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Abstract: In the present article, we indroduce and study h-quasi-hemi-slant (in short, h-ghs) Rieman-
nian maps and almost i-ghs Riemannian maps from almost quaternionic Hermitian manifolds to
Riemannian manifolds. We investigate some fundamental results mainly on h-ghs Riemannian maps:
the integrability of distributions, geometry of foliations, the condition for such maps to be totally
geodesic, etc. At the end of this article, we give two non-trivial examples of this notion.
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1. Introduction

In Riemannian geometry, there are few appropriate maps among Riemannian man-
ifolds that compare their geometric properties. In this direction, as a generalization of
the notions of isometric immersions and Riemannian submersions, Riemannian maps
between Riemannian manifolds were initiated by Fischer [1], while isometric immersions
and Riemannian submersions were widely studied in [2] and [3], respectively. However,
the notion of Riemannian maps is a new research topic for geometers. More precisely, a
differentiable map 7 : (N7,91) — (N3, g2) between Riemannian manifolds (Ny, g1) and
(Ny, g2) is called a Riemannian map (0 < rankrm, < min{m,n}, where dim Ny = m and
dim N, = n) if it satisfies the following equation:

9 (W, T W) = g1 (Wi, Wy), for Wy, W, € T(ker )+, (1)

where 71, is the differentiable map of 7.

Consequently, isometric immersions and Riemannian submersions are particular cases
of Riemannian maps with ker 7, = 0 and (ranger.)* = 0, respectively [1].

The other prominent basic map for comparing geometric structures between Rieman-
nian manifolds is Riemannian submersion, and it was studied by O’'Neill [4] and Gray [5]. In
1976, Watson [6] studied Riemannian submersion between Riemannian manifolds equipped
with differentiable structures. After that, several kinds of Riemannian submersions were
introduced and studied, including Riemannian submersion [3], H-anti-invariant submer-
sion [7], H-semi-invariant submersion [8] and H-semi-slant submersion [9].

Currently, one of the most inventive topics in differential geometry is the theory
of Riemannian maps between different Riemannian manifolds. It is well known that
differentiable maps between Riemannian manifolds have wide applications in differential
geometry as well as in physics, such as in Yang-Mills theory [10], Kaluza—Klein theory [11],
and supergravity and superstring theories [12].
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We also note that quarternionic manifolds have many applications, including for non-
linear ¢ models with super symmetry [12], in the theory of harmonic differential forms [13]
and obtaining estimates for the Betti numbers of the manifold [14,15]. In this paper, we
have for the first time investigated h-ghs Riemannian maps from almost quarternionic
manifolds to Riemannian manifolds. Here, we mainly focus on the most fundamental and
interesting geometric properties on the fibers and distributions of these maps.

Nowadays, Riemannian maps and related topics have been actively studied by many
authors, such as invariant and anti-invariant Riemannian maps [16], semi-invariant Rieman-
nian maps [17], slant Riemannian maps [18], semi-slant Riemannian maps [19,20], hemi-
slant Riemannian maps [21], quasi-hemi-slant Riemannian maps [22], almost /-semi-slant
Riemannian maps [23], V-quasi-bi-slant Riemannian maps [24] and Clairaut semi-invariant
Riemannian maps [25]. As a generalization of hi-slant Riemannian maps [26], i-semi-slant
Riemannian maps [9] and h-hemi-slant Riemannian maps, we define and study h-ghs
Riemannian maps from almost Hermitian manifolds to Riemannian manifolds. In the near
future, we plan to work on conformal /-ghs submersions, conformal i-ghs submersions,
h-ghs semi-Riemannian submersions, etc.

This paper is structured as follows. In Section 2, we recall basic facts about Riemannian
maps and almost Hermitian manifolds. In Section 3, we define h-ghs Riemannian maps
and study the geometry of leaves of distributions that are involved in the definition of such
maps. We give necessary and sufficient conditions for h-ghs Riemannian maps to be totally
geodesic. Finally, we provide two concrete examples of i-ghs Riemannian maps.

2. Preliminaries

Let (N1, 41) and (N3, g2) be Riemannian manifolds and 7 : (N1,¢1) — (N, ¢2) be a
C*-Riemannian map [1].
We define O’Neill’s tensors 7 and A [4] by

./41:1 F = HV’HHVFZ + VVHF]/HFz, (2)

77:11:2 = ’HVVHVFz + VVVFlHFz, 3)

for any vector fields F, F, on Ny, where V is the Levi-Civita connection of g.
From Equations (2) and (3), we have

Vy, Yo = Ty, Y2 + VVy, Y, 4)
Vy, Uy = Ty,Us + HVy, Uy, )
Vul Y, = .Aul Y + VVU1Y1, (6)

Vi, Uy = HVy, Uy + Ay, Uo, (7)

for Y1,Y, € T(ker 7t,) and Uy, U, € T(ker 71.)+, where HVy, Uy = Ay, Yq and U is basic.
Let 7t : (N1,E, g1) — (Nz,£2) be a C® map. The second fundamental form of 7 is

given by
(V7)) (V1, Vo) = Vi, (Vo) — (Vi Va), ®)

for V1, V, € T(TNy), where V7 is the pullback connection [27]. The map 7 is said to be a
total geodesic if (V) (V4, V2) = 0 for V1, V, € T(TNy).

