equations (29) and (30), Equation (27) follows.
Theorem 1. Let π be an h-qhs Riemannian map from an almost hyperkahler manifold (N_{1}, I, J, K, g_{1}) to a Riemannian manifold $\left(N_{2}, g_{2}\right)$. Then, the following cases are equivalent:
(a) D^{R} is integrable;
(b) $g_{1}\left(\mathcal{T}_{Z_{2}} I Z_{1}-\mathcal{T}_{Z_{1}} I Z_{2}, \omega_{I} Q_{I} U_{1}+I S_{I} U_{1}\right)=g_{1}\left(\mathcal{V} \nabla_{Z_{1}} I Z_{2}-\mathcal{V} \nabla_{Z_{2}} I Z_{1}, \phi_{I} Q_{I} U_{1}\right)$
for $Z_{1}, Z_{2} \in \Gamma\left(D^{I}\right)$ and $U_{1} \in \Gamma\left(D_{1}^{I} \oplus D_{2}^{I}\right)$;
(c) $g_{1}\left(\mathcal{T}_{Z_{2}} J Z_{1}-\mathcal{T}_{Z_{1}} J Z_{2}, \omega_{J} Q_{J} U_{1}+J S_{J} U_{1}\right)=g_{1}\left(\mathcal{V} \nabla_{Z_{1}} J Z_{2}-\mathcal{V} \nabla_{Z_{2}} J Z_{1}, \phi_{J} Q_{J} U_{1}\right)$
for $Z_{1}, Z_{2} \in \Gamma\left(D^{J}\right)$ and $U_{1} \in \Gamma\left(D_{1}^{J} \oplus D_{2}^{J}\right)$;
(d) $g_{1}\left(\mathcal{T}_{Z_{2}} K Z_{1}-\mathcal{T}_{Z_{1}} K Z_{2}, \omega_{K} Q_{K} U_{1}+K S_{K} U_{1}\right)=g_{1}\left(\mathcal{V} \nabla_{Z_{1}} K Z_{2}-\mathcal{V} \nabla_{Z_{2}} K Z_{1}, \phi_{K} Q_{K} U_{1}\right)$ for $Z_{1}, Z_{2} \in \Gamma\left(D^{K}\right)$ and $U_{1} \in \Gamma\left(D_{1}^{K} \oplus D_{2}^{K}\right)$.

Proof. For $Z_{1}, Z_{2} \in \Gamma\left(D^{R}\right), U_{1} \in \Gamma\left(D_{1}^{R} \oplus D_{2}^{R}\right), U_{2} \in\left(\operatorname{ker} \pi_{*}\right)^{\perp}$ and $R \in\{I, J, K\}$, since $\left[Z_{1}, Z_{2}\right] \in\left(\operatorname{ker} \pi_{*}\right)$, we have $g_{1}\left(\left[Z_{1}, Z_{2}\right], U_{2}\right)=0$. Thus, D^{R} is integrable $\Leftrightarrow g_{1}\left(\left[Z_{1}, Z_{2}\right], U_{1}\right)=$ 0 . Now, using Equations (4) and (12)-(14), we have

$$
\begin{aligned}
& g_{1}\left(\left[Z_{1}, Z_{2}\right], U_{1}\right) \\
= & g_{1}\left(R \nabla_{Z_{1}} Z_{2}, R U_{1}\right)-g_{1}\left(R \nabla_{Z_{2}} Z_{1}, R U_{1}\right) \\
= & g_{1}\left(\nabla_{Z_{1}} R Z_{2}, R U_{1}\right)-g_{1}\left(\nabla_{Z_{2}} R Z_{1}, R U_{1}\right), \\
= & g_{1}\left(\mathcal{T}_{Z_{1}} R Z_{2}-\mathcal{T}_{Z_{2}} R Z_{1}, \omega_{R} Q_{R} U_{1}+J R U_{1}\right) \\
& -g_{1}\left(\mathcal{V} \nabla_{Z_{1}} R Z_{2}-\mathcal{V} \nabla_{Z_{2}} R Z_{1}, \phi_{R} Q_{R} U_{1}\right) .
\end{aligned}
$$

Since D^{R} is R-invariant, we have

$$
(a) \Leftrightarrow(b), \quad(a) \Leftrightarrow(c), \quad(a) \Leftrightarrow(d) .
$$

Therefore, we obtain the result.

Theorem 2. The following cases are equivalent for the map π defined in Theorem 1:
(a) D_{1}^{R} is integrable;
(b) $g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{I} \phi_{I} Y_{2}-\mathcal{T}_{Y_{2}} \omega_{I} \phi_{I} Y_{1}, V_{1}\right)=g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{I} Y_{2}-\mathcal{T}_{Y_{2}} \omega_{I} Y_{1}, \phi_{I} P_{I} V_{1}\right)$

$$
+g_{1}\left(\mathcal{H} \nabla_{Y_{1}} \omega_{I} Y_{2}-\mathcal{H} \nabla_{Y_{2}} \omega_{I} Y_{1}, \omega_{I} S_{I} V_{1}\right)
$$

for all $Y_{1}, Y_{2} \in \Gamma\left(D_{1}^{I}\right)$ and $V_{1} \in \Gamma\left(D^{I} \oplus D_{2}^{I}\right)$;
(c) $g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{J} \phi_{J} Y_{2}-\mathcal{T}_{Y_{2}} \omega_{J} \phi_{J} Y_{1}, V_{1}\right)=g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{J} Y_{2}-\mathcal{T}_{Y_{2}} \omega_{J} Y_{1}, \phi_{J} P_{J} V_{1}\right)$ $+g_{1}\left(\mathcal{H} \nabla_{Y_{1}} \omega_{J} Y_{2}-\mathcal{H} \nabla_{Y_{2}} \omega_{J} Y_{1}, \omega_{J} S_{J} V_{1}\right)$
for all $Y_{1}, Y_{2} \in \Gamma\left(D_{1}^{J}\right)$ and $V_{1} \in \Gamma\left(D^{J} \oplus D_{2}^{J}\right)$;
(d) $g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{K} \phi_{K} Y_{2}-\mathcal{T}_{Y_{2}} \omega_{K} \phi_{K} Y_{1}, V_{1}\right)=g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{K} Y_{2}-\mathcal{T}_{Y_{2}} \omega_{K} Y_{1}, \phi_{K} P_{K} V_{1}\right)$ $+g_{1}\left(\mathcal{H} \nabla_{Y_{1}} \omega_{K} Y_{2}-\mathcal{H} \nabla_{Y_{2}} \omega_{K} Y_{1}, \omega_{K} S_{K} V_{1}\right)$
for all $Y_{1}, Y_{2} \in \Gamma\left(D_{1}^{K}\right)$ and $V_{1} \in \Gamma\left(D^{K} \oplus D_{2}^{K}\right)$.
Proof. For $Y_{1}, Y_{2} \in \Gamma\left(D_{1}^{R}\right), V_{1} \in \Gamma\left(D^{R} \oplus D_{2}^{R}\right), V_{2} \in\left(\operatorname{ker} F_{*}\right)^{\perp}$ and $R \in\{I, J, K\}$, since $\left[Y_{1}, Y_{2}\right] \in\left(\operatorname{ker} \pi_{*}\right)$, we have $g_{1}\left(\left[Y_{1}, Y_{2}\right], V_{2}\right)=0$. Thus, D_{1}^{R} is integrable $\Leftrightarrow g_{1}\left(\left[Y_{1}, Y_{2}\right], V_{1}\right)=$ 0 . Using Equations (4), (5), (12) and (13) as well as Lemma 5, we have

