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Abstract: This paper shows a visual analysis and the dependence relationships of COVID-19 mortality
data in 50 states plus Washington, D.C., from January 2020 to 1 September 2022. Since the mortality
data are severely skewed and highly dispersed, a traditional linear model is not suitable for the
data. As such, we use a Gaussian copula marginal regression (GCMR) model and vine copula-based
quantile regression to analyze the COVID-19 mortality data. For a visual analysis of the COVID-19
mortality data, a functional principal component analysis (FPCA), graphical model, and copula
dynamic conditional correlation (copula-DCC) are applied. The visual from the graphical model
shows five COVID-19 mortality equivalence groups in the US, and the results of the FPCA visualize
the COVID-19 daily mortality time trends for 50 states plus Washington, D.C. The GCMR model
investigates the COVID-19 daily mortality relationship between four major states and the rest of
the states in the US. The copula-DCC models investigate the time-trend dependence relationship
between the COVID-19 daily mortality data of four major states.

Keywords: COVID-19; mortality; functional PCA; Gaussian copula regression; graphical model; vine
copula-based quantile regression; copula-DCC

MSC: 62P10

1. Introduction

The COVID-19 outbreak began in the city of Wuhan in China’s Hubei province and
quickly became a global pandemic. The pandemic paralyzed the public health systems of
many countries throughout the world, resulting in the death of millions. The COVID-19
pandemic negatively affected the global economy, which has now been negatively impacted
further by the 2022 Russia–Ukraine war and the skyrocketing prices of commodities and
oil. Throughout this pandemic period, the negative events that have affected the global
economy have occurred sequentially and continuously like a tsunami.

To better protect world citizens, we need to think about how to prepare for negative
events such as these. Analyzing disasters such as the COVID-19 pandemic can provide
insights into how we can be better prepared for future disasters. In this paper, we focus
on US COVID-19 mortality data analyses to examine how the US COVID-19 mortality
rate spread geographically in different directions and formed clusters, as well as the
relationships between major states and their neighboring states in terms of COVID-19
mortalities. Through this study, we attempt to help to reduce the number of mortalities in
future pandemics or endemics by learning how COVID-19 affected US states’ mortalities
so we can revise US public health measures accordingly. To illustrate the visual and
data analyses, we apply functional data analysis (FDA) [1,2] and copula dependence
methods [3,4] to US COVID-19 mortality time-course data.

Before applying these methods to the US COVID-19 mortality data, we review the
COVID-19-related FDA and copula research papers studied so far. [5] studied the canonical
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correlation between confirmed and mortality cases in US COVID-19 data and used func-
tional principal component analysis (FPCA) to examine the types of variations in the data.
Forecasting based on dynamic FPCA with the cumulative confirmed cases in the US was
also explored in [5]. The time-series data of the COVID-19 confirmed and mortality cases
during the lockdown in Wuhan were analyzed using FPCA and the functional canonical
correlation analysis methods in [6]. FDA was used by [7] to model daily hospitalized,
deceased, intensive care unit (ICU), and return-home patient numbers throughout the
COVID-19 outbreak for the number of vaccinations, mortalities, infected people, recovered
people, and tested people in France. The imputation of missing data of COVID-19 hospi-
talized and intensive care curves in several Spanish regions using a function-on-function
regression model to estimate the missing values of the functional responses associated with
the hospitalized and intensive care curves was considered in [8]. By looking at a literature
review of FDA modeling for COVID-19 data, we can ensure that FPCA is an effective clus-
tering visualization analysis for time-course data as it provides a more informative way of
examining the sample covariance structure than PCA. Another useful statistical method we
consider for US COVID-19 mortality data analysis is the copula dependence method, as the
copula does not require the independence, linearity, and normality of the residuals (see ref-
erences [3,4,9–11]). In particular, we employ both the Gaussian copula marginal regression
(GCMR) model by [12] and vine copulas (proposed by [13] and explained in more detail
by [14–16]). The GCMR can deal with heteroscedasticity and the non-normal distribution
of the residuals by including a dispersion parameter to model and adjust for non-constant
variance. Vine copulas are a graphical model that represents a d-dimensional multivariate
density in a hierarchical manner [17,18]. The main determinants of the COVID-19 spread in
Italy were investigated by [19] through the use of a D-vine copula-based quantile regression
with a spatial autoregressive component for considering spatial dependence. Vine copulas
were used as they enhance model flexibility and can account for nonlinear relationships
and tail dependencies. Vine copulas also provide the model selection procedure with
a rank of the covariates based on their explanatory power with respect to the outcome.
The semi/non-parametric estimators of the health concentration (HC) curve that quantify
inequalities in COVID-19 infections and mortalities and help to identify the social classes
that are most at risk of infection and death from the virus in terms of the copula function,
as well as the copula-based estimators of the health Gini coefficient, were derived by [20].
Vine copulas applied to COVID-19 data were exploited for the dependencies between the
different sources of information as they combine structured datasets retrieved from official
sources and a big unstructured dataset of information collected from social media from [21].

The remainder of this paper is organized as follows. Section 2 provides a description
of the daily and cumulative mortality data. Graphical visualization by FPCA is introduced
in Section 3. Section 4 describes the copula methods (GCMR model, vine copula-based
quantile regression, and copula dynamic conditional correlation) used to analyze the data
and the discussion is presented in Section 5.

2. Data Description

We downloaded US COVID-19 daily cumulative mortality data from the USA Facts
website, which can be found here: https://static.usafacts.org/public/data/covid-19/covid_
deaths_usafacts.csv, accessed on 2 September 2022. The time period of the data collected
from the website was 22 January 2020 to 1 September 2022. We converted the US COVID-19
daily cumulative mortality data to the daily COVID-19 mortality data in 50 states and
Washington, D.C. After converting the cumulative COVID-19 mortality data to the daily
COVID-19 mortality data in 50 states and Washington, D.C., we found that the original data
needed to be manually corrected due to some of the daily cumulative COVID-19 mortality
data for some states being inconsistent and recorded in such a way that the previous day’s
cumulative number of COVID-19 mortalities was higher than the current day’s number
of mortalities.

https://static.usafacts.org/public/data/covid-19/covid_deaths_usafacts.csv
https://static.usafacts.org/public/data/covid-19/covid_deaths_usafacts.csv
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Table 1 shows the summary statistics for the daily COVID-19 mortality data in 50 states
and Washington D.C. and the 2022 US state populations. In Table 1, we can see that for our
dataset, the state with the highest total number of COVID-19 mortalities was California (CA)
with 93,924, followed by Texas (TX) with 88,578, Florida (FL) with 80,027, and New York
(NY) with 70,877. All 50 states and Washington, D.C. had a positive skewness distribution
of daily COVID-19 mortalities. This means that more people could die in the near future
because of COVID-19. All 50 states and Washington, D.C. also had high kurtosis. This
means that the daily number of COVID-19 mortalities had high variation clustering similar
to a highly volatile financial market pattern. Southern states such as AL (0.40%), AZ (0.41%),
MS (0.43%), OK (0.42%), and WV (0.41%) had higher COVID-19 mortality rates based on
2022 state populations than other states in the US. In Figure 1, we visualize the total number
of COVID-19 mortalities in each state in the US. In Figure 1, it can be seen that the number
of COVID-19 mortalities in New York rapidly increased at the beginning of the pandemic,
but California, Texas, and Florida eventually surpassed New York in terms of COVID-19
mortalities and now lead the US in mortalities.

