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Abstract: The purpose of the present study is to obtain regularity results and existence topics
regarding an Eyring–Powell fluid. The geometry under study is given by a semi-infinite conduct
with a rectangular cross section of dimensions L × H. Starting from the initial velocity profiles
(u0

1, u0
2) in xy-planes, the fluid flows along the z-axis subjected to a constant magnetic field and

Dirichlet boundary conditions. The global existence is shown in different cases. First, the initial
conditions are considered to be squared-integrable; this is the Lebesgue space (u0

1, u0
2) ∈ L2(Ω),

Ω = [0, L] × [0, H] × (0, ∞). Afterward, the results are extended for (u0
1, u0

2) ∈ Lp(Ω), p > 2.
Lastly, the existence criteria are obtained when (u0

1, u0
2) ∈ H1(Ω). A physical interpretation of the

obtained bounds is provided, showing the rheological effects of shear thinningand shear thickening
in Eyring–Powell fluids.

Keywords: nonlinear flow; Eyring–Powell fluid; geometrically three-dimensional flow; unsteady
flow; global existence

1. Introduction

An Eyring–Powell fluid is a sub-class of a non-Newtonian fluid of interest in applied sci-
ences. To cite some examples, we remark the applications in manufacturing engineering [1,2]
and biological technology [3,4].

The Eyring–Powell model has been of interest for the description of magnetohydro-
dynamics (MHD). As representative of previous studies, Akbar et al. [5] carried out the
analysis of solutions in a two-dimensional MHD fluid. Hina [6] considered an Eyring–
Powell fluid for MHD purposes to study heat-transfer processes. Afterward, Bhatti et al. [7]
proposed an analysis for a stretching surface under MHD physical principles. Similarly,
other references can be cited describing analyses of Eyring–Powell fluids, combining ana-
lytical and numerical approaches, from purely mathematical principles to applications in
different physical scenarios [8–19].

It shall be noted that there exists much literature dealing with the existence criteria of
solutions when a fluid is formulated with the classical Newtonian viscosity involved in
the Navier–Stokes equations; see the remarkable studies [20–29]. Nonetheless, the specific
rheological properties of a fluid may lead to the exploration of other kinds of viscosity
formulations. One of these formulations, based on the kinetic theory of liquids, led to the
mentioned Eyring–Powell fluid. To the best of our knowledge, there is not a wide range of
literature dealing with the existence and regularity of solutions in Eyring–Powell fluids
in three-dimensional geometry. Consequently, our main objective is to introduce such an
analysis under the most general conditions.
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Considering some recent achievements related to the application of advanced ana-
lytical tools to non-Newtonian fluids, we can highlight the recent work of Bilal et al. [30],
where the (G′/G2)−expansion method was employed to obtain exact wave solutions
to a Dullin–Gottwald–Holm system. In addition, the solutions to a Korteweg–deVries–
Zakharov–Kuznetsov equation were explored in Ref. [31]. Based on a modified extended
direct algebraic method, these authors found solutions in the form of solitary, shock, singu-
lar, shock singular, solitary shock and double singular solitons. In the present manuscript,
we are concerned with the regularity and existence of solutions rather than with the specific
forms of such solutions. This, however, establishes a basis for future research topics.

The paper layout is as follows. First, we introduce the framework of our study and
describe the Eyring–Powell fluid model. Secondly, a set of three theorems is given so that
their proofs permit to draw a conclusion on the regularity and existence of solutions to
the proposed Eyring–Powell formulation. The introduced theorems are supported by a
number of lemmas that are provided for the sake of clarity and by some propositions that
are proved. The involved assessments follow a process that can be introduced sequentially
as follows:

– Formulation of the involved equations in integral form.
– Derivation of a temporal differential equation in terms of spatial distributions in

Lp (p ≥ 2); the involved integrals are assessed, typically by parts.
– Introduction of hypotheses in a space of bounded mean oscillations that assure a

bounded solution, and obtain the bounding constants.
– Application of the Gronwall theorem for a bound in the temporal law, and under

spatial distributions in Lp (p ≥ 2).