$$
\begin{aligned}
& g_{1}\left(\left[Y_{1}, Y_{2}\right], V_{1}\right) \\
= & g_{1}\left(\nabla_{Y_{1}} R Y_{2}, R V_{1}\right)-g_{1}\left(\nabla_{Y_{2}} R Y_{1}, R V_{1}\right), \\
= & g_{1}\left(\nabla_{Y_{1}} \phi_{R} Y_{2}, R V_{1}\right)+g_{1}\left(\nabla_{Y_{1}} \omega_{R} Y_{2}, R V_{1}\right)-g_{1}\left(\nabla_{Y_{2}} \phi_{R} Y_{1}, R V_{1}\right)-g_{1}\left(\nabla_{Y_{2}} \omega_{R} Y_{1}, R V_{1}\right), \\
= & \cos ^{2} \theta_{R} g_{1}\left(\nabla_{Y_{1}} Y_{2}, V_{1}\right)-\cos ^{2} \theta_{R} g_{1}\left(\nabla_{Y_{2}} Y_{1}, V_{1}\right)-g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{R} \phi_{R} Y_{2}-\mathcal{T}_{Y_{2}} \omega_{R} \phi_{R} Y_{1}, V_{1}\right) \\
& +g_{1}\left(\mathcal{H} \nabla_{Y_{1}} \omega_{R} Y_{2}+\mathcal{T}_{Y_{1}} \omega_{R} Y_{2}, R P_{R} V_{1}+\omega_{R} S_{R} V_{1}\right) \\
& -g_{1}\left(\mathcal{H} \nabla_{Y_{2}} \omega_{R} Y_{1}+\mathcal{T}_{Y_{2}} \omega_{R} Y_{1}, R P_{R} V_{1}+\omega_{R} S_{R} V_{1}\right),
\end{aligned}
$$

which gives

$$
\begin{aligned}
\sin ^{2} \theta_{1} g_{1}\left(\left[Y_{1}, \Upsilon_{2}\right], V_{1}\right)= & g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{R} Y_{2}-\mathcal{T}_{Y_{2}} \omega_{R} Y_{1}, R P_{R} V_{1}\right) \\
& +g_{1}\left(\mathcal{H} \nabla_{Y_{1}} \omega_{R} Y_{2}-\mathcal{H} \nabla_{Y_{2}} \omega_{R} Y_{1}, \omega_{R} S_{R} V_{1}\right) \\
& -g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{R} \phi_{R} Y_{2}-\mathcal{T}_{Y_{2}} \omega_{R} \phi_{R} Y_{1}, V_{1}\right)
\end{aligned}
$$

Since D_{1}^{R} is an R-slant distribution, therefore, we obtain

$$
(a) \Leftrightarrow(b), \quad(a) \Leftrightarrow(c), \quad(a) \Leftrightarrow(d) .
$$

Therefore, we find the result.

Theorem 3. For the h-qhs Riemannian map π defined in Theorem $1, D_{2}^{R}$ is always integrable.
Proof. We can easily prove the Theorem as hemi-slant case given in [21].
Theorem 4. For the h-qhs Riemannian map π defined in Theorem 1, any one of the following assertions implies the others:
(a) $\left(\operatorname{ker} \pi_{*}\right)^{\perp}$ defines a totally geodesic foliation on N_{1};
(b) $g_{1}\left(\mathcal{A}_{Z_{1}} Z_{2}, P_{I} W_{1}+\cos ^{2} \theta_{I} Q_{I} W_{1}\right)=g_{1}\left(\mathcal{H} \nabla_{Z_{1}} Z_{2}, \omega_{I} \phi_{I} P_{I} W_{1}+\omega_{I} \phi_{I} Q_{I} W_{1}\right)$

$$
-g_{1}\left(\mathcal{A}_{Z_{1}} B_{I} Z_{2}+\mathcal{H} \nabla_{Z_{1}} C_{I} Z_{2}, \omega_{I} W_{1}\right)
$$

for $Z_{1}, Z_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$ and $W_{1} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)$;
(c) $g_{1}\left(\mathcal{A}_{Z_{1}} Z_{2}, P_{J} W_{1}+\cos ^{2} \theta_{J} Q_{J} W_{1}\right)=g_{1}\left(\mathcal{H} \nabla_{Z_{1}} Z_{2}, \omega_{J} \phi_{J} P_{J} W_{1}+\omega_{J} \phi_{J} Q_{J} W_{1}\right)$

$$
-g_{1}\left(\mathcal{A}_{Z_{1}} B_{J} Z_{2}+\mathcal{H} \nabla_{Z_{1}} C_{J} Z_{2}, \omega_{J} W_{1}\right)
$$

for $Z_{1}, Z_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$ and $W_{1} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)$;
(d) $g_{1}\left(\mathcal{A}_{Z_{1}} Z_{2}, P_{K} W_{1}+\cos ^{2} \theta_{K} Q_{K} W_{1}\right)=g_{1}\left(\mathcal{H} \nabla_{Z_{1}} Z_{2}, \omega_{K} \phi_{K} P_{K} W_{1}+\omega_{K} \phi_{K} Q_{K} W_{1}\right)$

$$
-g_{1}\left(\mathcal{A}_{Z_{1}} B_{K} Z_{2}+\mathcal{H} \nabla_{Z_{1}} C_{K} Z_{2}, \omega_{K} W_{1}\right)
$$

for $Z_{1}, Z_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$ and $W_{1} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)$.
Proof. For $Z_{1}, Z_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}, W_{1} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)$ and $R \in\{I, J, K\}$, using Equations (6), (7) and (12)-(14) as well as Lemma 5, we have

$$
\begin{aligned}
& g_{1}\left(\nabla_{Z_{1}} Z_{2}, W_{1}\right) \\
= & g_{1}\left(R \nabla_{Z_{1}} Z_{2}, R W_{1}\right), \\
= & g_{1}\left(R \nabla_{Z_{1}} Z_{2}, \phi_{R} P_{R} W_{1}+\phi_{R} Q_{R} W_{1}+\omega_{R} Q_{R} W_{1}+\omega_{R} S_{R} W_{1}\right), \\
= & -g_{1}\left(\nabla_{Z_{1}} Z_{2}, \phi_{R}^{2} P_{R} W_{1}+\omega_{R} \phi_{R} P_{R} W_{1}+\omega_{R} \phi_{R} Q_{R} W_{1}\right) \\
& +g_{1}\left(\nabla_{Z_{1}} B_{R} Z_{2}, \omega_{R} Q_{R} W_{1}+\omega_{R} S_{R} W_{1}\right)+g_{1}\left(\nabla_{Z_{1}} C_{R} Z_{2}, \omega_{R} Q_{R} W_{1}+\omega_{R} S_{R} W_{1}\right), \\
= & g_{1}\left(\mathcal{A}_{Z_{1}} Z_{2}, P_{R} W_{1}+\cos ^{2} \theta_{R} Q_{R} W_{1}\right)-g_{1}\left(\mathcal{H} \nabla_{Z_{1}} Z_{2}, \omega_{R} \phi_{R} P_{R} W_{1}+\omega_{R} \phi_{R} Q_{R} W_{1}\right) \\
& +g_{1}\left(\mathcal{A}_{Z_{1}} B_{R} Z_{2}, \omega_{R} Q_{R} W_{1}+\omega_{R} S_{R} W_{1}\right)+g_{1}\left(\mathcal{H} \nabla_{Z_{1}} C_{R} Z_{2}, \omega_{R} Q_{R} W_{1}+\omega_{R} S_{R} W_{1}\right) .
\end{aligned}
$$

Thus, we obtain

$$
(a) \Leftrightarrow(b), \quad(a) \Leftrightarrow(c), \quad(a) \Leftrightarrow(d) .
$$