Table 1. Summary Statistics for US Daily COVID-19 Mortalities and 2022 US State Populations.

AK AL AR AZ CA CO CT DC DE FL GA HI IA ID IL IN KS

Mean 1.3 21.2 12.5 31.3 98.6 13.8 11.6 1.5 3.2 84 41.7 1.7 10.4 5.4 40 25.7 9.4

Median 0 7 6 6 54 6 1 0 0 44 25 0 0 1 22 13 0

SD 5.2 39 19.5 58.1 142.2 25.3 23.3 2.9 7.6 152.2 92.8 4.1 29.1 9.6 53.1 58.7 27.4

Kurtosis 87 21.4 70.6 14.1 6 36.2 13.5 56.5 104.6 29.2 516.8 44.4 108 9.7 6.5 471.8 44.6

Skewness 8.5 3.9 5.8 3.3 2.4 4.8 3.2 5.4 7.9 4.7 19.7 5 8.1 2.8 2.3 18.6 5.5

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Maximum 68 389 322 498 704 309 204 45 133 1552 2499 59 518 65 401 1546 371

Total 1281 20,160 11,923 29,852 93,924 13,148 11,034 1382 3042 80,027 39,772 1644 9940 5115 38,161 24,454 8958

Count 953 953 953 953 953 953 953 953 953 953 953 953 953 953 953 953 953

Population 738,023 5,073,187 3,030,646 7,303,398 39,995,077 5,922,618 3,612,314 644,743 1,008,350 22,085,563 10,916,760 1,474,265 3,219,171 1,893,410 12,808,884 6,845,874 2,954,832

Mortality Rate 0.17% 0.40% 0.39% 0.41% 0.23% 0.22% 0.31% 0.21% 0.30% 0.36% 0.36% 0.11% 0.31% 0.27% 0.30% 0.36% 0.30%

KY LA MA MD ME MI MN MO MS MT NC ND NE NH NJ NM NV

Mean 17.5 18.8 22.1 15.9 2.6 39.9 13.4 21 13.4 3.7 27.6 2.3 4.7 2.8 36.3 8.9 12

Median 6 10 10 9 1 7 7 3 6 1 11 0 0 1 9 5 3

SD 33.7 27.3 37 29 6 71.9 18.8 104 20 6.9 56.4 6.5 15.6 5 108.6 10.7 21.6

Kurtosis 44.6 40.5 26.3 159.5 48.6 10.7 6.2 603.5 9.6 14.2 186.9 220.7 433.7 24.1 213 7.4 82.2

Skewness 5.4 4.6 3.9 10.1 5.6 2.9 2.3 22.3 2.6 3.3 10.5 11.6 17.8 3.9 12.7 2.1 6.4

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Maximum 448 362 459 549 83 566 140 2881 177 55 1172 140 399 59 2037 99 365

Total 16,679 17,877 21,035 15,199 2512 38,038 12,806 19,993 12,794 3504 26,335 2232 4455 2662 34,567 8465 11,400

Count 953 953 953 953 953 953 953 953 953 953 953 953 953 953 953 953 953

Population 4,539,130 4,682,633 7,126,375 6,257,958 1,369,159 10,116,069 5,787,008 6,188,111 2,960,075 1,103,187 10,620,168 800,394 1,988,536 1,389,741 9,388,414 2,129,190 3,185,426

Mortality Rate 0.37% 0.38% 0.30% 0.24% 0.18% 0.38% 0.22% 0.32% 0.43% 0.32% 0.25% 0.28% 0.22% 0.19% 0.37% 0.40% 0.36%

NY OH OK OR PA RI SC SD TN TX UT VA VT WA WI WV WY

Mean 74.4 41.4 17.5 8.8 49 3.8 18.8 3.1 28.8 92.9 5.2 22.5 0.7 14.7 15.8 7.7 2

Median 23 0 0 3 22 0 7 0 8 45 2 11 0 6 6 2 0

SD 149.7 125 66.9 14.1 69.9 12.1 30.5 8.4 90.6 103.5 7.6 38.4 1.5 24.1 25 14.5 7.7

Kurtosis 23.9 185.4 26 13.6 7.1 53.1 12.1 19.2 338.9 2.5 7.6 34.1 17.5 19.8 11 34.3 39.2

Skewness 4.4 10.9 4.9 3 2.3 6.6 3 4 15.6 1.4 2.3 4.9 3.3 3.5 2.9 4.6 5.7

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Maximum 1460 2559 548 134 547 137 241 78 2174 798 65 404 16 256 206 170 81

Total 70,877 39,490 16,720 8415 46,716 3645 17,869 2993 27,487 88,578 4981 21,439 707 14,039 15,084 7291 1881

Count 953 953 953 953 953 953 953 953 953 953 953 953 953 953 953 953 953

Population 20,365,879 11,852,036 4,000,953 4,318,492 13,062,764 1,106,341 5,217,037 901,165 7,023,788 29,945,493 3,373,162 8,757,467 646,545 7,901,429 5,935,064 1,781,860 579,495

Mortality Rate 0.35% 0.33% 0.42% 0.19% 0.36% 0.33% 0.34% 0.33% 0.39% 0.30% 0.15% 0.24% 0.11% 0.18% 0.25% 0.41% 0.32%