Let (Ny, E, g1) be an almost quaternionic Hermitian manifold, where g7 is a Riemanian
metric on the maniifold N and E is a rank 3 subbundle of End(TNj) such that for any
point p € N; within some neighborhood U, there exists a local basis {1, J», J3} of sections
of E on U satisfying all « € {1,2,3} in which

J2=—id, JaJar1 = —Jur1)a = Jas2, ©)
81(JaXo, JaX1) = §1(X1, X2), (10)
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for X1, Xp € T(TNy), where the indices are taken from {1,2,3} modulo 3 and {J1, /5, J3} is
called the quaternionic Hermitian basis. The structure (Nj, E, 1) is called a quaternionic
kédhler manifold if there exist locally defined 1 forms w1y, wy, w3 such that for « € {1,2,3},
we have

Vi Ju = Way2(X1) Jag1 — War1(X1) Jut2,s (11)

for Xy € T'(TNy), where the indices are taken from {1,2,3} modulo 3. If there exists a global
parallel quaternionic Hermitian basis {1, 2, J3} of sections of E on Ny, then (Ny, E, g71) is
called a hyperkihler. The structure {]1, 2, J3,81}, where g1, a hyperkdhler metric, is called
a hyperkahler structure on Nj.

A map 71 : (Ny, E1,81) = (N2, Ez, §2) is called an (E,, E, )-holomorphic map if for any
point p € Ny and ] € (E;)y, there exists ]’ € (E2) () such that
o] =] om,.

A Riemannian submersion between quaternionic kihler manifolds 7 : (N, E1,g1) —
(Np, Ez, £2), which is an (Ej, E;)-holomorphic map, is known as a quaternionic kihler
submersion (or a hyperkéhler submersion) [9]:

Definition 1 ([23]). A Riemannian map 7 from the almost quaternionic Hermitian manifold
(N1, E, g1) to the Riemannian manifold (Ny, g2 ) is called an h-semi-slant Riemannian map if, given
a point p € Ny with a neighborhood U, there exists a quaternionic Hermitian basis {I, ], K} of
sections of E on U such that for any R € {I, ], K}, the following is true:

ker T, = D1 D Dz,R(D1) = D1,

in which the angle g = Or(Z1) between RZy and the space (D,), is constant for a non-zero
Zy € (Dy)q and q € U, where Dy is an orthogonal complement of Dy in ker 7.

Furthermore, assume we have
0 =0;=0; =06k,

Then, we call the map 7 : (N1, E, 1) — (Na, §2) a strictly h-semi-slant Riemannian map,
the basis {I, ], K} a strictly i-semi-slant basis and the angle 6 a strictly #-semi-slant angle.

3. h-Quasi-Hemi-Slant Riemannian Maps

Motivated by the studies given in Section 2, we give the definition of the h-ghs
Riemannian map as follows:

Definition 2. A Riemannian map 7t from the almost quaternionic Hermitian manifold (N1, E, 1)
to the Riemannian manifold (Ny, g2) is called an h-qghs Riemannian map if, given a point p € Ny
with a neighborhood U, there exists a quaternionic Hermitian basis {1, ], K} of sections of E on U
such that for any R € {I, ], K}, there is a distribution D C (ker 7t,.) on U such that

ker 7, = D @ D1 @ Dy, R(D) = D,R(D5) C (ker ),

and the angle O = Or(Z1) between RZy and the space (D1 ), is constant for a non-zero Zy € (D1)g4
and q € U, where ker v, admits three orthogonal complementary distributions D, Dy and Dy such
that D is invariant, D1 is a slant with an angle Og and D, is anti-invariant.

We call the basis {I, ], K} an h-ghs basis and the angles {67, 0], fx } h-qhs angles.
Furthermore, let us say we have

0 =6, =0, =0k,
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Then, we call the map 7 : (N1, E, 1) — (N2, $2) a strictly h-ghs Riemannian map,
the basis {I, ], K} a strictly quasi-hemi-slant basis and the angle 6 a strictly quasi-hemi-
slant angle:

Definition 3. A Riemannian map 7t from the almost quaternionic Hermitian manifold (N1, E, 1)
to the Riemannian manifold (N,, g2) is called an almost h-qhs Riemannian map if, given a point
p € Ny with a neighborhood U, there exists a quaternionic Hermitian basis {1, ], K} of sections of
E on U such that for any R € {1, ],K}, there is a distribution DR C (ker 7t..) on U such that

ker 7, = DR @ DR @ DX, R(DR) = DR, R(DR) c (ker m,)*,

and the angle Og = O0r(Z1) between RZy and the space (Df)q is constant for a non-zero Z1 €
(DR, and q € U, where the vertical distribution ker 7, admits three orthogonal complementary
distributions DR, Df and D§ such that DR is invariant, Df is a slant with an angle Og and Dg is
anti-invariant.