Therefore, the result follows.
Theorem 5. The following conditions are equivalent for the h-qhs Riemannian map π :
(a) $\left(\operatorname{ker} \pi_{*}\right)$ defines a totally geodesic foliation on N_{1};
(b) $g_{1}\left(\mathcal{T}_{X_{1}} P_{I} X_{2}+\cos ^{2} \theta_{I} \mathcal{T}_{X_{1}} Q_{I} X_{2}, Y_{1}\right)=g_{1}\left(\mathcal{H} \nabla_{X_{1}} \omega_{I} \phi_{I} P_{I} X_{2}+\mathcal{H} \nabla_{X_{1}} \omega_{I} \phi_{I} Q_{I} X_{2}, Y_{1}\right)$ $-g_{1}\left(\mathcal{H} \nabla_{X_{1}} \omega_{I} Q_{I} X_{2}+\mathcal{H} \nabla_{X_{1}} \omega_{I} S_{I} X_{2}, C_{I} Y_{1}\right)$ $-g_{1}\left(\mathcal{T}_{X_{1}} \omega_{I} Q_{I} X_{2}+\mathcal{T}_{X_{1}} \omega_{I} S_{I} X_{2}, B_{I} Y_{1}\right)$
for $X_{1}, X_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)$ and $Y_{1} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$;
(c) $g_{1}\left(\mathcal{T}_{X_{1}} P_{J} X_{2}+\cos ^{2} \theta_{J} \mathcal{T}_{X_{1}} Q_{J} X_{2}, Y_{1}\right)=g_{1}\left(\mathcal{H} \nabla_{X_{1}} \omega_{J} \phi_{J} P_{J} X_{2}+\mathcal{H} \nabla_{X_{1}} \omega_{J} \phi_{J} Q_{J} X_{2}, Y_{1}\right)$

$$
-g_{1}\left(\mathcal{H} \nabla_{X_{1}} \omega_{J} Q_{J} X_{2}+\mathcal{H} \nabla_{X_{1}} \omega_{J} S_{J} X_{2}, C_{J} Y_{1}\right)
$$

$$
-g_{1}\left(\mathcal{T}_{X_{1}} \omega_{J} Q_{J} X_{2}+\mathcal{T}_{X_{1}} \omega_{J} S_{J} X_{2}, B_{J} Y_{1}\right)
$$

for $X_{1}, X_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)$ and $Y_{1} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$;
(d) $g_{1}\left(\mathcal{T}_{X_{1}} P_{K} X_{2}+\cos ^{2} \theta_{K} \mathcal{T}_{X_{1}} Q_{K} X_{2}, Y_{1}\right)=g_{1}\left(\mathcal{H} \nabla_{X_{1}} \omega_{K} \phi_{K} P_{K} X_{2}+\mathcal{H} \nabla_{X_{1}} \omega_{K} \phi_{K} Q_{K} X_{2}, Y_{1}\right)$ $-g_{1}\left(\mathcal{H} \nabla_{X_{1}} \omega_{K} Q_{K} X_{2}+\mathcal{H} \nabla_{X_{1}} \omega_{K} S_{K} X_{2}, C_{K} Y_{1}\right)$ $-g_{1}\left(\mathcal{T}_{X_{1}} \omega_{K} Q_{K} X_{2}+\mathcal{T}_{X_{1}} \omega_{K} S_{K} X_{2}, B_{K} Y_{1}\right)$
for $X_{1}, X_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)$ and $Y_{1} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$.

Proof. For $X_{1}, X_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right), Y_{1} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$ and $R \in\{I, J, K\}$, using Equations (4), (5) and (12)-(14) as well as Lemma 5, we have

$$
\begin{aligned}
& g_{1}\left(\nabla_{X_{1}} X_{2}, Y_{1}\right) \\
= & g_{1}\left(R \nabla_{X_{1}} X_{2}, R Y_{1}\right), \\
= & g_{1}\left(\nabla_{X_{1}} \phi_{R} P_{R} X_{2}, R Y_{1}\right)+g_{1}\left(\nabla_{X_{1}} \phi_{R} Q_{R} X_{2}, R Y_{1}\right) \\
& +g_{1}\left(\nabla_{X_{1}} \omega_{R} Q_{R} X_{2}, R Y_{1}\right)+g_{1}\left(\nabla_{X_{1}} \omega_{R} S_{R} X_{2}, R Y_{1}\right), \\
= & g_{1}\left(\mathcal{T}_{X_{1}} P_{R} X_{2}, Y_{1}\right)+\cos ^{2} \theta_{R} g_{1}\left(\mathcal{T}_{X_{1}} Q_{R} X_{2}, Y_{1}\right)-g_{1}\left(\mathcal{H} \nabla_{X_{1}} \omega_{R} \phi_{R} P_{R} X_{2}, Y_{1}\right) \\
& -g_{1}\left(\mathcal{H} \nabla_{X_{1}} \omega_{R} \phi_{R} Q_{R} X_{2}, Y_{1}\right)+g_{1}\left(\mathcal{H} \nabla_{X_{1}} \omega_{R} Q_{R} X_{2}+\mathcal{H} \nabla_{X_{1}} \omega_{R} S_{R} X_{2}, C_{R} Y_{1}\right) \\
& +g_{1}\left(\mathcal{T}_{X_{1}} \omega_{R} Q_{R} X_{2}+\mathcal{T}_{X_{1}} \omega_{R} S_{R} X_{2}, B_{R} Y_{1}\right) .
\end{aligned}
$$

Thus, we obtain

$$
(a) \Leftrightarrow(b), \quad(a) \Leftrightarrow(c), \quad(a) \Leftrightarrow(d) .
$$

Therefore, the result follows.
Theorem 6. Let π be an h-qhs Riemannian map from an almost hyperkahler manifold (N_{1}, I, J, K, g_{1}) to a Riemannian manifold $\left(N_{2}, g_{2}\right)$. Then, any one of the following assertions implies the others:
(a) D^{R} defines a totally geodesic foliation on N_{1};
(b) $g_{1}\left(\mathcal{T}_{Z_{1}} I P_{I} Z_{2}, \omega_{I} Q_{I} Y_{1}+\omega_{I} S_{I} Y_{1}\right)=-g_{1}\left(\mathcal{V} \nabla_{Z_{1}} I P_{I} Z_{2}, \phi_{I} Y_{1}\right)$, $g_{1}\left(\mathcal{T}_{Z_{1}} I P_{I} Z_{2}, C_{I} Y_{2}\right)=-g_{1}\left(\mathcal{V} \nabla_{Z_{1}} I P_{I} Z_{2}, B_{I} Y_{2}\right)$
for $Z_{1}, Z_{2} \in \Gamma\left(D^{I}\right), Y_{1} \in \Gamma\left(D_{1}^{I} \oplus D_{2}^{I}\right)$ and $Y_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$;
(c) $g_{1}\left(\mathcal{T}_{Z_{1}} J P_{J} Z_{2}, \omega_{J} Q_{J} Y_{1}+\omega_{J} S_{J} Y_{1}\right)=-g_{1}\left(\mathcal{V} \nabla_{Z_{1}} J P_{J} Z_{2}, \phi_{J} Y_{1}\right)$,

$$
g_{1}\left(\mathcal{T}_{Z_{1}} J P_{J} Z_{2}, C_{J} Y_{2}\right)=-g_{1}\left(\mathcal{V} \nabla_{Z_{1}} J P_{J} Z_{2}, B_{J} Y_{2}\right)
$$