Figure 2 shows the estimated CPDAG (completed partially directed acyclic graph) for
the COVID-19 daily cumulative mortality data (22 January 2020 to 1 September 2022) for
50 states and Washington, D.C. The CPDAG uniquely represents a Markov equivalence
class and contains undirected and directed edges. We estimated the equivalence class
of a directed acyclic graph (DAG) from the observational data using the PC algorithm
(named after its inventors Peter Spirtes and Clark Glymour) found in the data using the
pcalg R package [22]. We defined the independence test (partial correlations) by using
the gaussCItest command in pcalg and then defined the sufficient statistics based on the
correlations of our data (51 variables and n = 953 observations). We estimated the CPDAG
with alpha = 0.008. Using the Rgraphviz R package, we created Figure 2, which shows the
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approximately five equivalence classes of the COVID-19 daily cumulative mortality data
for 50 states and Washington, D.C. The major equivalence group included Florida, Geor-
gia, Virginia, Colorado, Michigan, New Hampshire, Ohio, Tennessee, Missouri, Montana,
Kentucky, West Virginia, Wyoming, Idaho, Delaware, Maryland, Indiana, Pennsylvania,
Louisiana, Mississippi, and Texas. The second equivalence group included North Car-
olina, Nevada, Arkansas, Nebraska, Kansas, Oklahoma, Illinois, Minnesota, and Wisconsin.
The third equivalence group included Arizona, Iowa, California, Rhode Island, South
Dakota, and North Dakota. The next equivalence group included Massachusetts, Washing-
ton, D.C., New Jersey, New York, and Connecticut. The states in this group are located in
the northeast and New York City (NYC) was an early epicenter of the COVID-19 pandemic
in the United States and approximately 203,000 cases of laboratory-confirmed COVID-19
were reported in NYC during the first 3 months of the pandemic. The crude fatality rate
among confirmed cases was 9.2% overall and 32.1% among hospitalized patients according
to the CDC (Centers for Disease Control and Prevention)’s Morbidity and Mortality Weekly
Report https://www.cdc.gov/mmwr/volumes/69/wr/mm6946a2.htm, accessed on 12
September 2022. The graphical relationship between the northeast states belonging to this
equivalence group and the daily COVID-19 mortality data was investigated using the vine
copula method in Section 4. The last equivalence group included Alaska, Oregon, Vermont,
Maine, and Hawaii. In this group, we found that although Alaska and Hawaii are isolated
from the mainland US, they belonged to the same equivalence group as the mainland states
Oregon, Vermont, and Maine. Even though Washington is very close to Oregon, it did not
belong to any equivalence groups, as seen in Figure 2. We also found that New Mexico
and Alabama did not belong to any equivalence groups, as seen in Figure 2. With the
cumulative mortality data from 22 January 2020 to 1 September 2022 from 50 states plus
Washington, D.C., the graphical model produced by the CPDAG seen in Figure 2 shows
that the effect of geographical distance mainly influenced the grouping of the equivalence
classes. However, there were some states that were not a close distance to most of the other
states in the same equivalence class. Similar COVID-19 mortality data could be one reason
for this. For example, AK (0.17%), HI (0.11%), ME (0.18%), OR (0.19%), and VT (0.11%) in
the first equivalence group on the left in Figure 2 had similar mortality rates ranging from
0.11% to 0.19%; CT (0.31%), DC (0.21%), MA (0.30%), NJ (0.37%), and NY (0.35%) in the
first equivalence group on the right in Figure 2 had similar mortality rates ranging from
0.30% to 0.37%, except for DC (0.21%). AZ (0.41%), CA (0.23%), IA (0.31%), ND (0.28%),
SD (0.33%), and RI (0.33%) in the equivalence group located in the middle of Figure 2 had
similar mortality rates ranging from 0.28% to 0.33%, except for the two neighboring states
AZ (0.41%) and CA (0.21%). From these findings, we can conclude that the geographical
location and mortality rate may be the main factors for creating the equivalence classes in
the graphical model by the estimated CPDAG. However, there may be some other reasons
such as each state government’s budget for health and hospitals. Using the daily COVID-19
mortality data, NY, the first US state with a COVID-19 outbreak in 2020, has a unique daily
COVID-19 mortality pattern by employing functional PCA, as seen in the following section.

https://www.cdc.gov/mmwr/volumes/69/wr/mm6946a2.htm
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Figure 1. COVID-19 daily cumulative mortality data for 50 states and Washington, D.C. (22 January
2020 to 1 September 2022).
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Figure 2. Estimated CPDAG with COVID-19 daily cumulative mortality data from 50 states and
Washington, D.C. (22 January 2020 to 1 September 2022).

3. Graphical Visualization by FPCA

The basic concept of FDA is to represent a function by a linear combination of basis
elements. FDA and its applications are explained by [23,24]. The basic concept of FPCA
decomposes density variations into a set of orthogonal principal component functions
that maximize the variance along each component [2]. FPCA is defined in a separable
Hilbert space of square-integrable random functions. Diverse basis functions, such as
B-spline vectors, the Fourier series, or an empirical basis are used in FPCA. FPCA provides
a more informative way of examining the sample covariance structure than the PCA
proposed by [25]. We used the Fourier series as the basis function for FPCA in this research
because the Fourier series is used for periodic or near periodic seasonal data and COVID-19
is a contagious disease caused by the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), which is affected by the weather. As with the preliminary data analysis,
we employed FPCA to determine the factors (i.e., principal components) explaining the
total variation in the daily COVID-19 mortality data in 50 states and Washington, D.C.
Table 2 shows the percentage variations (PV) and cumulative percentage variations (CPV)
in the daily COVID-19 mortality data in 50 states and Washington, D.C. The PV of the
first functional principal component was 0.8194, the PV of the second functional principal
component was 0.1125, the PV of the third functional principal component was 0.0512,
the PV of the fourth functional principal component was 0.0117, and the PV of the fifth
functional principal component was 0.0052 so the CPV of the five functional principal
components was 1.000.
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Table 2. Total Cumulative Percentage Variations in the Daily COVID-19 Mortality Data of Five
Functional Principal Components for Daily COVID-19 Mortality Data.

FPC1 FPC2 FPC3 FPC4 FPC5

PV 0.8194 0.1125 0.0512 0.0117 0.0052

CPV 0.8194 0.9320 0.9831 0.9948 1.0000

Let yi(t) be the number of daily COVID-19 mortalities in 50 states and Washington, D.C.
(i = 1, 2, · · ·, 51) in discrete time, t = 1, 2, · · ·, 953. yi(t) can be stated as yi(t) = xi(t) + ei(t),
with xi(t) denoting their underlying smooth functions and ei(t) indicating the unobserved
error components. The functional form of xi(t) is given by the sum of the weighted basis
functions, φk(t), across the set of times T.

xi(t) =
K

∑
k=1

cikφk(t),

where K is the number of basis functions. In this study, a Fourier basis is used to represent
smooth functions as the basis function due to its flexibility and computational advantages.
Here, our goal is to obtain a smooth function that fits well into the observed return series,
yi(t). We consider the following smoothing criterion:

SSE(y|c) =
n

∑
i=1

T

∑
t=1

[
yi(t)−

K

∑
i=1

cikφk(t)

]2

= (y−Φc)′(y−Φc),

where Φ is a K × T matrix, with Φk = φk(t). We have K = 5 and T = 953 in this study.
Therefore, the Fourier series of the functional forms is φ1(t) = 1, φ2(t) = sin(wt), φ3(t) =
cos(wt), φ4(t) = sin(2wt), and φ5(t) = cos(2wt), where the parameter w = 2π

T . For further
details, see [26]. We estimate the vector of coefficients c by minimizing the smoothing
criterion. In particular, we utilize the generalized cross-validation measure GCV developed
by [27]:

GCV(λ) =

(
n

n− d f (λ)

)(
SSE

n− d f (λ)

)
,

where d f (λ) is a measure of the effective degree of freedom of the fit defined by smoothing
parameter λ, and the best value for λ is the one that minimizes the criterion. In particular,
we obtain the smoothing parameter of λ = 1010.2 by using our sample data. Given the
estimates ĉ, we are able to obtain the smoothed return series ŷ = Φĉ.

