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Abstract: When a network is attacked, the network controllability decreases and the network is at risk
of collapse. A network with good controllability robustness can better maintain its own controllability
while under attack to provide time for network recovery. In order to explore how to build a network
with optimal controllability robustness, an exhaustive search with adding edges was executed on a
given set of small-sized networks. By exhaustive search, we mean: (1) All possible ways of adding
edges, except self-loops, were considered and calculated at the time of adding each edge. (2) All
possible node removal sequences were taken into account. The nested ring structure (NRS) was
obtained from the result of the exhaustive search. NRS has a backbone ring, and the remaining edges
of each node point to the nearest nodes along the direction of the backbone ring’s edges. The NRS
satisfies an empirically necessary condition (ENC) and has great ability to resist random attacks.
Therefore, nested edge rectifcation (NER) was designed to optimize the network for controllability
robustness by constructing NRS in networks. NER was compared with the random edge rectification
(RER) strategy and the unconstrained rewiring (UCR) strategy on synthetic networks and real-world
networks by simulation. The simulation results show that NER can better improve the robustness of
network’s controllability, and NER can also quickly improve the initial network controllability for
networks with more than one driver node. In addition, as NER is executed, NRS gains more edges in
the network, so the network has better controllability robustness. NER will be helpful for network
model design or network optimization in future.

Keywords: complex network; network controllability; controllability robustness; optimization; nested
ring structure; edge rectification

1. Introduction

Complex networks have been developed greatly in the past 20 years, and they have
become a new discipline involving mathematical science, social science, biological science
and other fields [1–4]. Many natural and artificial systems can be abstracted into complex
networks composed of nodes and edges, such as the Internet [5], transportation networks [6]
and power networks [7]. The study of network formation, topology, community [8] and
synchronization [9] is conducive to understanding the structure and function of a network;
and the study of cycle [10,11] is a new direction. The sizes of complex networks have
increased dramatically. The graph-query problem on large networks can be solved by
query optimization [12]. Deep learning provides a way to evaluate the robustness of
large-scale networks [13]. As controlling networks to serve people is one purpose of
studying complex networks, whether the network can be controlled is critical, so network
controllability has emerged as a key point for complex networks [13–18]. Controllability
is the ability to guide the network from any initial state to any desired final state in a
finite amount of time with appropriate input choices. The ability of complex networks to
maintain controllability under attack is called controllability robustness.

For directed networks, the structural controllability of the network can be measured
by finding the maximum matching of the network to determine the minimum number
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of external control inputs that are driver nodes [19]. Finding maximum matching can
only be applied to directed networks and is difficult to be applied to large-scale networks.
Therefore, the exact controllability framework was proposed, which can be applied to all
large-scale sparse networks [20].

There have been many studies on the relationship between the topology and control-
lability of directed networks. The underlying degree of correlation has a certain effect
on network controllability. Clustering coefficient and modularity have no obvious effect
on network controllability [21]. When the minimum in-degree and out-degree are both
greater than two, random networks with any topology can be controlled by an infinitesimal
fraction of driver nodes [14]. Based on the hierarchical structure of the directed network,
a random upstream or downstream attack is designed [22]. Compared with an ordinary
random attack, this attack strategy is more effective because the upstream and downstream
nodes of a randomly selected node have greater chances of being the hub.

There is growing concern about random and malicious attacks on complex net-
works [19,23]. Random attacks refer to the uniform random selection of attack targets.
Malicious attacks choose the most effective targets to attack subjectively. Malicious attacks
usually achieve better results than random attacks, but random attacks take less time.