for $Z_{1}, Z_{2} \in \Gamma\left(D^{J}\right), Y_{1} \in \Gamma\left(D_{1}^{J} \oplus D_{2}^{J}\right)$ and $Y_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$;
(d) $g_{1}\left(\mathcal{T}_{Z_{1}} K P_{K} Z_{2}, \omega_{K} Q_{K} Y_{1}+\omega_{K} S_{K} Y_{1}\right)=-g_{1}\left(\mathcal{V} \nabla_{Z_{1}} K P_{K} Z_{2}, \phi_{K} Y_{1}\right)$, $g_{1}\left(\mathcal{T}_{Z_{1}} K P_{K} Z_{2}, C_{K} Y_{2}\right)=-g_{1}\left(\mathcal{V} \nabla_{Z_{1}} K P_{K} Z_{2}, B_{K} Y_{2}\right)$
for $Z_{1}, Z_{2} \in \Gamma\left(D^{K}\right), \Upsilon_{1} \in \Gamma\left(D_{1}^{K} \oplus D_{2}^{K}\right)$ and $Y_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$.
Proof. For $Z_{1}, Z_{2} \in \Gamma\left(D^{R}\right), Y_{1} \in \Gamma\left(D_{1}^{R} \oplus D_{2}^{R}\right), Y_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$ and $R \in\{I, J, K\}$, using Equations (4), (12) and (13), we have

$$
\begin{aligned}
& g_{1}\left(\nabla_{Z_{1}} Z_{2}, Y_{1}\right) \\
= & g_{1}\left(\nabla_{Z_{1}} R Z_{2}, R Y_{1}\right) \\
= & g_{1}\left(\nabla_{Z_{1}} R P_{R} Z_{2}, R Q_{R} Y_{1}+R S_{R} Y_{1}\right), \\
= & g_{1}\left(\mathcal{T}_{Z_{1}} \phi_{R} P_{R} Z_{2}, \omega_{R} Q_{R} Y_{1}+\omega_{R} S_{R} Y_{1}\right)+g_{1}\left(\mathcal{V} \nabla_{Z_{1}} \phi_{R} P_{R} Z_{2}, \phi_{R} Q_{R} Y_{1}\right) .
\end{aligned}
$$

Moreover, using Equations (4), (12) and (14), we obtain

$$
\begin{aligned}
& g_{1}\left(\nabla_{Z_{1}} Z_{2}, Y_{2}\right) \\
= & g_{1}\left(\nabla_{Z_{1}} R Z_{2}, R Y_{2}\right), \\
= & g_{1}\left(\nabla_{Z_{1}} R P_{R} Z_{2}, B_{R} Y_{2}+C_{R} Y_{2}\right), \\
= & g_{1}\left(\mathcal{V} \nabla_{Z_{1}} R P_{R} Z_{2}, B_{R} Y_{2}\right)+g_{1}\left(\mathcal{T}_{Z_{1}} J P_{R} Z_{2}, C_{R} Y_{2}\right) .
\end{aligned}
$$

Hence, we have

$$
(a) \Leftrightarrow(b), \quad(a) \Leftrightarrow(c), \quad(a) \Leftrightarrow(d) .
$$

Therefore, the result follows.
Theorem 7. With $\pi:\left(N_{1}, I, J, K, g_{1}\right) \rightarrow\left(N_{2}, g_{2}\right)$ being an h-qhs Riemannian map, the following conditions are equivalent:
(a) D_{1}^{R} defines a totally geodesic foliation on N_{1};
(b) $g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{I} \phi_{I} Y_{2}, Z_{1}\right)=g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{I} Y_{2}, \phi_{I} P_{I} Z_{1}\right)+g_{1}\left(\mathcal{H} \nabla_{Y_{1}} \omega_{I} Y_{2}, \omega_{I} S_{I} Z_{1}\right)$, $g_{1}\left(\mathcal{H} \nabla_{Y_{1}} \omega_{I} \phi_{I} Y_{2}, Z_{2}\right)=g_{1}\left(\mathcal{H} \nabla_{Y_{1}} \omega_{I} Y_{2}, C_{I} Z_{2}\right)+g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{I} Y_{2}, B_{I} Z_{2}\right)$
for $Y_{1}, Y_{2} \in \Gamma\left(D_{1}^{I}\right), Z_{1} \in \Gamma\left(D^{I} \oplus D_{2}^{I}\right)$ and $Z_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$;
(c) $g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{J} \phi_{J} Y_{2}, Z_{1}\right)=g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{J} Y_{2}, \phi_{J} P_{J} Z_{1}\right)+g_{1}\left(\mathcal{H} \nabla_{Y_{1}} \omega_{J} Y_{2}, \omega_{J} S_{J} Z_{1}\right)$,

$$
g_{1}\left(\mathcal{H} \nabla_{Y_{1}} \omega_{J} \phi_{J} Y_{2}, Z_{2}\right)=g_{1}\left(\mathcal{H} \nabla_{Y_{1}} \omega_{J} Y_{2}, C_{J} Z_{2}\right)+g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{J} Y_{2}, B_{J} Z_{2}\right)
$$

for $Y_{1}, Y_{2} \in \Gamma\left(D_{1}^{J}\right), Z_{1} \in \Gamma\left(D^{J} \oplus D_{2}^{J}\right)$ and $Z_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$;
(d) $g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{K} \phi_{K} \Upsilon_{2}, Z_{1}\right)=g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{K} Y_{2}, \phi_{K} P_{K} Z_{1}\right)+g_{1}\left(\mathcal{H} \nabla_{Y_{1}} \omega_{K} \Upsilon_{2}, \omega_{K} S_{K} Z_{1}\right)$,
$g_{1}\left(\mathcal{H} \nabla_{Y_{1}} \omega_{K} \phi_{K} \Upsilon_{2}, Z_{2}\right)=g_{1}\left(\mathcal{H} \nabla_{Y_{1}} \omega_{K} \Upsilon_{2}, C_{K} Z_{2}\right)+g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{K} Y_{2}, B_{K} Z_{2}\right)$
for $Y_{1}, Y_{2} \in \Gamma\left(D_{1}^{K}\right), Z_{1} \in \Gamma\left(D^{K} \oplus D_{2}^{K}\right)$ and $Z_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$.
Proof. For $Y_{1}, Y_{2} \in \Gamma\left(D_{1}^{R}\right), Z_{1} \in \Gamma\left(D^{R} \oplus D_{2}^{R}\right), Z_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$ and $R \in\{I, J, K\}$, using Equations (5), (12) and (13) as well as Lemma 5, we have

$$
\begin{aligned}
& g_{1}\left(\nabla_{Y_{1}} Y_{2}, Z_{1}\right) \\
= & g_{1}\left(\nabla_{Y_{1}} R Y_{2}, R Z_{1}\right), \\
= & g_{1}\left(\nabla_{Y_{1}} \phi_{R} Y_{2}, R Z_{1}\right)+g_{1}\left(\nabla_{Y_{1}} \omega_{R} Y_{2}, R Z_{1}\right), \\
= & \cos ^{2} \theta_{R} g_{1}\left(\nabla_{Y_{1}} Y_{2}, Z_{1}\right)-g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{R} \phi_{R} Y_{2}, Z_{1}\right) \\
& +g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{R} Y_{2}, \phi_{R} P_{R} Z_{1}\right)+g_{1}\left(\mathcal{H} \nabla_{Y_{1}} \omega_{R} Y_{2}, \omega_{R} S_{R} Z_{1}\right),
\end{aligned}
$$

which gives

$$
\begin{aligned}
& \sin ^{2} \theta_{R} g_{1}\left(\nabla_{Y_{1}} Y_{2}, Z_{1}\right) \\
= & -g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{R} \phi_{R} Y_{2}, Z_{1}\right)+g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{R} Y_{2}, R P_{R} Z_{1}\right) \\
& +g_{1}\left(\mathcal{H} \nabla_{Y_{1}} \omega_{R} Y_{2}, \omega_{R} S_{R} Z_{1}\right) .
\end{aligned}
$$