After having ŷi(t), the next step is to seek a set of orthogonal functions, ψj(t) such that

〈ψj(t), ψk(t)〉 =
∫

ψj(t)ψk(t)dt = 0, for all j 6= k, and

‖ψj(t)‖2 =〈ψj(t), ψk(t)〉 = 1 for all j.

For example, ψ1(t) can be achieved by maximizing the following objective function:

∑
i
(〈ŷi(t), ψ1(t)〉)2 = ∑

i

(∫
ŷi(t)ψ1(t)dt

)2
,

subject to the constraint ‖ψ1(t)‖2 = 1. Note that the function ψ1(t) is the first principal
component.

Figures 3 and 4 show a two-dimensional (2D) plot with two main functional principal
components and a 3D plot with three main functional principal components from the
FPCA. The 3D plot clearly shows that Texas and Florida had similar time course patterns
for daily COVID-19 mortalities, whereas California and New York had their own time
course patterns for daily COVID-19 mortalities. We can make an inference that the location
and population size of a state are related to the number of COVID-19 mortalities in the
US because California is located on the west coast, New York is an east-coast state, Texas
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and Florida are located in the south, and all of these states have high population sizes.
However, the rest of the states other than California, Florida, New York, and Texas had
similar time course patterns for daily COVID-19 mortalities. This is an interesting finding
in this research.

Figure 3. 2D Plot of FPCA for Daily COVID-19 Mortality Data.

Figure 4. 3D Plot of FPCA for Daily COVID-19 Mortality Data.
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4. Copula Methods

The traditional linear regression model cannot be used for COVID-19 data analysis
because of the violations of linear regression assumptions such as the normality of residuals
and the homogeneity of the residuals’ variances. To verify the assumption violation for the
linear regression with the COVID-19 daily mortality data, we performed a linear regression
for NY with the CA, TX, and FL COVID-19 daily mortality data (22 January 2020 to 1
September 2022). In Figure 5, we can see that the residual errors of the linear regression
for NY with the CA, TX, and FL COVID-19 daily mortality data did not follow a normal
distribution. The homogeneity of the variance assumptions can be checked by examining
the scale-location plot. It can be seen that the variances in the residual points fluctuated
with the values of the fitted outcome variables, suggesting non-constant variances in
the residual errors. We also computed the Breusch–Pagan score of the hypothesis of the
constant error variance against the alternative that the error variance changes with the
level of the response. The Chi-square test statistic was 28.78 and the p-value was 0.000.
The test confirmed that the linear regression had non-constant variances in the residual
errors. There existed outliers and high leverage points in the linear regression, as shown in
Figure 5. From this linear regression with the COVID-19 mortality data, we can say that the
linear regression assumptions were violated. To rectify the difficulties, we need to use the
copula method on the COVID-19 mortality data.

Figure 5. Plots of linear regression for NY with CA, TX, FL cumulative daily COVID-19 mortality
data (22 January 2020 to 1 September 2022).
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4.1. Graphical Visualization Using Copula

A copula is a multivariate distribution function defined by the unit [0, 1]2 with uni-
formly distributed marginals and describes the dependence mechanism between two
random variables by eliminating the influence of the marginals or any monotone trans-
formations of the marginals [3,4,11]. A bivariate distribution function, F(y1, y2), can be
represented as a function of its marginal distribution of Y1 and Y2, F(y1) and F(y2), by using
a two-dimensional copula C(·, ·). More specifically, the copula may be written as

F(y1, y2) = C(F(y1), F(y2)) = C(u, v),

where u and v are the continuous empirical marginal distribution functions F(y1) and
F(y2), respectively. Note that u and v have a uniform distribution U(0, 1).

Our study employs the Gaussian copula regression method to investigate the rela-
tionship between the state with the highest mortality and the rest of the states in the
US. Let F(·|xi) be the marginal cumulative distribution for xi, then, the joint cumulative
distribution function in the Gaussian copula regression can be expressed as

Pr(Y1 ≤ y1, . . . , Yn ≤ yn) = Φn

(
ε1, . . . , εn; P

)
,

where εi indicates a stochastic error that follows a multivariate standard normal distribution
with a correlation matrix P. See [12] for more details.

Vine copulas were proposed by [13] to explain a multivariate dependence structure
using copula due to the difficulty of expressing a multivariate joint distribution by cop-
ula [14–16]. Vine copulas are a graphical model that represent a d-dimensional multivariate
density based on a pair-copula method given by [16] as follows:

f (y; φ) =
d

∏
k=1

fk(yk)×

d−1

∏
i=1

d−i

∏
j=1

cj,j+i|(j+1):(j+i−1)

(
F
(
yj | yj+1, · · · , yj+i−1

)
, F
(
yj+i | yj+1, · · · , yj+i−1

)
; βj,j+i|(j+1):(j+i−1)

)
,

where fk(xk) are the marginal densities, cj,j+i|(j+1):(j+i−1) are the bivariate copula densities
with parameter(s) βj,j+i|(j+1):(j+i−1), and φ is the set of all parameters in the D-vine density.

Figure 6 shows the marginal effects of a D-vine quantile regression model (10%, 50%,
90%) for the target variable DC with east coast states (CT, DE, FL, GA, MA, MD, NC, NH,
NJ, NY, OH, PA, RI, SC, VA, WV) on the COVID-19 daily cumulative mortality data from
22 January 2020 to 1 September 2022. By using D-vine-based quantile regression with a
selected copula out of all copula parametric and nonparametric families [18], we showed
the linear and increasing marginal effects of each east coast state on Washington, D.C., as
seen in Figure 6.

Figure 7 shows the R-vine copula [28]-based hierarchical tree dependence structure of
five states’ (NY, CT, MA, NJ, DC) daily COVID-19 mortalities from 22 January 2020 to 1
September 2022 using the RVineStructureSelect command in the VineCopula R package.
New York is located in the center among five east coast states and had relatively high
Kendall’s tau correlations with CT (0.46), MA (0.47), NJ (0.46), and DC (0.44) in the level-one
tree. This reminds us that New York City (NYC) was the early epicenter of the COVID-
19 pandemic in the United States and affected neighboring states’ COVID-19 mortality
numbers. In the level-two tree, NY had a 0.26 Kendall’s tau correlation with NJ and DC, a
0.27 Kendall’s tau correlation with DC and MA, and a 0.26 Kendall’s tau correlation with
MA and CT. In the level-three tree, NY and MA had a 0.21 Kendall’s tau correlation with
DC and CT and a 0.1 Kendall’s tau correlation with MA and NJ. In the level-four tree, CT
and NJ had 0.14 Kendall’s tau correlation with NY, MA, and DC. We can see the conditional
dependence relationships among five east coast states in Figure 7.
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Figure 6. Plots of marginal effects of a D-vine quantile regression model (10%, 50%, 90%) for DC on
the COVID-19 daily cumulative mortality data for CT, DE, FL, GA, MA, MD, NC, NH, NJ, NY, OH,
PA, RI, SC, VA, WV (22 January 2020 to 1 September 2022).