2. Model Formulation

We consider a flow of an electrically conducting Eyring–Powell fluid. The selection of
this type of fluid is justified based on the following ideas. Firstly, the rheological properties
of an Eyring–Powell fluid are derived based on the kinetic theory of liquids, instead of
empirical or quasi-experimental principles; this can be the case of a Darcy–Forchheimer or a
power–law fluid. Deducing a rheological law from a well-known theory makes the Eyring–
Powell fluid interesting for purely mathematical assessments such that the analytical
concepts rely on theoretical and well-proven physical aspects. Secondly, the Eyring–Powell
rheological properties can be understood as an expansion of a typical linear fluid rheology.
Then, the scope of our analysis contains some mathematical ideas that can be applied for
the study of simpler rheological laws; this naturally extends to Newtonian fluids described
by the classical continuity and momentum Navier–Stokes equations.

The Cartesian coordinates (x, y, z), with the corresponding velocity components
V = (u1, u2, u3), are chosen such that the origin is located in the plane sheet at z = 0.
The fluid occupies the region z > 0, and flows from the sheet z = 0 to z→ ∞.

The conservation of mass and momentum are described in a general basis as

∇ ·V = 0, (1)

ρ
dV
dt

= ∇ · τ + J × B, (2)

where dV/dt refers to the total derivative of the velocity field, ρ is the fluid density, B is the
applied longitudinal (along the z-axis) magnetic field of magnitude B0 driving the flow, J is
the current charges density, and τ refers to the Cauchy stress tensor, which is given by

τ = −pI + τij,

where p is the pressure field in the fluid, I is the identity tensor and τij is the stress tensor
typical in Eyring–Powell fluid models.
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Based on the kinetic theory of liquids [32], a formulation to such stress tensor is

τij = µ
∂ui
∂xj

+
1
β

sinh−1

(
1
γ

∂ui
∂xj

)
,

where µ is the dynamic viscosity, and β and γ are two characteristic constants related
to the fluid spatial behavior and its characteristic relaxation frequency, respectively [33].
By considering

sinh−1

(
1
γ

∂ui
∂xj

)
≈ 1

γ

∂ui
∂xj
− 1

6

(
1
γ

∂ui
∂xj

)3

+ . . . ,

then

τij = µ
∂ui
∂xj

+
1

γβ

∂ui
∂xj
− 1

6β

(
1
γ

∂ui
∂xj

)3

.

Note that we may consider higher-order terms, denoted by ‘. . . ’ in the expression
above, when approximating the sinh−1 function, or even other forms of rheological behav-
ior; see the work of Oke [34] for additional insights.

We assume a boundary layer is developed and analyze the velocity profiles in each
xy-plane for which the following Dirichlet boundary conditions apply: u1 = u2 = 0 at
x = 0, L and y = 0, H.

Based on the exposed arguments and taking L, γ−1 and ρ as characteristic values for
length, time and density, the governing equations written in dimensionless parameters
read [32]

∂u1

∂t
+ u1

∂u1

∂x
+ u2

∂u1

∂y
+ u3

∂u1

∂z
=

1
Re

(
1 + M− M

2

(
∂u1

∂z

)2
)

∂2u1

∂z2 − Bu1, (3)

∂u2

∂t
+ u1

∂u2

∂x
+ u2

∂u2

∂y
+ u3

∂u2

∂z
=

1
Re

(
1 + M− M

2

(
∂u2

∂z

)2
)

∂2u2

∂z2 − Bu2, (4)

in the domain Ω = [0, 1]× [0, Γ]× (0, ∞), where Γ = H/L refers to the cross-sectional
aspect ratio, Re = ργL2/µ is the Reynolds number, M = 1/(γβµ) characterizes the
rheological behavior of the fluid, and B = σB2

0/(ργ) > 0 is the dimensionless effective
magnetic field inducing the flow. The kinematic Dirichlet boundary conditions now read
u1 = u2 = 0 at x = 0, 1 and y = 0, Γ. Note that the own magnetic field generated by the
charges motion is assumed to be negligible.

Further, the following conditions shall be considered as well:

‖u1‖Lp([0,1]×[0,Γ]), ‖u2‖Lp([0,1]×[0,Γ]) < ∞, ‖u3‖Lp([0,1]×[0,Γ]) � ε1 at z = 0,

‖u1‖Lp([0,1]×[0,Γ]), ‖u2‖Lp([0,1]×[0,Γ]), ‖u3‖Lp([0,1]×[0,Γ]) � ε2 at z→ ∞,

u1(x, y, z, 0) = u0
1, u2(x, y, z, 0) = u0

2 with ‖u0
1‖Lp(Ω), ‖u0

2‖Lp(Ω) < ∞,

‖u0
1‖Lp([0,1]×[0,Γ]), ‖u0

2‖Lp([0,1]×[0,Γ]), � ε2 at z→ ∞,

(5)

where p ≥ 2, (u0
1, u0

2) are the initial velocity distributions in xy-planes and 0 < ε2 � ε1 � 1.
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3. Previous Definitions and Summary of Results
3.1. Previous Definitions and Results