Moreover, from Equations (5), (13) and (14) as well as Lemma 5, we have

$$
\begin{aligned}
& g_{1}\left(\nabla_{Y_{1}} Y_{2}, Z_{2}\right) \\
= & g_{1}\left(\nabla_{Y_{1}} R Y_{2}, R Z_{2}\right), \\
= & g_{1}\left(\nabla_{Y_{1}} \phi_{R} Y_{2}, R Z_{2}\right)+g_{1}\left(\nabla_{Y_{1}} \omega_{R} Y_{2}, R Z_{2}\right), \\
= & \cos ^{2} \theta_{R} g_{1}\left(\nabla_{Y_{1}} Y_{2}, Z_{2}\right)-g_{1}\left(\mathcal{H} \nabla_{Y_{1}} \omega_{R} \phi_{R} Y_{2}, Z_{2}\right) \\
& +g_{1}\left(\mathcal{H} \nabla_{Y_{1}} \omega_{R} Y_{2}, C_{R} Z_{2}\right)+g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{R} Y_{2}, B_{R} Z_{2}\right) .
\end{aligned}
$$

Thus, we find that

$$
\begin{aligned}
& \sin ^{2} \theta_{R} g_{1}\left(\nabla_{Y_{1}} Y_{2}, Z_{2}\right) \\
= & -g_{1}\left(\mathcal{H} \nabla_{Y_{1}} \omega_{R} \phi_{R} Y_{2}, Z_{2}\right)+g_{1}\left(\mathcal{H} \nabla_{Y_{1}} \omega_{R} Y_{2}, C_{R} Z_{2}\right)+g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{R} Y_{2}, B_{R} Z_{2}\right) .
\end{aligned}
$$

Hence, we have

$$
(a) \Leftrightarrow(b), \quad(a) \Leftrightarrow(c), \quad(a) \Leftrightarrow(d) .
$$

Therefore, the result follows.

Theorem 8. For the h-qhs Riemannian map π defined in Theorem 1, any one of the following assertions implies the others:
(a) D_{2}^{R} defines a totally geodesic foliation on N_{1};
(b) $g_{1}\left(\mathcal{H} \nabla_{Y_{1}} \omega_{I} Y_{2}, \omega_{I} Q_{I} W_{1}\right)=-g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{I} S_{I} Y_{2}, \phi_{I} P_{I} W_{1}+\phi_{I} Q_{I} W_{1}\right)$, $g_{1}\left(\mathcal{H} \nabla_{Y_{1}} \omega_{I} S_{I} Y_{2}, C_{I} W_{2}\right)=-g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{I} S_{I} \Upsilon_{2}, B_{I} W_{2}\right)$
for $Y_{1}, Y_{2} \in \Gamma\left(D_{2}^{I}\right), W_{1} \in \Gamma\left(D^{I} \oplus D_{1}^{I}\right)$ and $W_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$;
(c) $g_{1}\left(\mathcal{H} \nabla Y_{1} \omega_{J} Y_{2}, \omega_{J} Q_{J} W_{1}\right)=-g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{J} S_{J} Y_{2}, \phi_{J} P_{J} W_{1}+\phi_{J} Q_{J} W_{1}\right)$, $g_{1}\left(\mathcal{H} \nabla Y_{1} \omega_{J} S Y_{2}, C_{J} W_{2}\right)=-g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{J} S Y_{2}, B_{J} W_{2}\right)$
for $Y_{1}, \Upsilon_{2} \in \Gamma\left(D_{2}^{J}\right), W_{1} \in \Gamma\left(D^{J} \oplus D_{1}^{J}\right)$ and $W_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$;
(d) $g_{1}\left(\mathcal{H} \nabla_{Y_{1}} \omega_{K} \Upsilon_{2}, \omega_{K} Q_{K} W_{1}\right)=-g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{K} S Y_{2}, \phi_{K} P_{K} W_{1}+\phi_{K} Q_{K} W_{1}\right)$, $g_{1}\left(\mathcal{H} \nabla_{Y_{1}} \omega_{K} S Y_{2}, C_{K} W_{2}\right)=-g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{K} S_{K} \Upsilon_{2}, B_{K} W_{2}\right)$
for $Y_{1}, Y_{2} \in \Gamma\left(D_{2}^{K}\right), W_{1} \in \Gamma\left(D^{K} \oplus D_{1}^{K}\right)$ and $W_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$.
Proof. For $Y_{1}, Y_{2} \in \Gamma\left(D_{2}^{R}\right), W_{1} \in \Gamma\left(D^{R} \oplus D_{1}^{R}\right), W_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$ and $R \in\{I, J, K\}$, using Equations (5), (12) and (13), we have

$$
\begin{aligned}
& g_{1}\left(\nabla_{Y_{1}} Y_{2}, W_{1}\right) \\
= & g_{1}\left(\nabla_{Y_{1}} R Y_{2}, R W_{1}\right) \\
= & g_{1}\left(\nabla_{Y_{1}} \omega_{R} S_{R} Y_{2}, \phi_{R} P_{R} W_{1}+\phi_{R} Q_{R} W_{1}+\omega_{R} Q_{R} W_{1}\right) \\
= & g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{R} S_{R} Y_{2}, \phi_{R} P_{R} W_{1}+\phi_{R} Q_{R} W_{1}\right)+g_{1}\left(\mathcal{H} \nabla_{Y_{1}} \omega_{R} S_{R} Y_{2}, \omega_{R} Q_{R} W_{1}\right) .
\end{aligned}
$$

Again, using Equations (5), (13) and (14), we have

$$
\begin{aligned}
g_{1}\left(\nabla_{Y_{1}} Y_{2}, W_{2}\right) & =g_{1}\left(\nabla_{Y_{1}} R Y_{2}, R W_{2}\right) \\
& =g_{1}\left(\nabla_{Y_{1}} \omega_{R} S_{R} Y_{2}, B_{R} W_{2}+C_{R} W_{2}\right) \\
& =g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{R} S_{R} Y_{2}, B_{R} W_{2}\right)+g_{1}\left(\mathcal{H} \nabla_{Y_{1}} \omega_{R} R Y_{2}, C_{R} W_{2}\right) .
\end{aligned}
$$

Hence, we have

$$
(a) \Leftrightarrow(b), \quad(a) \Leftrightarrow(c), \quad(a) \Leftrightarrow(d) .
$$

Therefore, the result follows.

Theorem 9. Let π be an h-qhs Riemannian map from an almost hyperkahler manifold $\left(N_{1}, I, J, K, g_{1}\right)$ to a Riemannian manifold $\left(N_{2}, g_{2}\right)$. Then, the following conditions are equivalent:
(a) π is a totally geodesic map;
(b) $g_{1}\left(\mathcal{T}_{Y_{1}} P_{I} Y_{2}+\cos ^{2} \theta_{I} \mathcal{T}_{Y_{1}} Q_{I} Y_{2}-\mathcal{H} \nabla_{Y_{1}} \omega_{I} \phi_{I} P_{I} Y_{2}-\mathcal{H} \nabla_{Y_{1}} \omega_{I} \phi_{I} Q_{I} Y_{2}, W_{1}\right)$
$=g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{I} Q_{I} Y_{2}+\mathcal{T}_{Y_{1}} \omega_{I} S_{I} Y_{2}, B_{I} W_{1}\right)+g_{1}\left(\mathcal{H} \nabla_{Y_{1}} \omega_{I} \phi_{I} Q_{I} Y_{2}+\mathcal{H} \nabla_{Y_{1}} \omega_{I} \phi_{I} S_{I} Y_{2}, W_{1}\right)$,