Figure 7. R-vine copula model-based hierarchical tree structure plots of daily COVID-19 mortality
data (22 January 2020 to 1 September 2022).
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4.2. Gaussian Copula Marginal Regression

Since a traditional multiple linear regression is not appropriate for a non-normal and
dispersed COVID-19 mortality data analysis, we applied the daily COVID-19 mortality data
to the Gaussian copula marginal regression (GCMR) model using the gcmr R package. For
our data analysis, GCMR models enable one to specify the correlation matrix of the errors.
For this study, the correlation matrices of the autoregressive moving average (ARMA)(0,0),
ARMA(0, 1), ARMA(1, 0), and ARMA(1, 1) were considered. To select the best GCMR
model for the correlation matrix, four different GCMR models were compared with the
Akaike information criterion (AIC). Before applying the GCMR models to the COVID-19
daily mortality data, we performed a stationary test using the augmented Dickey–Fuller
statistic. Table 3 shows that the mortality data from the four big states (CA, TX, FL, NY) were
stationary. We applied the GCMR models with a correlation matrix of ARMA(p,q), where
p = 0, 1 and q = 0, 1. Table 4 shows that the GCMR model that best fit the daily COVID-
19 mortality data of CA was the GCMR model with a correlation matrix of ARMA(0,0),
whereas the best fitting model for the daily COVID-19 mortality data of TX, FL, and NY was
the GCMR model with a correlation matrix of ARMA(1,1). For the mortality data of CA, we
found the following positively statistically significant states (AK 0.105, FL 0.249, GA 0.090,
ID 0.070, NE 0.057, NY 0.072, TX 0.430, VT 0.071, WI 0.201) and the following negatively
statistically significant states (HI −0.099, KY −0.091, MO −0.067, MT −0.083, OR −0.115,
TN −0.108). Even though NY is far away from CA, there was a positive statistical effect on
the mortality data of CA of 0.072. TX had the largest statistical effect on the mortality data
of CA of 0.43. For the mortality data of TX, we found the following positively statistically
significant states (AK 0.053, CA 0.273, CO 0.176, DC 0.050, FL 0.092, HI 0.051, MA 0.074,
OH 0.077, WA 0.054) and the following negatively statistically significant states (AR−0.067,
GA −0.067, IA −0.050, ID −0.049, MN −0.085). CA had the largest statistical effect on
the mortality data of TX of 0.273. For the mortality data of FL, we found the following
positively statistically significant states (CA 0.391, DC 0.069, HI 0.106, LA 0.078, NC 0.130,
OH 0.225, TX 0.188) and the following negatively statistically significant states (AZ −0.075,
NY −0.089). It is interesting to see that NY had a negative statistically significant effect
on the mortality data of FL. CA had the largest statistical effect on the mortality data of
FL of 0.391. For the mortality data of NY, we found the following positively statistically
significant states (AR 0.169, CA 0.063, DC 0.069, HI 0.062, IN 0.094, MA 0.116, NM 0.130,
UT 0.094, WV 0.139, WY 0.073) and the following negatively statistically significant states
(GA −0.095, MT −0.086, PA −0.079). PA had a negative statistically significant effect on
the mortality data of NY despite PA being a neighboring state of NY.

Table 3. Stationary Test Using Augmented Dickey–Fuller Statistic.

CA TX FL NY

Dickey–Fuller Statistic −18.02 −12.118 −21.365 −15.552

p-value 0.01 0.01 0.01 0.01

Stationary Yes Yes Yes Yes
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Table 4. GCMR results.

CA Estimate Std. Error z value p-Value TX Estimate Std. Error z Value p-Value FL Estimate Std. Error z Value p-Value NY Estimate Std. Error z Value p-Value

Intercept 0.007 0.036 0.210 0.834 Intercept 0.334 0.077 4.355 0.000 Intercept −0.019 0.065 −0.292 0.770 Intercept 0.030 0.055 0.542 0.588