Consider the Lebesgue norm ‖·‖Lp to define the functional space Lp(Ω). In addition,
the usual Sobolev functional space of order m is considered as

Hm(Ω) =
{

u ∈ L2(Ω) : ∇m(u) ∈ L2(Ω)
}

,

with the norm

‖u‖Hm =
(
‖u‖2

L2 + ‖∇mu‖2
L2

) 1
2 .

As it will be specified later, we will establish the regularity criteria if ‖∂u1/∂z‖2
BMO,

‖∂u2/∂z‖2
BMO, ‖∇u1‖2

BMO, and ‖∇u2‖2
BMO are sufficiently small. Note that BMO denotes

the homogeneous space of ’bounded mean oscillations’ associated with the norm

‖ f ‖BMO
.
= sup

Rn ,r>0

1
|Br(x)|

∫
Br(x)

∣∣∣∣ f (y)− 1
|Br(y)|

∫
Br(y)

f (z)dz
∣∣∣∣dy.

For further details on BMO spaces, we refer the reader to Ref. [35].
In addition, we recall the following two lemmas.

Lemma 1. Let us consider 1 < q < p < ∞, then

‖u‖Lp ≤ A1‖u‖
1− q

p
BMO ‖u‖

q
p
Lq ,

where A1 is a constant.

For the proof of Lemma 1, we refer the reader to Ref. [35].

Lemma 2. Given the functions f , g, h ∈ C∞
c (R3), the following anisotropic inequality holds (see

Ref. [22]): ∣∣∣∣∫R3
f g h dx dy dz

∣∣∣∣ ≤ A2‖ f ‖
α−1

α
q ‖∂3 f ‖

1
α
s ‖g‖

α−2
α

2 ‖∂1g‖
1
α
2 ‖∂2g‖

1
α
2 ‖h‖2,

where A2 is a suitable constant, α > 2, 1 ≤ q, s ≤ ∞, and (α− 1)/q + 1/s = 1.

3.2. Statement of Results

The main results obtained in this analysis are stated as follows.

Theorem 1. Assume that (u0
1, u0

2) ∈ L2(Ω). In addition, assume that ‖∂u1/∂z‖2
BMO and

‖∂u2/∂z‖2
BMO are sufficiently small, then system (3)–(5) has a bounded global solution in [0, T]×Ω.

Theorem 2. Assuming that (u0
1, u0

2) ∈ Lp(Ω), then the system (3)–(5) has a global and bounded
solution in [0, T]×Ω.

Theorem 3. Assume that (u0
1, u0

2) ∈ H1(Ω), and that ‖∇u1‖2
BMO, ‖∇u2‖2

BMO, ‖∂u1/∂z‖2
BMO,

‖∂u2/∂z‖2
BMO are sufficiently small, then the system (3)–(5) has a global and bounded solution in

[0, T]×Ω.

The proposed theorems are shown in the coming sections.

4. Proof of Theorem 1

The first intention is to show that the two-dimensional velocity profiles (u1, u2) are
globally bounded when the fluid is flowing through the z-axis. This means that for any
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level in the z-axis, the fluid flow exhibits a regular behavior. The following proposition is
required to support the proof of Theorem 1.

Proposition 1. (Global bound of the two-dimensional velocity profile). Given the set of solu-
tions (u1, u2) to Equations (3)–(5) with initial distributions (u0

1, u0
2) and in the assumption of

‖∂u1/∂z‖2
BMO, ‖∂u2/∂z‖2

BMO � 1, the following global bound holds in [0, T]×Ω:

sup
0≤t≤T

(
‖u1‖2

L2 + ‖u2‖2
L2

)
+ C3

∫ T

0

[∥∥∥∥∂u1

∂z

∥∥∥∥2

L2
+

∥∥∥∥∂u2

∂z

∥∥∥∥2

L2

]
dt

≤ C4

(∥∥∥u0
1

∥∥∥2

L2
+
∥∥∥u0

2

∥∥∥2

L2

)
, (6)

where C3 and C4 are suitable constants related with the set of parameters involved in
Equations (3)–(5).