$$
\begin{aligned}
& g_{1}\left(\mathcal{A}_{W_{1}} P_{I} Y_{1}+\cos ^{2} \theta_{I} \mathcal{A}_{W_{1}} Q_{I} Y_{1}-\mathcal{H} \nabla_{W_{1}} \omega_{I} \phi_{I} P_{I} Y_{1}-\mathcal{H} \nabla_{W_{1}} \omega_{I} \phi_{I} Q_{I} Y_{1}, W_{2}\right) \\
= & g_{1}\left(\mathcal{A}_{W_{1}} \omega_{I} Q_{I} Y_{1}+\mathcal{A}_{W_{1}} \omega_{I} S_{I} Y_{1}, B_{I} W_{2}\right)+g_{1}\left(\mathcal{H} \nabla_{W_{1}} \omega_{I} Q_{I} Y_{1}+\mathcal{H} \nabla_{W_{1}} \omega_{I} S_{I} Y_{1}, C_{I} W_{2}\right)
\end{aligned}
$$

for $Y_{1}, \Upsilon_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)$ and $W_{1}, W_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$;
(c) $g_{1}\left(\mathcal{T}_{Y_{1}} P_{J} Y_{2}+\cos ^{2} \theta_{J} \mathcal{T}_{Y_{1}} Q_{J} Y_{2}-\mathcal{H} \nabla_{Y_{1}} \omega_{J} \phi_{J} P_{J} Y_{2}-\mathcal{H} \nabla_{Y_{1}} \omega_{J} \phi_{J} Q_{J} Y_{2}, W_{1}\right)$
$=g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{J} Q_{J} Y_{2}+\mathcal{T}_{Y_{1}} \omega_{J} S_{J} Y_{2}, B_{J} W_{1}\right)+g_{1}\left(\mathcal{H} \nabla_{Y_{1}} \omega_{J} \phi_{J} Q_{J} Y_{2}+\mathcal{H} \nabla_{Y_{1}} \omega_{J} \phi_{J} S_{J} Y_{2}, W_{1}\right)$,

$$
\begin{aligned}
& g_{1}\left(\mathcal{A}_{W_{1}} P_{J} Y_{1}+\cos ^{2} \theta_{J} \mathcal{A}_{W_{1}} Q_{J} Y_{1}-\mathcal{H} \nabla_{W_{1}} \omega_{J} \phi_{J} P_{J} Y_{1}-\mathcal{H} \nabla_{W_{1}} \omega_{J} \phi_{J} Q_{J} Y_{1}, W_{2}\right) \\
& =g_{1}\left(\mathcal{A}_{W_{1}} \omega_{J} Q_{J} Y_{1}+\mathcal{A}_{W_{1}} \omega_{J} S_{J} Y_{1}, B_{J} W_{2}\right)+g_{1}\left(\mathcal{H} \nabla_{W_{1}} \omega_{J} Q_{J} Y_{1}+\mathcal{H} \nabla_{W_{1}} \omega_{J} S_{J} Y_{1}, C_{J} W_{2}\right)
\end{aligned}
$$

for $Y_{1}, \Upsilon_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)$ and $W_{1}, W_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$;
(d) $g_{1}\left(\mathcal{T}_{Y_{1}} P_{K} Y_{2}+\cos ^{2} \theta_{K} \mathcal{T}_{Y_{1}} Q_{K} Y_{2}-\mathcal{H} \nabla_{Y_{1}} \omega_{K} \phi_{K} P_{K} Y_{2}-\mathcal{H} \nabla_{Y_{1}} \omega_{K} \phi_{K} Q_{K} Y_{2}, W_{1}\right)$

$$
=g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{K} Q_{K} Y_{2}+\mathcal{T}_{Y_{1}} \omega_{K} S_{K} Y_{2}, B_{K} W_{1}\right)+g_{1}\left(\mathcal{H} \nabla_{Y_{1}} \omega_{K} \phi_{K} Q_{K} Y_{2}+\mathcal{H} \nabla_{Y_{1}} \omega_{K} \phi_{K} S_{K} Y_{2}, W_{1}\right),
$$

$g_{1}\left(\mathcal{A}_{W_{1}} P_{K} Y_{1}+\cos ^{2} \theta_{K} \mathcal{A}_{W_{1}} Q_{K} Y_{1}-\mathcal{H} \nabla_{W_{1}} \omega_{K} \phi_{K} P_{K} Y_{1}-\mathcal{H} \nabla_{W_{1}} \omega_{K} \phi_{K} Q_{K} Y_{1}, W_{2}\right)$

$$
=g_{1}\left(\mathcal{A}_{W_{1}} \omega_{K} Q_{K} Y_{1}+\mathcal{A}_{W_{1}} \omega_{K} S_{K} Y_{1}, B_{K} W_{2}\right)+g_{1}\left(\mathcal{H} \nabla_{W_{1}} \omega_{K} Q_{K} Y_{1}+\mathcal{H} \nabla_{W_{1}} \omega_{K} S_{K} Y_{1}, C_{K} W_{2}\right)
$$

for $Y_{1}, Y_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)$ and $W_{1}, W_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$.
Proof. Since π is a Riemannian map, therefore, we have

$$
\left(\nabla \pi_{*}\right)\left(W_{1}, W_{2}\right)=0,
$$

for $W_{1}, W_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$.
For $Y_{1}, Y_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right), W_{1}, W_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$ and $R \in\{I, J, K\}$, using Equations (4), (5) and (12)-(14) as well as Lemma 5, we have

$$
\begin{aligned}
& g_{2}\left(\left(\nabla \pi_{*}\right)\left(Y_{1}, Y_{2}\right), \pi_{*}\left(W_{1}\right)\right) \\
= & -g_{1}\left(\nabla_{Y_{1}} Y_{2}, W_{1}\right) \\
= & -g_{1}\left(\nabla_{Y_{1}} R Y_{2}, R W_{1}\right) \\
= & -g_{1}\left(\nabla_{Y_{1}} R P_{R} Y_{2}, R W_{1}\right)-g_{1}\left(\nabla_{Y_{1}} R Q_{R} Y_{2}, R W_{1}\right)-g_{1}\left(\nabla_{Y_{1}} R S_{R} Y_{2}, R W_{1}\right), \\
= & -g_{1}\left(\nabla_{Y_{1}} \phi_{R} P_{R} Y_{2}, R W_{1}\right)-g_{1}\left(\nabla_{Y_{1}} \phi_{R} Q_{R} Y_{2}, R W_{1}\right) \\
& -g_{1}\left(\nabla_{Y_{1}} \omega_{R} Q_{R} Y_{2}, R W_{1}\right)-g_{1}\left(\nabla_{Y_{1}} \omega_{R} S_{R} Y_{2}, R W_{1}\right), \\
= & -g_{1}\left(\mathcal{T}_{Y_{1}} P_{R} Y_{2}+\cos ^{2} \theta_{R} \mathcal{T}_{Y_{1}} Q_{R} Y_{2}-\mathcal{H} \nabla_{Y_{1}} \omega_{R} \phi_{R} P_{R} Y_{2}-\mathcal{H} \nabla_{Y_{1}} \omega_{R} \phi_{R} Q_{R} Y_{2}, W_{1}\right) \\
& -g_{1}\left(\mathcal{T}_{Y_{1}} \omega_{R} Q_{R} Y_{2}+\mathcal{T}_{Y_{1}} \omega_{R} S_{R} Y_{2}, B_{R} W_{1}\right) \\
& -g_{1}\left(\mathcal{H} \nabla_{Y_{1}} \omega_{R} \phi_{R} Q_{R} Y_{2}+\mathcal{H} \nabla_{Y_{1}} \omega_{R} \phi_{R} S_{R} Y_{2}, W_{1}\right) .
\end{aligned}
$$