It is necessary to make networks more robust attacks, especially practical networks.
For connectivity robustness, a spectral metric is taken as the objective function to optimize
connectivity robustness by edge rectification, which keeps the network’s degree distribution
unchanged after reconnecting edges [24]. A smart rewiring strategy was used to strengthen
the connections between adjacent nodes of a hub node to improve the robustness of the
network against the degree attack [25]. Onion-shaped networks with better connectivity
robustness were obtained through the degree-preserving edge reconnection strategy [26].
There are also studies on optimizing controllability robustness. Bridges are edges which
have a significant impact on the controllability of the network after their removal, especially
when the average degree of the network is low. The robustness of network controllabil-
ity can be improved by backing up bridges, and adding edges to eliminate bridges can
significantly improve controllability robustness [27]. An empirically necessary condition
(ENC) indicates that the maximum and minimum in-degree and out-degree of the optimal
network structure should be almost the same, or within a very narrow range; that is, the
network should be extremely uniform [28]. Adjusting the network to meet the ENC by re-
connecting edges can greatly improve the robustness of network controllability. In addition,
networks with better controllability robustness can be constructed. A new complex network
model, the q-snapback network, was proposed, which has gppd controllability robustness
by using the feedback idea of control theory [29]. The backbone chain is beneficial to the
controllability robustness of the q-snapback network, but it affects the flexibility of network
construction. Thus, the superior controllability robustness of q-snapback network was
improved by redirecting edges [30].

This paper explores a network structure that can enhance the robustness of network
controllability against random attacks. In this paper, one edge is added to the original
network, and the network with the best controllability robustness after adding the edge is
used as the new original network. The nested ring structure (NRS) is obtained by exhaustive
search. Then, NRS is constructed by the nested edge rectification (NER) strategy. NER
constructs NRS by adjusting the edge of a node with the maximum degree to connect the
node to its nearest neighboring node along the direction of the backbone ring each time. If
there is no backbone, a backbone is constructed on the network first. Through NER, the
heterogeneity of degree is reduced.

The main contributions of the paper are:

1. Due to the impossibility of theoretical analysis and exhaustive searching for large-
sized networks, an exhaustive search was executed on feasible small-sized networks,
and NRS was obtained. NRS satisfies ENC and has great controllability robustness.

2. NER is proposed to improve the robustness of the network controllability against
random attacks by constructing NRS in the network. Meanwhile, NER can be applied
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to networks with different scales. In addition, NER constructs a backbone ring through
maximum matching, which rapidly improves the initial controllability of networks.

3. The controllability robustness can be improved on six synthetic networks and real-
world networks by NER, and NER is better than other methods of edge rectification.
For networks with poor controllability robustness, such as the scale-free network,
NER improves controllability robustness more obviously.

The remainder of the paper is structured as follows: Section 2 reviews network
controllability and the controllability robustness of complex network. Section 3 introduces
the exhaustive search. Section 4 discusses the experimental results. Section 5 presents
the conclusions.

2. Network Controllability and Its Robustness

The robustness of network controllability is mainly concerned with the change in
controllability when the network is attacked. Controllability robustness can evaluate the
attack effect of the attack mode on the network and the ability of the network to resist the
attack. Network controllability is measured by the density of driver nodes nD.

nD =
ND
N

, (1)

where ND represents the number of driver nodes required to maintain network controlla-
bility and N represents the number of network nodes. The minimum value of nD is 1/N,
and the maximum value is 1. A smaller value of nD indicates better network controllability,
whereas a larger value of nD indicates worse network controllability.

A matching is a set of edges that do not share common start nodes or common end
nodes. A maximum matching is a matching that contains as many edges as possible and can-
not be extended further in the network. The end node of an edge in matching is a matched
node; otherwise, it is an unmatched node. According to the minimum-inputs theorem [19],
ND can be obtained by the number of unmatched nodes for a directed network:

ND = max{1, N − |E∗|}, (2)

where |E∗| is the size of maximum matching. For node attacks, the controllability robustness
of the network can be measured by the controllability curve, which is calculated as follows:

nD(i) =
ND(i)
N − i

, i = 1, 2, 3, . . . , N − 1 (3)

where ND(i) is the number of driver nodes needed to maintain network controllability after
removing i nodes. N is the size of the original network. RN records the change in network
controllability after each node is removed. The overall measure of controllability robustness
can be obtained by averaging controllability curves, which is calculated as follows:

RN =
1

N − 1

N−1

∑
i=1

nD(i), (4)

where nD(i) is the structural controllability of the remaining network after i nodes are
removed. In addition to the controllability curve, the robustness of network controllability
can also be compared by RN . A smaller RN indicates better controllability robustness,
whereas a larger RN indicates worse controllability robustness.