We call the basis {I,],K} an almost h-ghs basis and the angles {6},6},0x} almost
h-ghs angles.

Let t : (N1,E,g1) — (N2, 42) be an almost h-ghs Riemannian map. We can easily
observe the following:

(@) Ifdim DR #0, dim Df #0,0 < fg < 7 and dim DR = 0, then 7 is an almost proper
h-semi-slant Riemannian map with a semi-slant angle 6g;

(b) If dim DR = 0, dim Df # 0,0 < 0g < 7 and dim D§ # 0, then 7T is an almost
h-hemi-slant Riemannian map.

We say that the almost h-ghs Riemannian map 77 : (N3, E, g1) — (N, g2) is proper
if DR # {0}, D} # {0} and 6g # 0, Z. Thus, one can easily see that the i-hemi-slant
Riemannian map, k-semi-invariant Riemannian map and h-semi-slant Riemannian map
are examples of h-ghs Riemannian maps.

Thus, we have

(ker )" = wg(DX) & R(DS) @ .

Obviously, jg is an invariant sub-bundle of (ker 77,.) with respect to the complex
structure R.
For V; € I'(ker 7t), we have

Vi = PrV1 + QrVi + SrVA, (12)

where PrV; € T(DR), QrV; € T(DR), SgVy € T(DY) and R € {1, ],K}.
For Z; € T'(ker 71,.), we obtain

RZy = ¢rZ1 + wrZy, (13)

where ¢rZ; € T(ker 71,), wrZy € T(ker )= and R € {I,],K}.
For X; € T'(ker )", we have

RX; = BrX; + CrXy, (14)

where BrX7 € I'(ker 7,), CkXy € T'(ug) and R € {I,],K}.

We will denote an almost #-ghs Riemannian map from a hyperkdhler manifold
(N1,1,],K, g1) onto a Riemannian manifold (N, ») such that (I, ], K) is an almost h-ghs
basis by 7.

The following lemmas can be easily obtained:

Lemma 1. For 7t : (N1, 81, E1) = (N2, g2, E2), we get

prDR = DR, wrDR = 0,9 DX = 0, wg DX C (ker 71,)*,
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where R € {I,],K}.
Lemma 2. For 7 : (N1, 81, E1) = (N2, §2, E2), we have

¢%Z1 + BrwrZ1 = —Z1, wrprZy + CrwrZy =0,
¢rBRZ2 + BRCrZ2 = 0, wrBrZy+CiZy = —2,

forany Zy € T(kerm,), Zo € T(ker )= and R € {I,],K}.

Proof. Using Equations (9), (13) and (14), we can find all equations of Lemma 2: [

Lemma 3. Witht: (Ny,1,],K,g1) — (N, g2) being an almost h-qhs Riemannian map, we then

obtain

VVix, ¢rX2 + Tx,wr X2 = BrTx, X2 + prVV x, X, (15)
Tx,9rX2 + HV x,wr Xy = CrTx, X2 + wrVVx, X, (16)
Tx,BrZ1 + HVx,CrZ1 = CRHV x, Z1 + wrTx, Z1, (17)

VVx,BrZ1 + Tx,CrZ1 = BRHV x,Z1 + $Tx, Z1, (18)
VVz ¢rX1 + Az, wr Xy = BRAz, X1 + ¢rVV 7 X, (19)
Az, ¢rX1 + HV 7, wr Xy = CRAZz X1 + wrVVz Xy, (20)
Az, BrZy +HV 7,CrZy = CRHV 7,22 + wr Az, 73, (21)
VV7,BrZy + Az, CrZy = BRHV 7,25 + ¢pr Az, 2, (22)

for X1, X, € T(ker ), Z1,Zy € T(ker )t and R € {I,],K}.

Proof. Using Equations (4)—(7), (13) and (14), we can easily obtain Equations (15)-(22). O

Now, we define

(Vx,¢r) X2 = VVx,¢0r X2 — prVV x, X3, (23)
(VXle)Xz = HVXleX2 - a)RVVX1X2, (24)
(Vz,Br)Zy = VNV z,BrZy — BRHV 7,25, (25)
(Vz,Cr)Zy = HV 7,CrZy — CRHV 2,25, (26)

for X1, Xp € T(ker 7t.), Zy,Z5 € T(ker 7t )~ and R € {I,],K}.
Lemma4. For : (N1, 1,],K,g1) — (No, g2), we find
(Vx,¢r) X2 = BrTx, X2 — Tx,wrX2, (Vx,wr)Xo = CrTx, X0 — T x,PrX2,

(Vz,Cr)Zo = wrAz,Zo — Az, BRZy, (Vz,Br)Zy = ¢prAz,Zo — Az, CrZs,
forall Xq,X, € T(ker7t,), Zy, Zp € T'(ker mr,)* and R € {I,],K}.
Proof. Using Equations (15) and (16) as well as Equations (21)—(26), Lemma 4 follows. O
If the tensors ¢r and wg are parallel with respect to the linear connection V on Nj,

then
BrTx, X2 = Tx,wr X2, CrTx, X2 = Tx,prX2,

for all Xy, X, € T'(ker7t,) and R € {I,],K}:
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Lemma 5. Let 7w : (N3, E, g1) = (N2, §2), be an almost h-qhs Riemannian map. Then, we obtain
¢RV1 = — cos® Or V7, (27)

for any non-zero vector field V; € T(DR) and R € {I,],K}, where {I, ], K} is an almost h-qhs
basis with the almost h-ghs angles {67, 6;, 0k }.