Proof. Multiplying Equation (3) by u1 and integrating

∫∫∫
Ω

u1
∂u1

∂t
dxdydz + I1 = −1 + M

Re

∫∫∫
Ω

(
∂u1

∂z

)2
dxdydz

+
M

6 Re

∫∫∫
Ω

(
∂u1

∂z

)4
dxdydz− B

∫∫∫
Ω
(u1)

2dxdydz,

which implies that

1
2

d
dt
‖u1‖2

L2 + I1 = −1 + M
Re

∥∥∥∥∂u1

∂z

∥∥∥∥2

L2
+

M
6 Re

∥∥∥∥∂u1

∂z

∥∥∥∥4

L2
− B‖u1‖2

L2 , (7)

where

I1 =
∫∫∫

Ω

(
u2

1
∂u1

∂x

)
dxdydz +

∫∫∫
Ω

(
u1u2

∂u1

∂y

)
dxdydz +

∫∫∫
Ω

(
u1u3

∂u1

∂z

)
dxdydz.

Note that we used Equation (1).
Developing further the integration on I1:

I1 =
∫∫∫

Ω
u2

1
∂u1

∂x
dxdydz−

∫∫∫
Ω

u2
1

2
∂u2

∂y
dxdydz−

∫∫∫
Ω

u2
1

2
∂u3

∂z
dxdydz

= −
∫∫∫

Ω

u2
1

2

[
∂u2

∂y
+

∂u3

∂z

]
dxdydz

=
∫∫∫

Ω

u2
1

2

(
∂u1

∂x

)
dxdydz =

∫ Γ

0

∫ ∞

0

[
u3

1
6

]1

0

dzdy.

Since u1 = 0 at x = 0, 1, then I1 = 0 and Equation (7) becomes

1
2

d
dt
‖u1‖2

L2 = −1 + M
Re

∥∥∥∥∂u1

∂z

∥∥∥∥2

L2
+

M
6 Re

∥∥∥∥∂u1

∂z

∥∥∥∥4

L2
− B‖u1‖2

L2

≤ −1 + M
Re

∥∥∥∥∂u1

∂z

∥∥∥∥2

L2
+

M C1

6 Re

∥∥∥∥∂u1

∂z

∥∥∥∥2

L2

∥∥∥∥∂u1

∂z

∥∥∥∥2

BMO
− B‖u1‖2

L2 ,

where we used Lemma 1.
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Now, provided that ‖∂u1/∂z‖2
BMO is sufficiently small, we can choose

C1

∥∥∥∥∂u1

∂z

∥∥∥∥2

BMO
≤ C2,

and therefore, the above equation becomes

1
2

d
dt
‖u1‖2

L2 ≤ −
1

Re

(
1 + M− M

6
C2

)∥∥∥∥∂u1

∂z

∥∥∥∥2

L2
− B‖u1‖2

L2 ,

which implies that

d
dt
‖u1‖2

L2 +
2

Re

(
1 + M− M

6
C2

)∥∥∥∥∂u1

∂z

∥∥∥∥2

L2
≤ −2B‖u1‖2

L2 ≤
∣∣B∣∣‖u1‖2

L2 . (8)

Similarly, multiplying Equation (4) by u2 and integrating again, we obtain

d
dt
‖u2‖2

L2 +
2

Re

(
1 + M− M

6
C2

)∥∥∥∥∂u2

∂z

∥∥∥∥2

L2
≤ −2B‖u2‖2

L2 ≤
∣∣B∣∣‖u2‖2

L2 . (9)

Adding Equations (8) and (9):

d
dt

(
‖u1‖2

L2 + ‖u2‖2
L2

)
+

2
Re

(
1 + M− M

6
C2

)(∥∥∥∥∂u1

∂z

∥∥∥∥2

L2
+

∥∥∥∥∂u2

∂z

∥∥∥∥2

L2

)
≤

∣∣B∣∣(‖u1‖2
L2 + ‖u2‖2

L2

)
.

In most realistic cases, the rheological parameter is small |M| � 1, and one can apply
the Gronwall inequality to obtain

sup
0≤t≤T

(
‖u1‖2

L2 + ‖u2‖2
L2

)
+ C3

∫ T

0

(∥∥∥∥∂u1

∂z

∥∥∥∥2

L2
+

∥∥∥∥∂u2

∂z

∥∥∥∥2

L2

)
dt ≤ C4

(∥∥∥u0
1

∥∥∥2

L2
+
∥∥∥u0

2

∥∥∥2

L2

)
,

in [0, T]×Ω, where C3, C4 depend on Re, and M and C2 should be upper bounded by
C2 < 6(1 + M)/M.