3. Nested Ring Structure and Optimization Strategy

The relationship between network topology and network controllability robustness
was explored by observing the adding-edge simulation and attack simulations on a series
of small-sized networks. The topology with the best controllability robustness after adding
edges can be obtained by exhaustive search. Then, NRS can be obtained by observing
the results of the exhaustive search. The NRS has a great ability to resist random attacks
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and satisfies the ENC. NRS is constructed in the network to improve the controllability
robustness of the network under random attacks. Therefore, NER is proposed to construct
a NRS in networks.

3.1. Nested Ring Structure

An exhaustive search is where all the cases of adding one edge are searched and all the
node-removal sequences are considered when calculating the controllability robustness.

(a) Exhaustive adding edge. The ring structure is the network structure that may be
built by N nodes and N edges that have the best controllability robustness for directed
graphs, as shown in Figure 1a. With the ring structure as the initial network for adding an
edge, one edge at a time, then for a network with N nodes and M edges, there are a total of
N(N − 1)−M ways to add an edge, without considering the self-loop. Compared to all
networks after adding edges, the network with the best controllability robustness is chosen
as the next place to add the edge.

(b) Exhaustive attack. For each network, the controllability changes under all con-
ceivable node-removal sequences are taken into account while determining the network
controllability robustness. That is, for a network with N nodes, the number of all the
node-removal sequences is N!. Each sequence has N − 1 nodes, so there are N! permu-
tations of the controllability curves. The k − th(k ∈ [1, N!]) removal-node sequence is
nk

D = {nk
D(1), nk

D(2), . . . , nk
D(N − 1)}, and its robustness is calculated as

Rk
N =

1
N − 1

N−1

∑
i=1

nk
D(i). (5)

The overall controllability robustness is obtained by averaging the N! robustness
values:

〈RN〉 =
1

N!

N!

∑
k=1

Rk
N . (6)

An exhaustive search looks at all node-removal sequences equally. Therefore, when
the random attack is repeated enough times, the average result of the exhaustive attacks is
equal to the result of the random attacks. The exhaustive method is impossibly applied
on the large-sized classical synthetic networks and the real-world networks, so random
attacks should be used instead.

In this study, an exhaustive search was performed for networks with N = 5, 6, 7, 8, 9.
When N = 8, there are N(N− 1)−N = 48 ways to add one edge based on the ring structure
in Figure 1a, without considering the self-loop. Only one equivalent structure was kept,
and the final network structure is shown in Figure 1b–g. Among all the network structures,
the network structure in Figure 1c has the optimal controllability robustness, and then the
next adding edge is based on this network structure.
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Figure 1. All cases of adding an edge for original network. (a) original network structure; (b–g) all
cases after adding one edge to the original network. The red edge is the added edge.
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The optimal way to add edges from the exhaustive search is shown in Figure 2.
According to the ring structure, for all nodes i = 1, 2, 3, . . . , N, an edge is added from
node i to node j, j = (i + r) mod N, where r ∈ [2, N − 1). However, this rule only
exists when the average degree of the network is low, so the value of r is far less than
N − 1. The finally obtained network structure is named the nested ring structure (NRS).
In addition, the structure has strong controllability robustness, since it satisfies ENC. The
network structure satisfying ENC is extremely uniform, which states that the maximum
and minimum out-degree (in-degree) should be equal or have a difference of 1.
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Figure 2. Adding edge results for exhaustive search. (a) Original network; (b–f) the result of
incrementally adding edges.

As shown in Figure 3, the network has a NRS after adding a certain number of edges,
which requires only one driver node to control the whole network, and the number of driver
nodes does not increase immediately when the network suffers from random attacks. It can
be seen that the more edges are contained in NRS, the stronger network’s controllability
robustness under random attacks and the more nodes need to be removed before the
number of driver nodes increases from 1 to 2. In NRS, each node has an edge leading
from its predecessor node to its successor node, which makes the network have a larger
average distance, but at the same time, it makes the network can maintain the backbone
ring structure after the node is removed. In Figure 3a, if node 2 is removed, there is still an
edge A13 from its predecessor node 1 to its successor node 3. It implies that the NRS can
increase its ability to maintain the backbone ring by having more edges.
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Figure 3. The process of a random attack. (a) Original network; (b–e) The network under random
attack processes.