Proof. For any non-zero vector field V; € I'(DR) and R € {I,],K}, we have

| pr V1 ||
cosfr = ———, (28)
| RVy ||
and (R )
81(RV1, ¢rV1
cosfr = , (29)
| pr V1 ([l RVA ||

where 0 (V7) is the h-ghs angle.
Using Equations (9) and (13), we obtain

- s1(Vi, 9r* W)
| ¢rVa (Il RVy ||

From Equations (29) and (30), Equation (27) follows. [

cosfr = (30)

Theorem 1. Let 7t be an h-ghs Riemannian map from an almost hyperkahler manifold (N, 1, ], K, g1)
to a Riemannian manifold (N, g2). Then, the following cases are equivalent:

(a) DR is integrable;

(b) §1(Tz, 121 — Ty, 120, w;QuUy + IS Uy) = g1(VV 7, 1Z5 — VV 7,174, ¢1QUy)

for Zy,Z> € T(D!) and U; € T(D! & D),

(¢) §1(Tz,]Z1 — Tz, ] Zo, wjQpUs + JSjUn) = §1(VV 2,] 22 = VV 2,] Z1, Qs U1 )

for 71,7 € T(DJ) and U, € T(D] & D));

(d) §1(T2,KZ1 — Tz, KZs, wxQrUy + KSgUy) = g1(VV 7, KZp —VV 7,KZ1, ¢ Qi U1)
for Z1,Z, € T(DX) and U; € T(DK @ DX).

Proof. For Z;,Z € T(DR), U; € T(DR & DX), U, € (kerm,)* and R € {I,],K}, since
[Z1,7Z,] € (ker t..), wehave g1 ([Z1, Z], Uz) = 0. Thus, DR is integrable < ¢1([Z1, Z2], Uy) =
0. Now, using Equations (4) and (12)—(14), we have

$1([Z1, Z2], Uy)
= & (RVZIZZ,Rul) -&1 (RVZZZ1,RU1),
= gl(VleZZ,Rul) -1 (szRzl,Rul),
= §1(Tz,RZy — Tz,RZy, wrQrU; + JRUy)
—81(VVz,RZy — VV 2,RZ1, prQrUy).

Since DR is R-invariant, we have
(a) < (b), (a) = (c), (a) < (d).

Therefore, we obtain the result. [
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Theorem 2. The following cases are equivalent for the map 7t defined in Theorem 1:
(a) DR is integrable;
(b) &1(Tvwi¢1Yo — Ty,wrprY1, Vi) = gi(Ty,wrYa — Ty,wiY1, ¢1P1V1)

“rgl (HVy1w1Y2 — HVYZ(‘-}IYL wISIV1)
forallY1,Y, € T(DI)and V; € T(D! & DJ);

(c) s1(TywiprYa — T,wipY1, V1) = g1(TywpYa — Ty,wpY1, ¢pP V1)
+91 (HleaJ]YZ — HVYZCU]Yl, a)ISIV1)
forall Y,Y, € T(D)) and v; € T(D! @ D));
(d) g1(Ty,wkpxYa2 — Ty,wxpxY1, Vi) = g1(Ty,wkYa — Ty,wk Y1, ¢xPx V1)
+81(HVy,wkYs — HVy,wk Y1, wgSk V1)
forall Y1,Y, € T(DX) and v, € T(DX @ DX).

Proof. For Y,Y, € T(DR), v € (DR & DX), V5 € (kerF.)* and R € {I,],K}, since
[Y1,Y2] € (ker ,), we have g1 ([Y1, Y2], Vo) = 0. Thus, DR is integrable < g1 ([Y1, Y], V1) =
0. Using Equations (4), (5), (12) and (13) as well as Lemma 5, we have

g1([Y1, V2], V1)
= §1(VyRY2, RV) — ¢1(Vy,RY1, RVY),
= &1(Vy,prY2, RV1) 4 1 (Vy,wr Y2, RV1) — 81(Vy,pr Y1, RV1) — &1(Vy,wrY1, RVY),
= cos?0rg1(Vy, Yo, Vi) — cos® 0rg1(Vy, Y1, Vi) — g1 (T, wrPrY2 — Tr,wr¢rY1, V1)
+81(HVy,wrY2 + Ty,wr Y2, RPrV} + wrSR V1)
—81(HVy,wrY1 + Ty,wrY1, RPr Vi + wrSR V1),

which gives

sin®011([Y1, Y], Vi) = g1(Ty,wrY2 — Ty,wrY1, RPrVY)
+91 (HlewRYZ — HVYZWRYl,wRSva)
—81(Ty,wrPrY2 — Ty,wrPrY1, V7).