From a physical point of view, this upper bound only applies to shear-thinning fluids
with M > 0. This can be understood as a bound for the viscosity reduction that ensures
an exponential or sub-exponential decrease in (u1, u2) as z → ∞ so that the associated
integrals remain finite. For shear-thickening fluids with M < 0, in contrast, the increase
in viscosity with the applied shear ensures such exponential (or sub-exponential) decay
and, in practice, removes any condition on C2. For additional insights about the rheological
properties of Eyring–Powell fluids, the reader is referred to Ref. [34].

Note that the Theorem 1 is proved simply using the bound properties shown in
Proposition 1.
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5. Proof of Theorem 2

Proof. First, multiply Equation (3) by |u1|p−2 u1, p > 2, to make the following integration:

∫∫∫
Ω

up−1
1
p

∂up
1

∂t
dxdydz + I2 = −1 + (p− 1)M

Re

∫∫∫
Ω

(
u

p−2
2

1
∂u1

∂z

)2
dxdydz

+
M

6Re

∫∫∫
Ω

(
u

p−2
4

1
∂u1

∂z

)4
dxdydz− B

∫∫∫
Ω

up
1 dxdydz

< −(p− 1)
1 + M

Re

∫∫∫
Ω

(
u

p−2
2

1
∂u1

∂z

)2
dxdydz

+ (p− 1)
M

6Re

∫∫∫
Ω

(
u

p−2
2

1
∂u1

∂z

)4
dxdydz− B

∫∫∫
Ω

up
1 dxdydz, (10)

where

I2 =
∫∫∫

Ω
|u1|p

∂u1

∂x
dxdydz +

∫∫∫
Ω
|u1|p−1u2

∂u1

∂y
+
∫∫∫

Ω
|u1|p−1u3

∂u1

∂z
dxdydz

= −
∫∫∫

Ω

up
1

p
∂u2

∂y
dxdydz−

∫∫∫
Ω

up
1

p
∂u3

∂z
dxdydz

= −
∫∫∫

Ω

up
1

p

(
∂u2

∂y
+

∂u3

∂y

)
dxdydz

=
∫∫∫

Ω

up
1

p

(
∂u1

∂x

)
dxdydz

=
∫ Γ

0

∫ ∞

0

[
up+1

1
p(p + 1)

]1

0

dzdy.

As u1 = 0 at x = 0, 1, then I2 = 0 and Equation (10) simplifies to

d
dt
‖u1‖

p
Lp ≤ −p(p− 1)

1 + M
Re

∥∥∥∥u
p−2

2
1

∂u1

∂z

∥∥∥∥2

L2
+ p(p− 1)

M
6Re

∥∥∥∥u
p−2

2
1

∂u1

∂z

∥∥∥∥4

L4
− pB‖u1‖

p
Lp

≤ −p(p− 1)
1 + M

Re

∥∥∥∥u
p−2

2
1

∂u
∂z

∥∥∥∥2

L2

+ C5 p(p− 1)
M

6Re

∥∥∥∥u
p−2

2
1

∂u1

∂z

∥∥∥∥2

L2

∥∥∥∥u
p−2

2
1

∂u1

∂z

∥∥∥∥2

BMO
− pB‖u1‖

p
Lp .

Since by initial assumption
∥∥∥∥u

p−2
2

1 ∂u1/∂z
∥∥∥∥2

BMO
is sufficiently small, we can take

C5

∥∥∥∥u
p−2

2
1 ∂u1/∂z

∥∥∥∥2

BMO
≤ C6, and choosing

C7 =
p(p− 1)

Re

(
1 + M− C6M

6

)
,

the following holds

d
dt
‖u1‖

p
Lp + C7

∥∥∥∥u
p−2

2
1

∂u1

∂z

∥∥∥∥2

L2
≤ −pB‖u1‖

p
Lp ≤ |B|‖u1‖

p
Lp .
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The application of the Gronwall inequality yields

‖u1‖
p
Lp + C8

∫ T

o

∥∥∥∥u
p−2

2
1

∂u1

∂z

∥∥∥∥2

L2
dt ≤ C9

∥∥∥u0
1

∥∥∥p

Lp
,

where C8 and C9 refer to the Gronwall constants, compiling C6 and C7, that depend on the
dimensionless parameters of the problem. Again, C6 should obey the same upper bound
derived for C2.