Moreover, using Equations (4), (5) and (12)-(14) as well as Lemma 5, we have

$$
\begin{aligned}
& g_{2}\left(\left(\nabla \pi_{*}\right)\left(W_{1}, Y_{1}\right), \pi_{*}\left(W_{2}\right)\right) \\
= & -g_{1}\left(\nabla_{W_{1}} Y_{1}, W_{2}\right), \\
= & -g_{1}\left(\nabla_{W_{1}} R Y_{1}, R W_{2}\right), \\
= & -g_{1}\left(\nabla_{W_{1}} R P_{R} Y_{1}, R W_{2}\right)-g_{1}\left(\nabla_{W_{1}} R Q_{R} Y_{1}, R W_{2}\right)-g_{1}\left(\nabla_{W_{1}} R S_{R} Y_{1}, R W_{2}\right), \\
= & -g_{1}\left(\nabla_{W_{1}} \phi_{R} P_{R} Y_{1}, R W_{2}\right)-g_{1}\left(\nabla_{W_{1}} \phi_{R} Q_{R} Y_{1}, R W_{2}\right) \\
& -g_{1}\left(\nabla_{W_{1}} \omega_{R} Q_{R} Y_{1}, R W_{2}\right)-g_{1}\left(\nabla_{W_{1}} \omega_{R} S_{R} Y_{1}, R W_{2}\right), \\
= & -g_{1}\left(\mathcal{A}_{W_{1}} P_{R} Y_{1}+\cos ^{2} \theta_{R} \mathcal{A}_{W_{1}} Q_{R} Y_{1}-\mathcal{H} \nabla_{W_{1}} \omega_{R} \phi_{R} P_{R} Y_{1}-\mathcal{H} \nabla_{W_{1}} \omega_{R} \phi_{R} Q_{R} Y_{1}, W_{2}\right) \\
& -g_{1}\left(\mathcal{A}_{W_{1}} \omega_{R} Q_{R} Y_{1}+\mathcal{A}_{W_{1}} \omega_{R} S_{R} Y_{1}, B_{R} W_{2}\right) \\
& -g_{1}\left(\mathcal{H} \nabla_{W_{1}} \omega_{R} Q_{R} Y_{1}+\mathcal{H} \nabla_{W_{1}} \omega_{R} S_{R} Y_{1}, C_{R} W_{2}\right) .
\end{aligned}
$$

Hence, we obtain

$$
(a) \Leftrightarrow(b),(a) \Leftrightarrow(c),(a) \Leftrightarrow(d) .
$$

Thus, the theorem is proven.

4. Example

Note that given a Euclidean space $\mathbb{R}^{4 n}$ with coordinates $\left(x_{1}, x_{2}, \ldots . ., x_{4 n}\right)$, we can canonically choose complex structures I, J and K on $\mathbb{R}^{4 n}$ as follows:

$$
\begin{aligned}
& I\left(\frac{\partial}{\partial x_{4 s+1}}\right)=\frac{\partial}{\partial x_{4 s+2}}, I\left(\frac{\partial}{\partial x_{4 s+2}}\right)=-\frac{\partial}{\partial x_{4 s+1}}, I\left(\frac{\partial}{\partial x_{4 s+3}}\right)=\frac{\partial}{\partial x_{4 s+4}}, \\
& I\left(\frac{\partial}{\partial x_{4 s+4}}\right)=-\frac{\partial}{\partial x_{4 s+3}}, J\left(\frac{\partial}{\partial x_{4 s+1}}\right)=\frac{\partial}{\partial x_{4 s+3}}, J\left(\frac{\partial}{\partial x_{4 s+2}}\right)=-\frac{\partial}{\partial x_{4 s+4}}, \\
& J\left(\frac{\partial}{\partial x_{4 s+3}}\right)=-\frac{\partial}{\partial x_{4 s+1}}, J\left(\frac{\partial}{\partial x_{4 s+4}}\right)=\frac{\partial}{\partial x_{4 s+2}}, K\left(\frac{\partial}{\partial x_{4 s+1}}\right)=\frac{\partial}{\partial x_{4 s+4}}, \\
& K\left(\frac{\partial}{\partial x_{4 s+2}}\right)=\frac{\partial}{\partial x_{4 s+3}}, K\left(\frac{\partial}{\partial x_{4 s+3}}\right)=-\frac{\partial}{\partial x_{4 s+2}}, K\left(\frac{\partial}{\partial x_{4 s+4}}\right)=-\frac{\partial}{\partial x_{4 s+1}},
\end{aligned}
$$

for $s \in\{0,1,2, \ldots ., \ldots, n-1\}$.
Then, we can easily check that $(I, J, K,\langle\rangle$,$) is a hyperkähler structure on \mathbb{R}^{4 n}$, where \langle, denotes the Euclidean metric on $\mathbb{R}^{4 n}$. Throughout this section, we will use these notations.

Example 1. Define a map $\pi: \mathbb{R}^{12} \rightarrow \mathbb{R}^{6}$ by

$$
\pi\left(x_{1}, x_{2}, \ldots \ldots . . ., x_{12}\right)=\left(2020, x_{2}, x_{6}, \frac{x_{8}-x_{9}}{\sqrt{2}}, x_{10}, 2022\right) .
$$

Then, the map π is an almost h-qhs Riemannian map such that

$$
\begin{gathered}
\operatorname{ker} \pi_{*}=\left\langle\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{4}}, \frac{\partial}{\partial x_{5}}, \frac{\partial}{\partial x_{7}}, \frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial x_{8}}+\frac{\partial}{\partial x_{9}}\right), \frac{\partial}{\partial x_{11}}, \frac{\partial}{\partial x_{12}}\right\rangle, \\
\left(\operatorname{ker} \pi_{*}\right)^{\perp}=\left\langle\frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{6}}, \frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial x_{8}}-\frac{\partial}{\partial x_{9}}\right), \frac{\partial}{\partial x_{10}}\right\rangle, \\
D^{I}=\left\langle\frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{4}}, \frac{\partial}{\partial x_{11}}, \frac{\partial}{\partial x_{12}}\right\rangle, D_{1}^{I}=\left\langle\frac{\partial}{\partial x_{7}}, \frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial x_{8}}+\frac{\partial}{\partial x_{9}}\right)\right\rangle, D_{2}^{I}=\left\langle\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{5}}\right\rangle, \\
D^{J}=\left\langle\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{5}}, \frac{\partial}{\partial x_{7}}\right\rangle, D_{1}^{J}=\left\langle\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial x_{8}}+\frac{\partial}{\partial x_{9}}\right), \frac{\partial}{\partial x_{11}}\right\rangle, D_{2}^{J}=\left\langle\frac{\partial}{\partial x_{4}}, \frac{\partial}{\partial x_{12}}\right\rangle, \\
D^{K}=\left\langle\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{4}}\right\rangle, D_{1}^{K}=\left\langle\frac{\partial}{\partial x_{5}}, \frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial x_{8}}+\frac{\partial}{\partial x_{9}}\right), \frac{\partial}{\partial x_{12}}\right\rangle, D_{2}^{K}=\left\langle\frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{7}}, \frac{\partial}{\partial x_{11}}\right\rangle,
\end{gathered}
$$

with the almost h-qhs angles $\left\{\theta_{I}=\theta_{J}=\theta_{K}=\frac{\pi}{4}\right\}$.
Example 2. Define a map $\pi: \mathbb{R}^{16} \rightarrow \mathbb{R}^{8}$ by

$$
\pi\left(x_{1}, x_{2}, \ldots \ldots . ., x_{16}\right)=\left(101, \frac{\sqrt{3} x_{5}-x_{9}}{2}, x_{6}, x_{8}, x_{11}, x_{14}, 202, x_{15}\right)
$$