AK 0.105 0.028 3.813 0.000 AK 0.053 0.021 2.505 0.012 AK 0.000 0.032 0.014 0.989 AK −0.032 0.024 −1.359 0.174

AL −0.026 0.030 −0.865 0.387 AL 0.024 0.023 1.031 0.303 AL 0.009 0.034 0.262 0.793 AL −0.036 0.026 −1.424 0.154

AR −0.012 0.035 −0.355 0.723 AR −0.067 0.029 −2.338 0.019 AR −0.071 0.042 −1.683 0.092 AR 0.169 0.032 5.316 0.000

AZ 0.054 0.032 1.686 0.092 AZ 0.022 0.025 0.866 0.386 AZ −0.075 0.037 −2.013 0.044 AZ 0.041 0.028 1.452 0.146

CO −0.008 0.024 −0.317 0.752 CA 0.273 0.025 11.032 0.000 CA 0.391 0.037 10.621 0.000 CA 0.063 0.029 2.161 0.031

CT −0.034 0.034 −0.999 0.318 CO 0.176 0.019 9.321 0.000 CO 0.016 0.029 0.549 0.583 CO −0.023 0.022 −1.041 0.298

DC 0.001 0.029 0.022 0.982 CT −0.004 0.025 −0.158 0.874 CT 0.026 0.038 0.686 0.493 CT 0.011 0.028 0.377 0.706

DE 0.063 0.027 2.383 0.017 DC 0.050 0.022 2.265 0.024 DC 0.069 0.033 2.088 0.037 DC 0.069 0.025 2.764 0.006

FL 0.249 0.026 9.718 0.000 DE −0.017 0.020 −0.879 0.380 DE −0.045 0.029 −1.534 0.125 DE 0.043 0.022 1.951 0.051

GA 0.090 0.034 2.655 0.008 FL 0.092 0.022 4.260 0.000 GA −0.012 0.039 −0.318 0.751 FL −0.047 0.024 −1.939 0.053

HI −0.099 0.031 −3.213 0.001 GA −0.067 0.026 −2.566 0.010 HI 0.106 0.035 3.023 0.003 GA −0.095 0.029 −3.271 0.001

IA 0.030 0.028 1.042 0.297 HI 0.051 0.024 2.174 0.030 IA 0.018 0.033 0.544 0.586 HI 0.062 0.026 2.353 0.019

ID 0.070 0.030 2.314 0.021 IA −0.050 0.022 −2.290 0.022 ID −0.019 0.034 −0.551 0.581 IA −0.004 0.024 −0.184 0.854

IL −0.015 0.041 −0.361 0.718 ID −0.049 0.023 −2.156 0.031 IL 0.052 0.049 1.059 0.289 ID −0.026 0.026 −1.014 0.310

IN 0.069 0.040 1.698 0.089 IL −0.022 0.033 −0.679 0.497 IN 0.013 0.047 0.280 0.780 IL 0.011 0.036 0.303 0.762

KS 0.003 0.028 0.113 0.910 IN −0.006 0.032 −0.199 0.842 KS 0.010 0.031 0.316 0.752 IN 0.094 0.035 2.653 0.008

KY −0.091 0.033 −2.709 0.007 KS −0.018 0.020 −0.881 0.378 KY 0.041 0.040 1.014 0.311 KS 0.019 0.023 0.831 0.406

LA −0.001 0.030 −0.039 0.969 KY 0.020 0.027 0.752 0.452 LA 0.078 0.037 2.105 0.035 KY 0.052 0.030 1.746 0.081

MA 0.014 0.031 0.462 0.644 LA 0.000 0.025 −0.014 0.989 MA −0.067 0.042 −1.592 0.111 LA 0.038 0.028 1.352 0.176

MD 0.057 0.029 1.952 0.051 MA 0.074 0.029 2.574 0.010 MD 0.062 0.036 1.730 0.084 MA 0.116 0.032 3.596 0.000

ME −0.029 0.025 −1.137 0.255 MD 0.046 0.024 1.914 0.056 ME −0.013 0.029 −0.452 0.651 MD 0.015 0.027 0.549 0.583

MI 0.025 0.030 0.816 0.415 ME −0.028 0.020 −1.417 0.157 MI 0.059 0.034 1.724 0.085 ME −0.050 0.022 −2.285 0.022

MN −0.036 0.036 −0.987 0.324 MI −0.026 0.023 −1.139 0.255 MN 0.081 0.043 1.890 0.059 MI −0.017 0.025 −0.666 0.506

MO −0.067 0.030 −2.203 0.028 MN −0.085 0.029 −2.958 0.003 MO 0.058 0.034 1.709 0.087 MN 0.040 0.032 1.232 0.218

MS 0.025 0.035 0.720 0.472 MO −0.010 0.023 −0.432 0.666 MS −0.024 0.040 −0.602 0.547 MO −0.005 0.026 −0.188 0.851

MT −0.083 0.032 −2.545 0.011 MS −0.012 0.027 −0.440 0.660 MT 0.049 0.037 1.319 0.187 MS −0.024 0.030 −0.811 0.417

NC −0.002 0.036 −0.054 0.957 MT −0.003 0.025 −0.111 0.911 NC 0.130 0.041 3.144 0.002 MT −0.086 0.028 −3.065 0.002

ND −0.031 0.027 −1.173 0.241 NC 0.011 0.028 0.394 0.694 ND −0.028 0.031 −0.895 0.371 NC 0.042 0.031 1.342 0.180

NE 0.057 0.027 2.102 0.036 ND −0.005 0.021 −0.225 0.822 NE −0.058 0.031 −1.902 0.057 ND −0.032 0.023 −1.355 0.175

NH 0.016 0.028 0.574 0.566 NE −0.018 0.021 −0.890 0.374 NH −0.001 0.032 −0.041 0.967 NE −0.023 0.023 −1.015 0.310

NJ 0.041 0.030 1.363 0.173 NH −0.006 0.021 −0.274 0.784 NJ 0.017 0.044 0.393 0.695 NH 0.009 0.024 0.366 0.714

NM 0.052 0.035 1.459 0.145 NJ 0.014 0.031 0.444 0.657 NM −0.059 0.044 −1.355 0.175 NJ 0.061 0.035 1.770 0.077

NV 0.014 0.033 0.428 0.668 NM 0.045 0.030 1.520 0.128 NV −0.002 0.036 −0.062 0.950 NM 0.130 0.033 3.962 0.000

NY 0.072 0.035 2.065 0.039 NV −0.036 0.024 −1.511 0.131 NY −0.089 0.043 −2.089 0.037 NV −0.034 0.027 −1.275 0.202

OH −0.038 0.029 −1.279 0.201 NY −0.038 0.029 −1.305 0.192 OH 0.225 0.033 6.799 0.000 OH 0.001 0.025 0.057 0.954

OK 0.006 0.036 0.165 0.869 OH 0.077 0.023 3.435 0.001 OK −0.045 0.042 −1.075 0.282 OK 0.014 0.031 0.455 0.649

OR −0.115 0.033 −3.454 0.001 OK −0.055 0.028 −1.996 0.046 OR 0.034 0.038 0.890 0.374 OR 0.025 0.028 0.882 0.378

PA −0.019 0.031 −0.603 0.546 OR −0.016 0.025 −0.650 0.515 PA −0.035 0.037 −0.959 0.338 PA −0.079 0.027 −2.913 0.004

RI 0.007 0.027 0.256 0.798 PA −0.021 0.025 −0.872 0.383 RI −0.015 0.032 −0.469 0.639 RI 0.027 0.024 1.131 0.258

SC 0.047 0.034 1.384 0.166 RI −0.015 0.021 −0.715 0.475 SC 0.059 0.038 1.543 0.123 SC 0.005 0.029 0.184 0.854

SD −0.022 0.030 −0.740 0.459 SC −0.031 0.026 −1.221 0.222 SD 0.017 0.034 0.490 0.624 SD 0.007 0.025 0.260 0.795

TN −0.108 0.029 −3.684 0.000 SD −0.043 0.022 −1.922 0.055 TN −0.033 0.035 −0.925 0.355 TN −0.005 0.026 −0.194 0.846

TX 0.430 0.030 14.238 0.000 TN 0.016 0.023 0.667 0.505 TX 0.188 0.046 4.107 0.000 TX −0.053 0.036 −1.494 0.135

UT −0.023 0.032 −0.726 0.468 UT −0.011 0.024 −0.463 0.644 UT −0.018 0.036 −0.504 0.615 UT 0.094 0.027 3.513 0.000

VA 0.038 0.029 1.284 0.199 VA 0.002 0.024 0.068 0.946 VA 0.045 0.035 1.292 0.196 VA 0.092 0.026 3.493 0.000

VT 0.071 0.027 2.691 0.007 VT 0.005 0.021 0.230 0.818 VT −0.042 0.031 −1.342 0.179 VT −0.003 0.023 −0.133 0.894

WA −0.028 0.027 −1.051 0.293 WA 0.054 0.020 2.676 0.007 WA 0.047 0.030 1.554 0.120 WA 0.042 0.023 1.839 0.066

WI 0.201 0.027 7.466 0.000 WI 0.030 0.022 1.386 0.166 WI −0.003 0.033 −0.105 0.917 WI 0.010 0.024 0.406 0.685

WV −0.005 0.031 −0.165 0.869 WV −0.019 0.025 −0.784 0.433 WV −0.062 0.037 −1.697 0.090 WV 0.139 0.027 5.072 0.000

WY −0.031 0.035 −0.877 0.381 WY 0.000 0.025 0.001 0.999 WY −0.030 0.038 −0.795 0.427 WY 0.073 0.028 2.582 0.010

sigma 0.164 0.004 43.667 0.000 sigma 0.202 0.019 10.832 0.000 sigma 0.214 0.014 15.139 0.000 sigma 0.182 0.016 11.441 0.000