Proceeding similarly, multiplying the Equation (4) by |u2|p−2u2, p > 2, we obtain

‖u2‖
p
Lp + C8

∫ T

o

∥∥∥∥u
p−2

2
2

∂u2

∂z

∥∥∥∥2

L2
dt ≤ C9

∥∥∥u0
2

∥∥∥p

Lp
,

with the same bounds for the involved constants.

We recall the previous discussion about these bounds in the shear-thinning and shear-
thickening cases.

6. Proof of Theorem 3

Before showing the Theorem 3, the following proposition is required.

Proposition 2. Assume
(
∇u0

1,∇u0
2

)
∈ L2(Ω). In addition, consider that ‖∇u1‖2

BMO, ‖∇u2‖2
BMO,

‖∂u1/∂z‖2
BMO, ‖∂u2/∂z‖2

BMO are sufficiently small, then the solution to the set of Equations (3)–(5)
satisfies

(
‖∇u1‖2

L2 + ‖∇u2‖2
L2

)
+

2
Re

∫ T

0

(∥∥∥∥ ∂

∂z
∇u1

∥∥∥∥2

L2
+

∥∥∥∥ ∂

∂z
∇u2

∥∥∥∥2

L2

)
dt

+
M

2Re

∫ T

0

(∥∥∥∥∂∇u1

∂z
∂u1

∂z

∥∥∥∥2

L2
+

∥∥∥∥∂∇u2

∂z
∂u2

∂z

∥∥∥∥2

L2

)
dt ≤ C14

[∥∥∥∇u0
1

∥∥∥2

L2
+
∥∥∥∇u0

2

∥∥∥2

L2

]
,

where C14 is a suitable constant related to the dimensionless parameters involved in the set of
Equations (3)–(5) and the BMO bound hypothesis.

Proof. Take the inner product in Equation (3) with ∆u1 and integrate with regards to the
spatial variables to obtain

−
∫∫∫

Ω
∇u1

∂∇u1

∂t
(∇u1)

2dxdydz−
∫∫∫

Ω
∇u1

(
∇
(

u1
∂u1

∂x
+ u2

∂u1

∂y
+ u3

∂u1

∂z

))
dxdxdz

=
1 + M

Re

∫∫∫
Ω

∂

∂z
(∇u1)

2dxdydz− M
2Re

∫∫∫
Ω

(
∂u1

∂z

)2(∂∇u1

∂z

)2
dxdydz

+ B
∫∫∫

Ω
(∇u1)

2,

which implies that

− d
dt
‖∇u1‖2

L2 = I3 −
1 + M

Re

∥∥∥∥∂∇u1

∂z

∥∥∥∥2

L2
− M

2Re

∥∥∥∥∂u1

∂z
∂∇u1

∂z

∥∥∥∥2

L2
− B‖∇u1‖2

L2 ,

where

I3 =
∫∫∫

Ω
∇
(

u1
∂u1

∂x
+ u2

∂u1

∂y
+ u3

∂u1

∂z

)
∇u1dxdydz



Axioms 2022, 11, 625 9 of 13

= −
∫∫∫

Ω

(
u1

∂2u1

∂x2 +

(
∂u1

∂x

)2
+ u2

∂2u1

∂x∂y
+

∂u1

∂y
∂u2

∂x
+ u3

∂2u1

∂x∂z
+

∂u1

∂z
∂u3

∂x

)(
∂u1

∂x

)
+

(
u1

∂2u1

∂y∂x
+

∂u1

∂x
∂u1

∂y
+ u2

∂2u1

∂y2 +
∂u1

∂y
∂u2

∂y
+ u3

∂2u1

∂z∂y
+

∂u1

∂z
∂u3

∂y

)(
∂u1

∂y

)
+

(
u1

∂2u1

∂z∂x
+

∂u1

∂x
∂u1

∂z
+ u2

∂2u1

∂y∂z
+

∂u1

∂y
∂u2

∂z
+ u3

∂2u1

∂z2 +
∂u1

∂z
∂u3

∂z

)(
∂u1

∂z

)
dxdydz

= −
∫∫∫

Ω

(
∂u1

∂x

)3
− ∂u1

∂x
∂u1

∂y
∂u2

∂x
− ∂u1

∂x
∂u1

∂z
∂u3

∂x
−
(

∂u1

∂y

)2 ∂u1

∂x
−
(

∂u1

∂y

)2 ∂u2

∂y

− ∂u1

∂y
∂u1

∂z
∂u3

∂y
−
(

∂u1

∂z

)2 ∂u1

∂x
− ∂u1

∂y
∂u1

∂z
∂u2

∂z
−
(

∂u1

∂z

)2 ∂u3

∂z
dxdydz.