3.2. Nested Edge Rectification

NRS is a structure with great controllability robustness. NRS is constructed in networks
by NER to optimize networks. When NRS is constructed in networks, a backbone is firstly
constructed through maximum matching. The subsequent operations to build the NRS are
performed on the backbone.

The NER is as follows:
Step 1: Whether a backbone ring exists should be determined in the original network G.

If so, go to Step 2. If not, look for a kind of maximum matching in network. Delete the edge
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Aij (node i is the node with the largest out-degree in the network, node j is the node with the
largest in-degree among the successors of node i and Aij is not in the maximum matching).
Add edge Akl (node k is only the end node of the edge in the maximum matching, and
node l is only the start node of the edge in the maximum matching) and run the command
ND times.

Step 2: Find the backbone ring in the network G and label the nodes as 1, 2, . . . , N.
Step 3: For node m (m belongs to [1, N]), check whether there is an edge A(m(m+r))

(r belongs to [2, M/N − 1); if not, a backbone is constructed through maximum matching,
as shown in Figure 4. Delete edge Aij (node i is the node with the largest out-degree in the
network, node j is the node with the largest in-degree in the successor nodes of node i and
node j is not i + 1, i + 2, . . . , i + r). Add an edge A(m(m+r)). Record the number of adding
edges and judge whether the number of added edges reaches the preset value; if so, stop,
and if not, repeat step 3.

The details of NER execution process are shown in Algorithm 1:

Algorithm 1 Nested ring rectification strategy
input:The adjacency matrix of the network A; the number of network nodes N; the
number of network edges M; Number of reconnected edges TIMES
Output: Adjacency matrix of the optimized network A
t← 0;
if backbone does not exists on the network then

STARTNODE ← nodes that are only the started node of an edge in a maximum
matching
ENDNODE← nodes that are only the ended node of an edge in a maximum matching

for i← 1 to |STARTNODE| do
i← node with the largest out-degree
j← node with the largest in-degree among the successors of node i
delete edge A(i,j)
add edge A(STARTNODE(i),STARTNODE(mod(i+1,N)))

t← t + 1
end for
Number nodes as 1, 2, . . . N through backbone;

end if
for r ← 2 to M/N do

for m← 1 to N do
if do not exist edge A(m,m+r) then

i← node with the largest out-degree
j← The node with the largest outdegree among the successors of node i is except
i + 1, i + 2, . . . , i + r− 1
delete edge A(i,j)
add edge A(j,mod(j+r,N)

t← t + 1
if t == TIMES then

return A
end if

end if
end for

end for
return A



Axioms 2022, 11, 639 7 of 15

1
3

4 8

76

5

2

1
3

4 8

76

5

2

1
3

4 8

76

5

2

1
3

4 8

76

5

2

1
3

4 8

76

5

2

(a) (b) (c) (d) (e)

6

1

2

4

57

3

8

(f)

Figure 4. Construct backbone ring. (a) Original network; (b) a kind of maximum matching of
the network; (c,d) the backbone ring is constructed by maximum matching; (e) the final network;
(f) equivalent structure of the final network. The red line is maximum matching, the blue edge is a
deleted edge and the green edge is an added edge.

3.3. Computational Complexity

It is mainly through the Hopcroft—Karp algorithm that the maximum matching
is found to determine the starting nodes and ending nodes that are only used as the
maximum matching edges. The computational complexity is O(M ·

√
N), where N is

the number of nodes and M is the number of edges. The computational complexity of
constructing a backbone is O(N). The computational complexity of constructing a NRS is
O(N ·M2 − 2 · N2) by rectifying edges after constructing backbone.

4. Simulation Results

NER was applied to six synthetic networks and two real-world networks to opti-
mize the controllability robustness of these networks. In order to verify the effective-
ness of NER, it is compared with the random edge rectification (RER) strategy and the
unconstrained-rewiring (UCR) strategy. This paper mainly explores the influence of NER
on the controllability robustness and the changes in network features.

The six synthetic networks were the Erdös–Rényi random-graph (ER) network [31],
Generic scale-free (SF) network [32], random triangle (RT) network [33], random rectangle
(RR) network [33], Newman–Watts small-world (SW) network [34] and q-snapback (QS)
network [32]. The real-world networks were Roget network and ia-email-univ network [35].
All of these are directed networks.