Then, the map π is an almost h-qhs Riemannian map such that

$$
\begin{gathered}
\operatorname{ker} \pi_{*}=\left\langle\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{4}}, \frac{1}{2}\left(\frac{\partial}{\partial x_{5}}+\sqrt{3} \frac{\partial}{\partial x_{9}}\right), \frac{\partial}{\partial x_{7}}, \frac{\partial}{\partial x_{10}}, \frac{\partial}{\partial x_{12}}, \frac{\partial}{\partial x_{13}}, \frac{\partial}{\partial x_{16}}\right\rangle, \\
\left(\operatorname{ker} \pi_{*}\right)^{\perp}=\left\langle\frac{1}{2}\left(\sqrt{3} \frac{\partial}{\partial x_{5}}-\frac{\partial}{\partial x_{9}}\right), \frac{\partial}{\partial x_{6}}, \frac{\partial}{\partial x_{8}}, \frac{\partial}{\partial x_{11}}, \frac{\partial}{\partial x_{14}}, \frac{\partial}{\partial x_{15}},\right\rangle, \\
D^{I}=\left\langle\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{4}}\right\rangle, D_{1}^{I}=\left\langle\frac{1}{2}\left(\frac{\partial}{\partial x_{5}}+\sqrt{3} \frac{\partial}{\partial x_{9}}\right), \frac{\partial}{\partial x_{10}}\right\rangle, D_{2}^{I}=\left\langle\frac{\partial}{\partial x_{7}}, \frac{\partial}{\partial x_{12}}, \frac{\partial}{\partial x_{13}}, \frac{\partial}{\partial x_{16}}\right\rangle, \\
D^{J}=\left\langle\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{4}}, \frac{\partial}{\partial x_{10}}, \frac{\partial}{\partial x_{12}}\right\rangle, D_{1}^{J}=\left\langle\frac{1}{2}\left(\frac{\partial}{\partial x_{5}}+\sqrt{3} \frac{\partial}{\partial x_{9}}\right), \frac{\partial}{\partial x_{7}}\right\rangle, D_{2}^{J}=\left\langle\frac{\partial}{\partial x_{13}}, \frac{\partial}{\partial x_{16}}\right\rangle,
\end{gathered}
$$

$$
D^{K}=\left\langle\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{4}}, \frac{\partial}{\partial x_{13}}, \frac{\partial}{\partial x_{16}}\right\rangle, D_{1}^{K}=\left\langle\frac{1}{2}\left(\frac{\partial}{\partial x_{5}}+\sqrt{3} \frac{\partial}{\partial x_{9}}\right), \frac{\partial}{\partial x_{12}}\right\rangle, D_{2}^{K}=\left\langle\frac{\partial}{\partial x_{7}}, \frac{\partial}{\partial x_{10}}\right\rangle,
$$

with the almost h-qhs angles $\left\{\theta_{I}=\frac{\pi}{6}, \theta_{J}=\frac{\pi}{3}, \theta_{K}=\frac{\pi}{6}\right\}$.
Author Contributions: Conceptualization, M.B., R.P., A.H. and S.K. (Sushil Kumar); methodology, M.B., R.P., A.H. and S.K. (Sumeet Kumar); investigation, R.P., A.H., S.K. (Sushil Kumar) and S.K. (Sumeet Kumar); writing original draft preparation, M.B., A.H., S.K. (Sushil Kumar) and S.K. (Sumeet Kumar); writing-review and editing, M.B., R.P., S.K. (Sushil Kumar) and S.K. (Sumeet Kumar). All authors have read and agreed to the published version of the manuscript.
Funding: The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work under Grant Code 22UQU4330007DSR04.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Acknowledgments: The authors are thankful to the editor and anonymous referees for the constructive comments to improve the quality of this paper.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fischer, A.E. Riemannian maps between Riemannian manifolds. Contemp. Math. 1992, 132, 331-366.

Chen, B.Y. Geometry of Slant Submaniflods; Katholieke Universiteit: Leuven, Belgium, 1990.
3. Sahin, B. Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and Their Applications; Elsevier/Academic Press: Amsterdam, The Netherlands, 2017.
4. O'Neill, B. The fundamental equations of a submersion. Mich. Math. J. 1966, 13, 458-469. [CrossRef]
5. Gray, A. Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech. 1967,16, 715-737.
6. Watson, B. Almost Hermitian submersions. J. Differ. Geom. 1976, 11, 147-165. [CrossRef]
7. Park, K.S. H-anti-invariant submersions from almost quaternionic Hermitian manifolds. Czechoslov. Math. J. 2017, 67, 557-578. [CrossRef]
8. Park, K.S. H-semi-invariant submersions. Taiwan. J. Math. 2012, 16, 1865-1878. [CrossRef]
9. Park, K.S. H-semi-slant submersions from almost quaternionic Hermitian manifolds Taiwan. J. Math. 2014, 18, 1909-1926.
10. Bourguignon, J.P.; Awson, H.B. Stability and isolation phenomena for Yang-Mills fields. Commun. Math. Phys. 1981, 79, 189-230. [CrossRef]
11. Bourguignon, J.P. A mathematician's visit to Kaluza-Klein theory. Rend. Sem. Mat. Univ. Pol. Torino. 1989, 143-163.
12. Cortes, V.; Mayer, C.; Mohaupt, T.; Saueressig, F. Special geometry of Euclidean supersymmetry: Vector multiplets. J. High Energy Phys. 2008, 3, 028. [CrossRef]
13. Kraines, V.Y. Topology of quaternionic manifolds. Trans. Am. Math. Soc. 1966, 122, 357-367. [CrossRef]
14. Guan, D. On Riemann-Roch Formula and Bounds of the Betti Numbers of Irreducible Compact Hyperkähler Manifold- $n=4$. 1999, preprint.
15. Guan, D. On the Betti numbers of irreducible compact hyperkähler manifolds of complex dimension four. Math. Res. Lett. 2001, 8, 663-669. [CrossRef]
16. Sahin, B. Invariant and anti-invariant Riemannian maps to Kahler manifolds. Int. J. Geom. Methods Mod. Phys. 2010, 7, 355-377. [CrossRef]
17. Sahin, B. Semi-invariant Riemannian maps from almost Hermitian manifolds. Indag. Math. 2012, 23, 80-94. [CrossRef]
18. Prasad, R.; Kumar, S. Slant Riemannian maps from Kenmotsu manifolds into Riemannian manifolds. Global J. Pure App. Math. 2017, 13, 1143-1155.
19. Prasad, R.; Kumar, S. Semi-slant Riemannian maps from almost contact metric manifolds into Riemannian manifolds. Tbilisi Math. J. 2018, 11, 19-34. [CrossRef]
20. Prasad, R.; Kumar, S. Semi-slant Riemannian maps from cosymplectic manifolds into Riemannian manifolds. Gulf J. Math. 2020, 9, 62-80.
21. Sahin, B. Hemi-slant Riemannian maps. Mediterr. J. Math. 2017, 14, 10. [CrossRef]
22. Prasad, R.; Kumar, S.; Kumar, S.; Vanli, A.T. On quasi-hemi-slant Riemannian maps. GU J Sci. 2021, 34, 477-491. [CrossRef]
23. Park, K.S. Almost h-semi-slant Riemannian map. Taizan. J. Math. 2013, 17, 937-956. [CrossRef]
24. Kumar, S.; Bilal, M.; Prasad, R.; Haseeb, A.; Chen, Z. V-quasi-bi-slant Riemannian maps. Symmetry 2022, 14, 1360. [CrossRef]
25. Li, Y.; Prasad, R.; Haseeb, A.; Kumar, S.; Kumar, S. A study of Clairaut semi-invariant Riemannian maps from cosymplectic manifolds. Axioms 2022, 11, 503. [CrossRef]
26. Park, K.S. H-slant submersions. Bull. Korean Math. Soc. 2012, 49, 329-338. [CrossRef]
27. Baird, P.; Wood, J.C. Harmonic Morphism between Riemannian Manifolds; Oxford Science Publications: Oxford, UK, 2003.