Using Equation (1), we have

I3 = −
∫∫∫

Ω

(
∂u1

∂x

)3
− ∂u1

∂x
∂u1

∂y
∂u2

∂x
− ∂u1

∂x
∂u1

∂z
∂u3

∂x
−
(

∂u1

∂y

)2 ∂u1

∂x

−
(

∂u1

∂y

)2 ∂u2

∂y
− ∂u1

∂y
∂u1

∂z
∂u3

∂y
−
(

∂u1

∂z

)2 ∂u1

∂x

− ∂u1

∂y
∂u1

∂z
∂u2

∂z
+

(
∂u1

∂z

)2 ∂u1

∂x
+

(
∂u1

∂z

)2 ∂u2

∂y
dxdydz

≤
∫∫∫

Ω

∣∣∂u1

∂x
∣∣3 + ∣∣∂u1

∂x
∣∣∣∣∂u1

∂y
∣∣∣∣∂u2

∂x
∣∣+ ∣∣∂u1

∂y
∣∣2∣∣∂u1

∂x
∣∣+ ∣∣∂u1

∂y
∣∣2∣∣∂u2

∂y
∣∣+ ∣∣∂u1

∂y
∣∣∣∣∂u1

∂z
∣∣∣∣∂u3

∂y
∣∣

+
∣∣∂u1

∂y
∣∣∣∣∂u1

∂z
∣∣∂u2

∂z
∣∣+ ∣∣∂u1

∂z
∣∣2∣∣∂u2

∂y
∣∣dxdydz

≤
∫∫∫

Ω

∣∣∇u1
∣∣3 + ∣∣∇u1

∣∣2∣∣∇u2
∣∣+ ∣∣∇u1

∣∣3 + ∣∣∇u1
∣∣2∣∣∇u2

∣∣+ ∣∣∇u1
∣∣2∣∣∇u3

∣∣+ ∣∣∇u1
∣∣2∣∣∇u2

∣∣
+

∣∣∇u1
∣∣2∣∣∇u2

∣∣dxdydz

=
∫∫∫

Ω

(
2
∣∣∇u1

∣∣3 + 4
∣∣∇u1

∣∣2∣∣∇u2
∣∣+ ∣∣∇u1

∣∣2∣∣∇u3
∣∣)dxdydz,

where
∣∣∂ui/∂xj

∣∣ ≤ ∣∣∇ui
∣∣.

Since
∣∣∇u3

∣∣ is very small, we can choose
∣∣∇u3

∣∣ ≤ C10 to obtain

I3 ≤
∫∫∫

Ω

(
2
∣∣∇u1

∣∣3 + 4
∣∣∇u1

∣∣2∣∣∇u2
∣∣+ C10

∣∣∇u1
∣∣2∣∣)dxdydz

=
∫∫∫

Ω

(
2
∣∣∇u1

∣∣2∣∣∇u1
∣∣+ 4

∣∣∇u1
∣∣2∣∣∇u2

∣∣+ C10
∣∣∇u1

∣∣2)dxdydz.



Axioms 2022, 11, 625 10 of 13

Considering now the Young’s inequality

2
∫∫∫

Ω

[
1
2
(∇u1)

4 +
1
2
(∇u1)

2
]

dxdydz + 4
∫∫∫

Ω

[
1
2
(∇u1)

4 +
1
2
(∇u2)

2
]

dxdydz

+ C10

∫∫∫
Ω
(∇u1)

2dxdydz

=
∫∫∫

Ω
2(∇u1)

4dxdydz +
∫∫∫

Ω
(∇u1)

2dxdydz +
∫∫∫

Ω
(∇u2)

2dxdydz

+ C10

∫
(∇u1)

2dxdydz

= 2‖∇u1‖4
L4 + (1 + C10)‖∇u1‖2

L2 + ‖∇u2‖2
L2

≤ 2‖∇u1‖2
L2‖∇u1‖2

BMO + (1 + C10)‖∇u1‖2
L2 + ‖∇u2‖2

L2 ,

where we used Lemma 1.
Since ‖∇u1‖BMO is sufficiently small for our purposes, we can choose ‖∇u1‖BMO ≤ C11.