Since Df is an R-slant distribution, therefore, we obtain
(@) = (), (@) = (c), (a) = ().
Therefore, we find the result. O
Theorem 3. For the h-ghs Riemannian map 7t defined in Theorem 1, DX is always integrable.
Proof. We can easily prove the Theorem as hemi-slant case given in [21]. O

Theorem 4. For the h-ghs Riemannian map 1 defined in Theorem 1, any one of the following
assertions implies the others:

(a) (ker 7t,)* defines a totally geodesic foliation on Ny;

(b) 81(Az, Zo, Wy + cos” 01Q1W1) = §1(HV 7, Za, wiprPIWh + w1¢1QiWh)
—81(Az B1Zy + HV 7,C1Zo, wiWh)
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for Z1,7; € T(ker rt,) - and Wy € T (ker 7t,);

(C) gl(.A21Z2,P]W1+C0529]Q]W1) = gl(HV21Z2,aJ]¢]P]W1 —|—CLJ](P]Q]W1)
—g1(Ale]Z2+HV21C]Zz,aJ]W1)

for Z1,Z5 € T(ker rt,)* and Wy € T (ker 7t,);

(d) g1(Az, Zo, PkWi + cos® 0kQxkW1) = §1(HV 2, Zo, wipx Pk Wi + wipx QxWh)
—81(Az,BxZy + "V 7,Cx Zy, wgWh)

for Z1,Z, € T(ker i)+ and Wy € T (ker 7r..).

Proof. For Zy,Z, € T(ker r,)*, W; € T(ker 7t.) and R € {I, ], K}, using Equations (6), (7)
and (12)—(14) as well as Lemma 5, we have
81(Vz,Z2, W)
= gl(RVZ] Z>, RWl),
= g1(RVz,Zy, prPRW1 + prQr W1 + wrQrW1 + wWrSRW1),
= —91(Vz,Zy, 3 PRW1 + wWrrRPRW1 + wWrPRQR W)
+81(Vz,BrZ2, wrQr Wi + wrSRW1) + 81(Vz,CrZ2, R QrW1 + wWrSrRW1),
= §1(Az, Zo, PrWy + cos® 0gQrW1) — §1(HV 7, Zo, wrprPRW; + wrpr Qr W1 )
+81(Az, BrZ2, oRQrW1 + wrSrW1) + §1(HV z,CrZ2, wr QrW1 + wWRrSRW1).

Thus, we obtain
(a) < (b), (a) & (c), (a) < (d).

Therefore, the result follows. [
Theorem 5. The following conditions are equivalent for the h-qhs Riemannian map rt:
(a) (ker 7t,) defines a totally geodesic foliation on Ny;

(b) g1(Tx, P X2+ cos®0,Tx, Q1 X2, Y1) = g1(HVx,wi¢prPXo +HVx,wi¢rQiXa, Y1)
—81(HVx,w1Q1Xs + HVx,wiS1X,,C1Y1)
—81(Tx,w1Q1 X2 + Tx,wrS1 X2, BrY1)

for X1, X, € T(ker ) and Y1 € T'(ker 7t,)%;

(c) §1(Tx, Py Xa +cos”0;Tx, Qi Xo, Y1) = 1(HVx,wi¢;PXa + HVx,wjdjQ1 Xz, Y1)
-1 (HVXl(U]Q]XQ + HVXlaJ]S]Xz, C]Yl)
—gl(TxlwIQ]X2 + TxlwIS]Xz, B]Yl)

for X1, Xo € T(ker 7t,) and Y1 € T'(ker . )*;

(d) g1(Tx,PxXa + cos? 0k Tx,QxXa, Y1) = g1(HVx,wkdxPxXa + HV x,wrdxQx X2, Y1)
—81(HV x,wxQx Xz + HV x,wr Sk X2, Cx Y1)
—81(Tx,wkQxXs + Tx,wrSk X2, Bk Y1)

for X1, X, € T(ker 7t.) and Y1 € T'(ker 7t,)*.
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Proof. For X1, X; € T'(ker 7t,),Y; € T(ker mr.)* and R € {I,],K}, using Equations (4), (5)
and (12)—(14) as well as Lemma 5, we have

$1(Vx, X2, 11)

= g1(RVx, X, RY7),

= 81(Vx,¢rPrX2, RY1) + 1(Vx,¢rQr X2, RY7)
+81(Vx,wrQr X2, RY1) + ¢1(Vx, wrSr X2, RY1),

= ¢1(Tx,PrX2, Y1) + cos? 0rg1(Tx, Qr X2, Y1) — 1(HV x,wrprPr X2, Y1)
—81(HVx,wrPprQRrX2, Y1) + 81(HV x,wrQr X2 + HV x,WRrSr X2, CrY1)
+81(Tx,wrQrX2 + Tx, WRrSR X2, BRY1).

Thus, we obtain
(a) < (b), (a) < (c), (a) <= (d).