4.1. Results on Synthetic Networks

For directed networks, the network size was set to 500, 1000 or 1500. This paper
mainly discusses the networks with 1000 nodes. The average degree of the network was
set <k> = 4. In order to reduce the influence of randomness, 30 instances were generated
for each network, and the values of the controllability robustness of 30 random attacks for
each instance were averaged.

As shown in Figure 5, six synthetic networks were used as the initial networks for
optimization. For each network, the network optimized by building a NRS in the network
through NER had the best controllability robustness compared with UCR- and RER-treated
networks. The controllability robustness is shown in Table 1 after performing different
types of edge rectification. RER and NER can improve the robustness of the network’s
controllability more than UCR, and the effect of NER is better than that of RER, especially
on SF and QS. Figures A1 and A2 and Tables A1 and A2 in Appendix A show similar effects
for networks with 500 and 1500 nodes. Networks had the best controllability robustness
after optimization by NER on the six synthetic networks with 500 and 1500 nodes. NER
can be applied to networks of different scales, which shows that NER has good scalability.
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Figure 5. Robustness of the structural controllability of the six original networks with N = 1000 by
rewiring 2000 times. PN represents the proportion of nodes to be removed. ORI represents the original
network without edge rectification. UCR, RER and NER represent the ways of edge rectification.

Table 1. Robustness of network controllability with different numbers of edge rectification operations.

Number of Edge Rectification Strategy ER SF RT RR SW QS

0 0.2963 0.6557 0.3124 0.2798 0.2605 0.4168

UCR 0.2884 0.5147 0.2995 0.2796 0.2634 0.4012
1000 RER 0.2510 0.4414 0.2564 0.2478 0.2437 0.3451

NER 0.2437 0.3527 0.2482 0.2419 0.2362 0.2900

UCR 0.2852 0.4696 0.2962 0.2787 0.2657 0.3852
1500 RER 0.2446 0.3745 0.2472 0.2433 0.2420 0.3121

NER 0.2353 0.2891 0.2368 0.2338 0.2301 0.2591

UCR 0.2820 0.4348 0.2927 0.2786 0.2641 0.3682
2000 RER 0.2419 0.3221 0.2435 0.2412 0.2402 0.2856

NER 0.2242 0.2603 0.2253 0.2233 0.2228 0.2322

In Figure 6, each boxplot shows the proportion of nodes that needed to be removed to
make the number of driver nodes changed from 1 to 2 when a network obtained by NER or
RER on six synthetic networks was subjected to random attacks. For SF and QS, networks
obtained by NER obviously needed to remove more nodes than networks obtained by RER
to increase the number of driver nodes. After performing the same number of operations,
the fewest nodes needed to be removed in SF, and the most nodes needed to be removed
in SW, which is also related to the robustness of the original network controllability. The
SF needs a considerable number of edge rectification operations to construct the backbone
ring. Therefore, when the same number of edge rectification operations is performed, the
number of edges of the NRS in the network is much less than those of other networks. QS
has a backbone structure, so NRS produced more edges in QS with the same number of
operations, which makes QS have a strong ability to resist random attacks.
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Figure 6. Ratio of nodes to be removed when the number of driver nodes changes from 1 to 2 on six
synthetic networks after 2N NER operations. The blue represents networks after NER, and the red
represents networks after RER. “network” represents the types of original networks. PN represents
the ratio of nodes to be removed.

In Figure 7, the variation in heterogeneity of out-degree (HO) and that in the hetero-
geneity of in-degree (HI) during the attack are shown. It can be seen that the heterogeneity
of degree gradually increases as the attack goes on. SF has the largest HO and HI of the
original networks, and SW has the smallest HO and HI. As the number of NER operations
increased, the differences in HI and HO of different networks became smaller. This suggests
that networks with lower HO and HI have better controllability robustness. More features
of networks are shown in Table 2. In addition to QS, the network obtained by NER had the
largest average, the shortest path and the largest medium number. It had the largest clustering
coefficient of all networks. RER and NER both reduced the heterogeneity of degree.
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Figure 7. Changes in HO and HI of six networks after NER for different lengths of time under
random attacks.
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Table 2. Changes in the basic features of the original network and the network for which the
edge rectification operation was performed 2000 times. Average path length (APL), average (node),
betweenness centrality (ABC), clustering coefficient (CC), heterogeneity of out-degree (HO), and
heterogeneity of in-degree (HI).