AR1 0.989 0.003 317.600 0.000 AR1 0.983 0.007 137.510 0.000 AR1 0.979 0.008 124.010 0.000

MA1 −0.806 0.018 −45.970 0.000 MA1 −0.875 0.016 −53.210 0.000 MA1 −0.807 0.023 −34.950 0.000

4.3. Copula Dynamic Conditional Correlation

The copula dynamic conditional correlation (Copula-DCC) is an extension of the DCC
model. The time-varying conditional correlation in the copula framework was developed
by [29].

Let rt = (rit, · · · , rnt) be an n× 1 vector of the daily COVID-19 mortality data and it
follows a copula GARCH model with joint distribution given by

F(rt|µt, ht) = C(F1(r1t|µ1t, h1t), · · · , Fn(rnt|µnt, hnt)) (1)

where Fi and C are the conditional distribution and the copula function, respectively.
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It is formulated that the conditional mean E[rit|=t−1] = µit is a linear function of
its one-lag past the mortality data and follows an ARMA(1,1) process. The conditional
variance hit is assumed to follow a gjr-GARCH(1,1) process. One can thus consider

rit = µit + θ1(rit−1 − µit) + θ2ε2
it−1 + εit, εit =

√
hitzit (2)

h2
it = ω + α1ε2

it−1 + γ1 Iit−1ε2
it−1 + β1hit−1 (3)

where h2
it is the conditional variance and ω is the intercept. Further, β1 and α1 are the ARCH

and GARCH terms, γ1 denotes the leverage term, the indicator function I takes values
one and zero according to the “bad" news (negative shock, εit−1 < 0) and the “good"
news (positive shock, εit−1 ≥ 0), respectively. Note that the coefficients α1 + γ1 and α1
correspond, respectively, to the “bad" news and “good" news. When γ1 > 0, the negative
shock produces a greater response than the positive shock. Here, zit are i.i.d. random
variables, which follow Johnson’s reparametrized SU distribution, viz., zit ∼ JSU(µ, σ, ν, τ)
in [30], where the four parameters (µ, σ, ν, τ) are the mean, standard deviation, skew, and
shape parameters, respectively. The dependence structure is modeled using elliptical
copulas with conditional correlation Rt and constant shape parameter τ. The conditional
density with a Gaussian copula is given by (see, for instance, reference [4])

ct(uit, · · · , unt|Rt) =
ft

(
F−1

i (uit), · · · , F−1
i (unt)|Rt

)
∏n

i=1 fi

(
F−1

i (uit)
) (4)

where uit = Fit(rit|µit, hit, νt, τi) is the probability integral transformed values by Fit, which
can be obtained using the gjr GARCH process, and F−1

i (uit|τ) represents the quantile
transformation. The Gaussian copula conditional correlation can be obtained using the
function cgarchspec command in the R package rmgarch.

Table 5 shows that the mean equation error structure followed ARMA(1,1) for the
daily COVID-19 mortality data of CA, TX, FL, and NY, and the coefficients on the AR1 and
MA1 terms were statistically significant in CA, TX, FL, and NY. The estimates of γ1s in the
variance equations in CA and NY were statistically significant at the 1% significance level.
This means that the negative shock produced a greater response than the positive shock
in terms of the daily COVID-19 mortality data in CA and NY. The estimates of α1s in the
variance equations in TX and FL were statistically significant at the 1% significance level.
This means that the positive shock produced a greater response than the negative shock in
terms of the daily COVID-19 mortality data in TX and FL.

Figure 8 shows the two-state plots of the copula-DCC model for CA, TX, FL, and NY.
In Figure 8, the estimated time-varying conditional correlations of the daily COVID-19
mortality data for CA and FL had increased over the previous two years and the estimated
time-varying conditional correlations of the daily COVID-19 mortality data for CA and TX
and TX and FL had decreased rapidly over the 2022 summer period by 1 September 2022.
Another interesting finding from Figure 8 is that the time-varying correlation of the daily
COVID-19 mortality data for CA and NY over the given period varied between −0.10 and
0.10. The geographical distance between CA (west coast) and NY (east coast) is about 2900
miles, which can make the time-varying correlations of the daily COVID-19 mortality data
for CA and NY become smaller.
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Table 5. Copula-DCC Models.

CA and TX TX and FL

CA Estimate Std. Error z value p-value TX Estimate Std. Error z value p-value TX Estimate Std. Error z value p-value FL Estimate Std. Error z value p-value

µ 0.10 0.02 6.35 0.00 µ 0.08 0.00 34.66 0.00 µ 0.08 0.00 34.73 0.00 µ 0.10 0.01 9.47 0.00

AR1 1.00 0.00 816.06 0.00 AR1 1.00 0.01 157.53 0.00 AR1 1.00 0.01 157.68 0.00 AR1 1.00 0.02 55.00 0.00

MA1 −0.64 0.02 −26.30 0.00 MA1 −0.50 0.11 −4.67 0.00 MA1 −0.50 0.11 −4.67 0.00 MA1 −0.78 0.23 −3.40 0.00

ω 0.00 0.00 1.04 0.30 ω 0.00 0.00 0.00 1.00 ω 0.00 0.00 0.00 1.00 ω 0.00 0.00 0.00 1.00

α1 0.13 0.03 4.72 0.00 α1 0.46 0.23 2.01 0.04 α1 0.46 0.23 2.01 0.04 α1 0.45 0.17 2.68 0.01

β1 0.83 0.03 28.65 0.00 β1 0.52 0.15 3.58 0.00 β1 0.52 0.15 3.58 0.00 β1 0.47 0.12 3.88 0.00

γ1 0.09 0.04 2.24 0.03 γ1 0.03 0.19 0.17 0.87 γ1 0.03 0.19 0.17 0.87 γ1 0.16 0.16 1.02 0.31

skew 1.55 0.54 2.86 0.00 skew −0.05 0.08 −0.66 0.51 skew −0.05 0.08 −0.66 0.51 skew 0.20 0.43 0.47 0.64

shape 3.01 0.62 4.86 0.00 shape 1.24 0.17 7.32 0.00 shape 1.24 0.17 7.32 0.00 shape 1.24 0.26 4.82 0.00