Therefore, the result follows. [

Theorem 6. Let 7t be an h-ghs Riemannian map from an almost hyperkahler manifold (N, 1, ], K, g1)
to a Riemannian manifold (Ny, g2). Then, any one of the following assertions implies the others:

(a) DR defines a totally geodesic foliation on Ny;

(b) §1(Tz,IP1Zy, wiQiY1 +wiS1Y1) = —g1(VVzIP1Zy, Y1),
g1(7—211P1Z2,C1Y2) = —gl(VvZ11PIZ2,B[Y2)

for Zy,Z> € T(D!), Y, € T(D!I @ DY) and Y, € T(ker mr.)*;

(c) §1(Tz,JP1Z2, wjQiY1 + wySY1) = —g1(VVz JPiZy, ¢1Y1),
§1(72,JP1Z2,CiY2) = —g1(VVz, JPiZy, ByY,)

for 71,7, € T(D)), Yq € F(D{ ® Dé) and Y, € T'(ker 7.)*;

(d) §1(Tz,KPxZp, wxQxY1 +wkSkY1) = —81(VVz KPxZa, ¢xY1),

b4l (’TZlKPKZZr CKYZ) = *g1(va] KPKZZ, BKYZ)
for Zy,Z, € T(DX), Y, e T(DK @ DX) and Y, € T'(ker m,) L.
Proof. For Z;,Z, € T(DR),Y; € I(DR @ DX),Y; € T(kerm,)* and R € {I,],K}, using
Equations (4), (12) and (13), we have

81(Vz,Z5, Y1)

gl(vleZZI RYl),
= 81(Vz RPrZy, RQRrY; + RSgY1),
= 81(Tz,¢rPrZ2, wrRQRY1 + WrSRY1) + §1(VV z,¢r PR Z2, pr QR Y1)-

Moreover, using Equations (4), (12) and (14), we obtain

g1 (

g1 (Vzl RZ5,RY3),
(
(

81(Vz,RPrZy, BRY, + CrY2),
= §1(VV 2z, RPrZy, BRY2) + 81(T2,JPrZ2, CrY2).

Hence, we have

(@) & (b), (a) & (¢), (a) < (d).



Axioms 2022, 11, 641

10 of 15

Therefore, the result follows. [

Theorem 7. With 7t : (Ny,1,],K,g1) — (Np, §2) being an h-qhs Riemannian map, the following
conditions are equivalent:

(a) DR defines a totally geodesic foliation on Ny;

(b) §1(Tvywi¢rYa, Z1) = g1(Ty,wiYo, ¢1P1Z1) + g1 (HVy,w1Ys, wiS1Zy),
S1(HVywip1Y2,Zy) = g1(HVy,wiY2, C1Z3) + g1(Ty,w1Y2, BiZ2)

forY1,Y, e I(D)), Z; e (D! @ D) and Z, € T (ker 7t,.)*;

() s1(Ty,wiprYa, Z1) = g1(Ty,wpYa, §;P1Z1) + g1(HVy,wiYa, wjSZ1),
g1(’HVy1w]¢]Y2,Z2) = gl(HVyla)]Yz,C]ZZ)+g1(7§1wIY2,B]Z2)

forY1,Y, € F(D{), ZeT(D @ Dé) and Z, € T'(ker 7r.)*;

(d) g1(Ty,wkprYa, Z1) = g1(Ty,wkY2, xPxZ1) + g1(HVy,wk Y2, wkSkZ1),
S1(HVy,wkprYa, Z2) = g1(HVy,wkY2, CxZ2) + g1(Ty,wk Y2, BxZ2)

forY1,Y, € T(DX), 2, e T(DX @ D) and Z, € T'(ker m,) .

Proof. For Y;,Y, € ['(DR), Z; e T(DR@ DY), Z, € T'(ker )+ and R € {I,],K}, using
Equations (5), (12) and (13) as well as Lemma 5, we have

$1(Vy, Y2, Z1)

= 81(Vy,RY2,RZy),

= 81(Vy,¢rY2,RZ1) 4 g1(Vy,wrY2, RZ1),

= cos’0rg1(Vy, Y2, Z1) — g1(Ty,wr¢rY2, Z1)
+81(Ty,wrY2, $rPrZ1) + §1(HVy,wrY2, WRSRZ1),

which gives

sin® 0rg1(Vy, Y2, Z1)
= —g1(Ty,wrPrY2,Z1) + 81(Ty,wrY2, RPRZ1)
+g1(7-lVy1wRY2, wRSRzl).

Moreover, from Equations (5), (13) and (14) as well as Lemma 5, we have

81(Vy, Y2, Z)

= gl(VleYL RZ,),

= 81(Vy,¢rY2,RZy) + g1(Vy,wrY2,RZy),

= cos® 0r81(Vy, Y2, Z2) — §1(HVy,wrPrY2, Z)
+81(HVy,wrY2, CrZ2) + 81(Ty,wrY2, BRZ2).

Thus, we find that

sin2 9Rg1(VY1Y2, Zz)
= —gl(HVy]chpRYz, Zz) +g1('HVy]wRY2, CRZZ) + gl(Ty]le@, BRZZ)-

Hence, we have
(a) & (b), (a) = (c), (a) & (d).