Strategy ER SF RT RR SW QS

ORI INF INF 4.8536 4.7131 5.1819 206.6615
UCR INF INF INF INF INF INF

APL RER 4.8772 4.3943 4.9356 4.8762 4.9145 5.0733
NER 6.0785 5.8503 6.3936 6.0961 7.0076 65.9633

ORI 3875 1351.8 4185.7 3709.4 3849.8 205460
UCR 4002.3 2543.7 3867.0 3881.2 3912.7 4304.2

ABC RER 3873.4 3390.9 3931.7 3972.3 3910.6 4069.0
NER 5073.4 4845.4 5388.2 5091.0 6001.6 64898

ORI 0.0024 0.0526 0.0014 0.0027 0.0020 0.0002
UCR 0.0033 0.0185 0.003 0.0032 0.0019 0.0021

CC RER 0.0019 0.0072 0.0020 0.0020 0.0019 0.0016
NER 0.1540 0.1572 0.1616 0.1307 0.3329 0.4094

ORI 1.2521 9.3584 1.3645 1.1989 1.1215 4.0503
UCR 1.1291 4.0055 1.1868 1.1929 1.1211 2.2373

HO RER 1.0166 2.0102 1.0217 1.0144 1.0009 1.5408
NER 1.0115 1.1357 1.0366 1.0070 1.0001 1.2281

ORI 1.2486 9.2805 1.4021 1.2171 1.1311 1.2288
UCR 1.2401 4.2642 1.3044 1.2238 1.1298 1.2392

HI RER 1.0163 2.0038 1.0203 1.0137 1.0106 1.0132
NER 1.0280 3.3571 1.0371 1.0248 1.0233 1.0173

4.2. Results of Real-World Networks

The real-world networks used by NER were Roget network and ia-email-univ network,
and their information is shown in Table 3:

Table 3. Parameters of the two real-world networks.

Network N M

Roget 1022 5075
ia-email-univ 1133 5451

As shown in Figure 8, similarly to the synthetic networks, the controllability robustness
of the two networks was improved after NER. Compared with RER and UCR, NER had
the best effect on the robustness of network controllability. At the same time, the number
of driver nodes of Roget network and ia-email-univ network is not 1. Both NER and RER
greatly improved the initial controllability of the networks after 2N operations.

Figure 8. Robustness of structural controllability after edge rectification 2N times on real-world networks.
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4.3. Discussion

RER can adjust the networks to satisfy ENC, so that the networks gradually approach
the optimal controllability robustness. NER can build a NRS in networks, and NRS also
satisfies the ENC. Take ER with N = 1000 and M = 4000 as an example. As shown in
Figure 9, NER is similar to RER: the out-degree distribution is concentrated around M/N
with the increase in the number of operations. Unlimited NER and RER operations will
make the ER extremely homogeneous.

Figure 9. The changes in out-degree distribution under different numbers of iterations for NER
and RER. kout represents the out-degree of nodes. Pkout represents the proportion of nodes with kout

out-degree of all nodes.

NRS is a fixed structure that satisfies ENC. The NRS is shown in Figure 10a, where
the edges point to the nearest nodes along the backbone ring direction for each node. The
structure satisfying ENC obtained by RER is shown in Figure 10c. Compared with NRS, the
edges of each node do not point to a specific node. It can be seen that the NRS constructed
by NER is fixed, and the network satisfying ENC by RER may be different. That is because
RER randomly selects nodes that make the network not meet ENC and executes edge
rectification, and NER selects certain targets.
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3
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(c)

NRS ENC

(d)

Figure 10. Relationship between NRS and the structure satisfying ENC. (a) NRS. (b) General structure
satisfying ENC. (c) Equivalent structure of (b). (d) Relationship between NRS and ENC.