[Joint]dcca1 0.04 0.01 2.67 0.01 Log−Likelihood 2215.84 AIC −4.61 [Joint]dcca1 0.02 0.02 0.87 0.38 Log−Likelihood 1549.04 AIC −3.21

[Joint]dccb1 0.94 0.02 43.26 0.00 N 953 BIC −4.51 [Joint]dccb1 0.96 0.06 16.16 0.00 N 953 BIC −3.11

CA and FL TX and NY

CA Estimate Std. Error z value p-value FL Estimate Std. Error z value p-value TX Estimate Std. Error z value p-value NY Estimate Std. Error z value p-value

µ 0.10 0.02 6.35 0.00 µ 0.10 0.01 9.47 0.00 µ 0.08 0.00 34.69 0.00 µ 0.12 0.00 679.52 0.00

AR1 1.00 0.00 815.72 0.00 AR1 1.00 0.02 54.94 0.00 AR1 1.00 0.01 157.55 0.00 AR1 1.00 0.00 367.85 0.00

MA1 −0.64 0.02 −26.34 0.00 MA1 −0.78 0.23 −3.40 0.00 MA1 −0.50 0.11 −4.67 0.00 MA1 −0.73 0.08 −9.13 0.00

ω 0.00 0.00 1.04 0.30 ω 0.00 0.00 0.00 1.00 ω 0.00 0.00 0.00 1.00 ω 0.00 0.00 0.00 1.00

α1 0.13 0.03 4.73 0.00 α1 0.45 0.17 2.68 0.01 α1 0.46 0.23 2.01 0.04 α1 0.35 0.14 2.48 0.01

β1 0.83 0.03 28.71 0.00 β1 0.47 0.12 3.89 0.00 β1 0.52 0.15 3.58 0.00 β1 0.49 0.07 6.69 0.00

γ1 0.09 0.04 2.24 0.03 γ1 0.16 0.16 1.02 0.31 γ1 0.03 0.19 0.17 0.87 γ1 0.32 0.17 1.94 0.05

skew 1.55 0.54 2.86 0.00 skew 0.20 0.43 0.47 0.64 skew −0.05 0.08 −0.66 0.51 skew −0.37 0.19 −1.93 0.05

shape 3.01 0.62 4.86 0.00 shape 1.24 0.26 4.83 0.00 shape 1.24 0.17 7.32 0.00 shape 1.15 0.18 6.55 0.00

[Joint]dcca1 0.01 0.00 3.00 0.00 Log−Likelihood 1293.03 AIC −2.67 [Joint]dcca1 0.03 0.01 2.90 0.00 Log−Likelihood 1814.15 AIC −3.77

[Joint]dccb1 0.99 0.00 253.89 0.00 N 953 BIC −2.57 [Joint]dccb1 0.92 0.03 30.72 0.00 N 953 BIC −3.66

CA and NY FL and NY

CA Estimate Std. Error z value p-value NY Estimate Std. Error z value p-value FL Estimate Std. Error z value p-value NY Estimate Std. Error z value p-value

µ 0.10 0.02 6.35 0.00 µ 0.11 0.00 678.78 0.00 µ 0.10 0.01 9.46 0.00 µ 0.12 0.00 679.31 0.00

AR1 1.00 0.00 816.34 0.00 AR1 1.00 0.00 366.63 0.00 AR1 1.00 0.02 54.91 0.00 AR1 1.00 0.00 367.74 0.00

MA1 −0.64 0.03 −26.19 0.00 MA1 −0.73 0.08 −9.11 0.00 MA1 −0.78 0.23 −3.40 0.00 MA1 −0.73 0.08 −9.13 0.00

ω 0.00 0.00 1.04 0.30 ω 0.00 0.00 0.00 1.00 ω 0.00 0.00 0.00 1.00 ω 0.00 0.00 0.00 1.00

α1 0.13 0.03 4.72 0.00 α1 0.35 0.14 2.48 0.01 α1 0.45 0.17 2.68 0.01 α1 0.35 0.14 2.48 0.01

β1 0.83 0.03 28.67 0.00 β1 0.49 0.07 6.69 0.00 β1 0.47 0.12 3.88 0.00 β1 0.49 0.07 6.69 0.00

γ1 0.09 0.04 2.24 0.03 γ1 0.32 0.17 1.93 0.05 γ1 0.16 0.16 1.02 0.31 γ1 0.32 0.17 1.93 0.05

skew 1.55 0.54 2.86 0.00 skew −0.37 0.19 −1.93 0.05 skew 0.20 0.43 0.47 0.64 skew −0.37 0.19 −1.93 0.05

shape 3.01 0.62 4.85 0.00 shape 1.15 0.18 6.55 0.00 shape 1.24 0.26 4.82 0.00 shape 1.15 0.18 6.55 0.00

[Joint]dcca1 0.01 0.01 1.28 0.20 Log−Likelihood 1545.17 AIC −3.20 [Joint]dcca1 0.01 0.01 1.30 0.19 Log−Likelihood 892.30 AIC −1.83

[Joint]dccb1 0.96 0.04 24.01 0.00 N 953 BIC −3.10 [Joint]dccb1 0.95 0.02 40.34 0.00 N 953 BIC −1.73

Figure 8. Plots of copula-DCC model for CA, TX, FL, and NY.
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5. Discussion

We used the graphical models FPCA, GCMR, vine copula-based quantile regression,
and copula-DCC for visual and data analysis of the COVID-19 mortality data in the
50 US states plus Washington, D.C., from the beginning of the COVID-19 pandemic to
1 September 2022 because the COVID-19 mortality data have a non-normal distribution
and non-constant variance in the errors. Looking at the results of the graphical model,
we found five equivalence groups in the US. Looking at the results of the FPCA, we
visualized the COVID-19 daily mortality time trends of 50 states plus Washington, D.C.
Using the GCMR model, we investigated the COVID-19 daily mortality relationships
between four major states and the rest of the states in the US. Using the copula-DCC
models, we investigated the time-varying dependence relationships between the COVID-19
daily mortality data of four major states (CA, TX, FL, and NY). Based on the findings
of this research, geographical distance can be considered one of the main factors in the
exponential increase in the number of pandemic patients from one state to the neighboring
states in a short period of time. When a pandemic or an endemic happens in a certain
state, the local state government needs to cooperate with federal and neighboring state
governments to take immediate public health emergency measures. Time is one of the most
important factors in suppressing a pandemic or endemic so we emphasize the need for
a timely public health emergency response when facing a pandemic such as COVID-19.
Every state in the US needs to regularly check its public health emergency manuals to
prepare for future pandemics or natural disasters. In our future study, we will consider
visualizing international COVID-19 mortality time-course pattern clustering by functional
principal component analysis so that we can help to quickly control future pandemics.
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