Therefore, the result follows. O
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Theorem 8. For the h-ghs Riemannian map 7t defined in Theorem 1, any one of the following
assertions implies the others:

(a) DX defines a totally geodesic foliation on Ny;

(b) §1(HVy,wiYe,wiQiW1) = —g1(Ty,wiS1Ya, ¢1PIW1 + ¢1Q1W1),
81(HVy,wiS1Ys, CiW2) = —g1(Ty,wiSrYa, BiW,)

for Y1, Y, € T(D}),W; € T(D! & DI) and W, € T (ker 7r,)*;

(c) s1(HVy,wiYo, wjQiWi) = —g1(Ty,w;S1Ya, Py Wi + ¢p;Q;W1),
gl(HVylwISY2,C]W2) = _gl(ﬂlw]SYZ/B]WZ)

for Y1, Y2 € T(D}), W, € T(D/ @ D)) and W, € T(ker m,)+;

(d) §1(HVy,wiYs, wkQxWi) = —g1(Ty,wkSY2, pxPxWi + ¢xQxWi),
&1 (HVyleSYQ, CKWZ) = —gl(ﬁleSKYQ, BKWZ)
for Y1,Y, € T(DX),W; € T(DX & DK) and W, € T'(ker ;) *.

Proof. For Y1,Y, € T(DX), Wy € T(DR @ DX), W, € T'(ker )+ and R € {I,],K}, using
Equations (5), (12) and (13), we have

81(Vy, Yo, W1)

81(Vy,RY,, RWq)

= 81(Vy,wrSrY2, prPRW1 + ¢rQr W1 + wrQrW1),

= 81(Ty,wrSRY2, prPrW1 + ¢rQrW1) + 81 (HVy,wRrSR Y2, WR QrW1).
Again, using Equations (5), (13) and (14), we have

§1(Vy, Yo, W) = g1(Vy,RY,, RW;)
= &1 (VYleSRYZI BRWZ + CRW2),
= gl(nleSRYZr BRWZ) +g1( HVYICURRY2, CRWZ)‘

Hence, we have
(a) < (b), (a) < (c), (a) <= (d).

Therefore, the result follows. O

Theorem 9. Let 7 be an h-qghs Riemannian map from an almost hyperkahler manifold
(N1, 1,],K, 1) to a Riemannian manifold (N, g2). Then, the following conditions are equivalent:

(a) 7t is a totally geodesic map;

(b) §1(Ty, PrYs + cos® 0Ty, Q1Yo — HVy,w 1P Yo — HV y,wi$1QYa, Wy)
= &1(Ty,wiQrYa + Ty,wiS1Ya, BiW1) + g1(HVy,wi¢1Q1 Yo + HVy,wid1SYa, Wr),

g1 (Aw, PrY1 + cos® 01 Aw, QrY1 — HV w,wi¢rPYs — HV w,wiprQYs, Wa)
= ¢1(Aw, w1Q1Y1 + Aw,wiS1Y1, BiW2) + g1 (HVw, w1 QY1 + HVw,wS1Y1, CiW2)

for Y1, Y, € T(ker t..) and Wy, W, € T'(ker 7t.)*;

(C) g1(7}1P]Y2 + COS2 9]73/1 Q]Yz - HVYlw]gb]P]Yz — ,Hlew](P]Q]YZr Wl)
= g1(Ty,wjQsY2 + Ty, w;S;Y2, BjW1) + g1 (HVy, wj¢; QY2 + HVy, w1 S Y2, Wh),
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gl(.Awl P]Yl + cos? 9].AW1 Q]Yl — HVWla)](P]P]Yl — HVWlw](P]Q]Yl, Ws)
= g1(Aw1w]Q]Y1 + AWICU]S]Y1, B]Wz) +g1(HVW1w]Q]Y1 + HVW1W]S]Y1,C]W2)

for Y1,Ys € T(ker 7t,.) and Wy, W, € T (ker 7t,)+;

(d) §1(Ty,PxYa + cos® 0k Ty, Qk Yo — HVy,wrdpx P Ys — HVy, wipx Qk Y2, W1)
= g1(Ty, wkQx Y2 + Ty, wgSkYa, BkW1) + 81(HVy, wipx QY2 + HVy,wr xSk Y2, Wi),

g1 (Aw, PcY1 + cos® O Ay, Qx Y1 — HV w,wkdx Px Y1 — HV w, wkdpx Qk Y1, Wa)
= g1 (Aw, wk QY1 + Aw, wk Sk Y1, BkW2) + g1(HVw, wkQk Y1 + HVw,wkSkYi, CkWa)

for Y1, Y, € T(ker rt.) and Wy, W, € T'(ker rt,)*.