NRS has a backbone ring. For a network which does not have a backbone ring, NER
first builds a backbone ring in the network during the execution process. Therefore, NER
can make the number of driver nodes of the network become one quickly. For when NER
and RER were executed for ER, SF, RT, RR, Roget network and ia-email-univ network,
the numbers of executions required to make the number of driver nodes become one are
shown in Figure 11. NER requires a much smaller number of executions than RER. NER
builds the backbone ring through maximum matching. It only needs to execute ND times
to build the backbone ring. The original controllability of networks determines the speed
of constructing the backbone in networks through NER during execution. A network with
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good initial controllability, such as RR, only needs a few operations for the building of a
backbone. SF needs more operations for the building of a backbone. Thus, the scale of NRS
built by NER in the network is affected. Other effects of network topology on NER need to
be further studied.
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Figure 11. The number of operations required for NER and RER to make the number of driver nodes
one. The times axis represents the number of NER and RER.

5. Conclusions

This paper explores how to obtain networks with optimal controllability robustness.
Based on the exhaustive search results on small-sized networks, the nested ring structure
(NRS) was obtained. The NRS satisfies ENC, which means the degree distribution is
extremely uniform. NRS has great ability to resist random attacks, and it is easy to be
built in networks. Then, the NER was proposed to construct NRS in networks to improve
the robustness of network controllability under random attacks. At the same time, the
initial controllability of networks is rapidly improved because of the construction of a
backbone. However, the topology of networks is changed greatly after NER optimization,
and the number of NER operations can be limited in order to make the network have a NRS
completely. In addition, the NRS in networks enhances the local connections and increases
the clustering coefficient of the network, and reduces the heterogeneity of degree. NRS can
provide a reference for the future designing of network models such as power grids, where
the unexpected failure of a substation will not affect the transmission of other circuits.
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Appendix A

Figure A1. Robustness of the structural controllability of the six original networks with N = 500 by
rewiring 1000 times. PN represents the proportion of nodes to be removed. ORI represents the original
network without edge rectification. UCR, RER and NER represent the ways of edge rectification.

Figure A2. Robustness of structural controllability of the six original networks with N = 1500 by
rewiring 3000 times. PN represents the proportion of nodes to be removed. ORI represents original
network without edge rectification. UCR, RER and NER represent the ways of edge rectification.
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Table A1. Robustness of network controllability with different numbers of edge rectification opera-
tions for networks with N = 500.

Number of Edge Rectification Strategy ER SF RT RR SW QS

0 0.2957 0.6186 0.3135 0.2792 0.2593 0.3927

UCR 0.2890 0.4891 0.3022 0.2801 0.2643 0.3783
500 RER 0.2512 0.4162 0.2560 0.2477 0.2445 0.3190

NER 0.2442 0.3366 0.2478 0.2418 0.2368 0.2811

UCR 0.2837 0.4490 0.2998 0.2799 0.2669 0.3621
750 RER 0.2448 0.3542 0.2473 0.2435 0.2422 0.2913

NER 0.2352 0.2815 0.2368 0.2346 0.2295 0.2538

UCR 0.2831 0.4176 0.2977 0.2798 0.2672 0.3487
1000 RER 0.2417 0.3050 0.2436 0.2416 0.2406 0.2710

NER 0.2241 0.2549 0.2256 0.2243 0.2236 0.2303

Table A2. Robustness of network controllability with different numbers of edge rectification opera-
tions for networks with N = 1500.

Number of Edge Rectification Strategy ER SF RT RR SW QS

0 0.2955 0.6709 0.3130 0.2796 0.2591 0.4284

UCR 0.2895 0.5242 0.3028 0.2809 0.2640 0.4166
1500 RER 0.2512 0.4524 0.2562 0.2476 0.2439 0.3566

NER 0.2437 0.3606 0.2482 0.2417 0.2354 0.2941

UCR 0.2885 0.4798 0.3004 0.2796 0.2669 0.3989
2250 RER 0.2439 0.3856 0.2465 0.2433 0.2419 0.3235

NER 0.2355 0.2926 0.2368 0.2339 0.2291 0.2618

UCR 0.2871 0.4428 0.2971 0.2800 0.2687 0.3811
3000 RER 0.2423 0.3301 0.2425 0.2412 0.2403 0.2951

NER 0.2238 0.2632 0.2249 0.2238 0.2231 0.2332
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