Therefore, I3 becomes

I3 ≤ (1 + C10 + 2C11)‖∇u1‖2
L2 + ‖∇u2‖2

L2

≤ C12

(
‖∇u1‖2

L2 + ‖∇u2‖2
L2

)
,

where C12 = (1 + C10 + 2C11).
Then, we arrive to

d
dt
‖∇u1‖2

L2 +
1 + M

Re

∥∥∥∥∂∇u1

∂z

∥∥∥∥2

L2
+

M
2Re

∥∥∥∥∂u1

∂z
∂∇u1

∂z

∥∥∥∥2

L2

≤ (C12 − B)‖∇u1‖2
L2 + ‖∇u2‖2

L2

≤ C13

(
‖∇u1‖2

L2 + ‖∇u2‖2
L2

)
, (11)

where C13 = C12 − B > 0.

Similarly, multiplying Equation (4) by ∇u2 and after integration by parts, we have

d
dt
‖∇u2‖2

L2 +
1 + M

Re

∥∥∥∥∂∇u2

∂z

∥∥∥∥2

L2
+

M
2 Re

∥∥∥∥∂u2

∂z
∂∇u2

∂z

∥∥∥∥2

L2

≤ C13

(
‖∇u1‖2

L2 + ‖∇u2‖2
L2

)
. (12)

Adding Equations (11) and (12),

d
dt

[
‖∇u1‖2

L2 + ‖∇u2‖2
L2

]
+

1 + M
Re

[∥∥∥∥ ∂

∂z
∇u1

∥∥∥∥2

L2
+

∥∥∥∥ ∂

∂z
∇u2

∥∥∥∥2

L2

]

+
M

2 Re

[∥∥∥∥∂∇u1

∂z
∂u1

∂z

∥∥∥∥2

L2
+

∥∥∥∥∂∇u2

∂z
∂u2

∂z

∥∥∥∥2

L2

]
≤ C13

(
‖∇u1‖2

L2 + ‖∇u2‖2
L2

)
.
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Finally, the Gronwall inequality yields

(
‖∇u‖2

L2 + ‖∇u‖2
L2

)
+

2
Re

∫ T

0

(∥∥∥∥ ∂

∂z
∇u1

∥∥∥∥2

L2
+

∥∥∥∥ ∂

∂z
∇u2

∥∥∥∥2

L2

)
dt

+
2 M
Re

∫ T

0

(∥∥∥∥∂∇u1

∂z
∂u1

∂z

∥∥∥∥2

L2
+

∥∥∥∥∂∇u2

∂z
∂u2

∂z

∥∥∥∥2

L2

)
dt ≤ C14

[∥∥∥∇u0
1

∥∥∥2

L2
+
∥∥∥∇u0

2

∥∥∥2

L2

]
,

where C14 depends on the dimensionless parameters of the problem.

Theorem 3 is shown by making use of the results obtained in Propositions 1 and 2.
Compared to the previous results, the unique bound required here is C12 > B, which

can be understood as a bound for the applied magnetic field.

7. Conclusions

In this paper, we developed the global existence of regular solutions for an Eyring–
Powell fluid flowing along a semi-infinite conduct with a rectangular cross-section of
dimensions [0, 1]× [0, Γ], subjected to a constant longitudinal magnetic field of (dimension-
less) magnitude B. The initial velocity profiles (u0

1, u0
2) were given in xy-planes along the

z-axis, and the flow developed in the region z > 0. The following results were provided.
Firstly, for (u0

1, u0
2) ∈ L2(Ω), Ω = [0, 1]× [0, Γ]× (0, ∞), a regular global solution was

shown to hold. A similar existence result was proved in the case (u0
1, u0

2) ∈ Lp(Ω), p > 2.
Finally, we obtained similar existence criteria for (u0

1, u0
2) ∈ H1(Ω).

The proposed results can be of practical use to support the resolution of the Eyring–
Powell fluid with numerical means. Prior to starting any numerical assessment, the regular-
ity of the solutions can be interpreted based on the results outlined in this work. As a future
research topic related to the proposed Eyring–Powell fluid, one can consider the possibility
of understanding the behavior of the solutions together with their increasing or decreasing
rate. A remarkable question to explore is related to the existence of an exponential profile
for a special class of solutions known as traveling waves. The fact of having an exponential
behavior leads to state the regularity of the solutions, and shall be compliant with the
obtained results.
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