Proof. Since 77 is a Riemannian map, therefore, we have
(V) (W1, W) =0,

for Wy, W, € T'(ker 7, )+,
For Y1,Y, € T(ker ), Wi, W, € T(ker m.)* and R € {I,],K}, using Equations (4),
(5) and (12)—(14) as well as Lemma 5, we have

$2((Vri) (Y1, Ya), 0 (Wh))
= —g1(Vy Y2, W)
—81(Vy,RY2, RWy)
gl(VlePRYz, RW;) — g1 (VleQRYZr RW;) — gl(VleSRYz, RWy),
= —81(Vy,¢rPrY2, RW1) — ¢1(Vy,¢prQr Y2, RW1)
gl(lewRQRYZIRwl) 81(Vy,wrSrY2, RWy),
(
(
(

= —g1(Ty,PrY2 + cos? 0r Ty, Qr Y2 — HVy, wrprPrY> — HVy,wrprQrY>, W1)
—81(Tyv,wrQRY2 + Ty,wrSr Y2, BRW1)
—81(HVy,wrprQrY2 + HVy,wrPrSr Y2, W1).

Moreover, using Equations (4), (5) and (12)—(14) as well as Lemma 5, we have

(V) (Wy, Y1), 71 (W2))
= —g1(Vw, Y1, W2),
= —g1(Vw,RY1, RW,),
= —g1(Vw,RPRY1, RW,) — g1(Vw, RQrY1, RW2) — g1(Vw, RSgY1, RW2),
= —81(Vw,¢rPrY1, RW2) — ¢1(Vw, ¢rQr Y1, RW,)
—81(Vw,wrQrY1, RW2) — ¢1(Vw, wrSRrY1, RWy),
= —&1(Aw, PrY1 + cos® O Aw, QrY1 — HV iy, wrrPrY1 — HV w,wrprQrY1, Wa)
—81(Aw, wrQRrY1 + Aw, wrSRY1, BRW2)
—81(HVw,wrQrY1 + HV iy, wrSrY1, CRW>).

Hence, we obtain

(a) < (b), (a) < (c), (a) & (d).

Thus, the theorem is proven. O



Axioms 2022, 11, 641 13 of 15

4. Example

Note that given a Euclidean space R*" with coordinates (x1, X2, -uery X457 ), WE CanN canon-
ically choose complex structures I, ] and K on R*" as follows:

> . 2 2 . 0 > .
0X45.41 0X4542 OXygsi2 0X4541 OXgs43 0X4544”

o . 0 9 .9 N
0X4544 OXgs43 " OXgsi1 0Xgs13 " OXgs42 0Xgs14’

o .9 9 . 9 o .9
0X4543 OXgs11’ " OXgsta OXgsn’ OXgsi1 0Xgs14”

> . 9 . .
0X4542 0Xgs13  OXgs43 0X4542  OXysi4 0Xg541”

fors € {0,1,2,....,...,n — 1}.
Then, we can easily check that (I, ], K, (,)) is a hyperkahler structure on R**, where {, )
denotes the Euclidean metric on R*". Throughout this section, we will use these notations.

Example 1. Define a map 7t : R'? — R® by

Xg — X
7T(X1, X2, wereeens ,X12) = (2020, x7, x, 8~ 9

V2

Then, the map 7 is an almost h-ghs Riemannian map such that

kerm = (2,9 9 9 9 1,9 9,9 9
T 8x1'8x3’8x4’ax5’8x7’ \6 aXS aJC9 '8x11'8x12 !

9 9 1,0 a., 0
L, /9 9 1 9 9. 0
(ker 7z..) _<aJC2lax6,\ﬁ<ax8 ax9)’ax10>’

» X10/, 2022)

Jd 0 9 1,0 d 0
k_/°9 9Npp_/9 L, 90 dy 0
b _<8x1’8x4>'D1 <8x5'\ﬁ(BX3+8x9)'8x12>’D
with the almost h-ghs angles {6; = 0 = 6k = T }.

Example 2. Define a map 7t : R1® — R® by

\@XS — X9

> , X6, X8, X11, X14,202, X15).

TT(X1, X2, cevernene ,Xx16) = (101,

Then, the map 77 is an almost h-ghs Riemannian map such that

N RN N IV BV I B
* 9x1” 9xp” dx3” x4’ 2 " 0xs5 0x9 " dx7” dx19” 0x12” 9x13” 9x14

1 ) 0 o Jd 9 0 )
(kern*)L - 7(\/57_7)/7/71717/71 7
2 aX5 aX9 E)x6 axg axll 8x14 ax15
o d 9 0 1,0 0 0 o 0 0 0
r_/ Y 9 Y Y Ir_ /2 2 YN Y r_, < v Y Y
b= <8x1' 8x2' 8x3' 8x4 >,D1 <2(8x5 + \/§8X9 ), axlo >,D2 <8x7’ 8x12' 8x13' 8X16 >,
o o9 dJ 9 0 0 1,0 0 0 0 0
(< <2 2 9 9 (2L 2y 2 J_( %2 2
b <ax1’8x2’8x3’8x4’ax10’ax12 >’ 1 <2(8x5 + axg)’8x7>’D2 <6x13’6x16 >’
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N\H

0 d 9 0 8 d 0 0
K _ v K _ K _
b <8x1 E)xz Bx3 aJC4 Bx13 Bx16 > D < E)x ) 8x12 > Dz <8x7' me >,
with the almost h-qhs angles {0; = %, 6; = 5, 0k = % }.
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