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Abstract: Let tτ be a solution to the equation θ(t) = (τ− 1)π, τ > 0, where θ(t) is the increment of the
argument of the function π−s/2Γ(s/2) along the segment connecting points s = 1/2 and s = 1/2 + it.
tτ is called the Gram function. In the paper, we consider the approximation of collections of analytic
functions by shifts of the Riemann zeta-function (ζ(s + itα1

τ ), . . . , ζ(s + itαr
τ )), where α1, . . . , αr are

different positive numbers, in the interval [T, T + H] with H = o(T), T → ∞, and obtain the positivity
of the density of the set of such shifts. Moreover, a similar result is obtained for shifts of a certain
absolutely convergent Dirichlet series connected to ζ(s). Finally, an example of the approximation of
analytic functions by a composition of the above shifts is given.

Keywords: Gram function; joint universality; Riemann zeta-function; weak convergence
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1. Introduction

The Riemann zeta-function ζ(s), s = σ + it, one of the most important analytic objects
of mathematics, is defined, for σ > 1, by the Dirichlet series

ζ(s) =
∞

∑
m=1

1
ms ,

and has the analytic continuation to the whole complex plane, except for a simple pole at
the point s = 1 with residue 1. Denote by P the set of all prime numbers. In virtue of the
main arithmetic theorem, the function ζ(s) equivalently can be defined, for σ > 1, by the
Euler product

ζ(s) = ∏
p∈P

(
1− 1

ps

)−1
.

Among many interesting properties and problems of the function ζ(s), the universality
occupies a particular place. The latter property was discovered by S.M. Voronin [1] and,
roughly speaking, means that a wide class of analytic functions can be approximated by
shifts ζ(s + iτ), τ ∈ R. Let D = {s ∈ C : 1/2 < σ < 1}, K be the class of compact sets of
the strip D with connected complements, and H0(K) with K ∈ K the class of continuous
non-vanishing functions on K that are analytic in the interior of K. Then it is convenient to
state a modern version of the Voronin theorem in the following form, see, for example, [2].
Suppose that K ∈ K and f (s) ∈ H0(K). Then, for every ε > 0,

lim inf
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

s∈K
|ζ(s + iτ)− f (s)| < ε

}
> 0. (1)

Here, measA denotes the Lebesgue measure of a measurable set A ⊂ R. The above
inequality shows that there are infinitely many shifts ζ(s + iτ) approximating a given func-
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tion f (s) ∈ H0(K). Moreover, the positivity of a lower density of the set of approximating
shifts ζ(s + iτ) can be replaced by that of a density for all but at most countably many
ε > 0 [3]. B. Bagchi proved [4] that the famous Riemann hypothesis, which asserts that all
nontrivial zeros of ζ(s) lie on the critical line σ = 1/2, is equivalent to inequality (1) with
f (s) = ζ(s).

A joint version of universality for ζ(s) was obtained in [5,6] using generalized shifts
ζ(s + iϕ(τ)) with certain functions ϕ(τ). Let a1 = 1, a2, . . . , ar be real algebraic numbers
linearly independent over the field of rational numbers Q, and, for j = 1, . . . , r, Kj ∈ K and
f j(s) ∈ H0(Kj). Then, in [5], it was proved that, for every a ∈ R \ {0} and ε > 0,

lim inf
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

16j6r
sup
s∈Kj

|ζ(s + iaαjτ)− f j(s)| < ε

}
> 0.

In [6], the shifts ζ(s + iϕj(τ)) with ϕj(τ) = ταj(log τ)β j , αj, β j ∈ R, were used.
Recall one more type of possible shifts. As usual, denote by Γ(s) the Euler gamma-

function, and by θ(t), t > 0, the increment of the argument of the function πs/2Γ(s/2)
along the segment connecting the points s = 1/2 and s = 1/2 + it. The function θ(t)
is monotonically increasing and unbounded from above for t > t∗ = 6.2898 . . . ; hence,
the equation

θ(t) = (τ − 1)π, τ > 0, (2)

has the unique solution tτ . The function tτ with τ = n ∈ N was considered by J.-P Gram [7]
in connection with imaginary parts γn of nontrivial zeros of the Riemann zeta-function.
Therefore, tn are called the Gram points, and tτ with arbitrary τ > 0 is the Gram function.
In [8], the joint universality of ζ(s) using shifts ζ(s + it

αj
τ ) was considered. More precisely,

suppose that α1, . . . , αr are fixed different positive numbers, and, for j = 1, . . . , r, let Kj ∈ K
and f j(s) ∈ H0(Kj). Then, the main result of [8] states that, for every ε > 0,

lim inf
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

16j6r
sup
s∈Kj

|ζ(s + it
αj
τ )− f j(s)| < ε

}
> 0. (3)

Moreover, “lim inf” can be replaced by “lim” for all but at most countably many ε > 0.
All stated above examples of universality theorems for ζ(s) are not effective in the

sense that any value of τ in approximating shifts is not known. In a wider sense, the
effectivization of universality for zeta-functions is understood as an indication of intervals
as short as possible containing values of τ with an approximating property. An example of
universality theorems in short intervals was given in [9]. Let

a = max
16j6r

|aj|−1 and â = max
16j6r

|aj|.

Theorem 1 ([9]). Suppose that a1, . . . , ar are real algebraic numbers linearly independent over Q,
and a(Tâ)1/3(log Tâ)26/15 6 H 6 T. For j = 1, . . . , r, let Kj ∈ K and f j(s) ∈ H0(Kj). Then,
for every ε > 0,

lim inf
T→∞

1
H

meas

{
τ ∈ [T, T + H] : sup

16j6r
sup
s∈Kj

|ζ(s + iajτ)− f j(s)| < ε

}
> 0.

Moreover, “lim inf” can be replaced by “lim” for all but at most countably many ε > 0.

The aim of this paper is to obtain a version of Theorem 1 for shifts ζ(s + it
αj
τ ). This aim

is motivated by an easier possibility to detect approximating shifts in short intervals.
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Let α1, . . . , αr be the same numbers as in (3). Without a loss of generality, we may
suppose that α1 < α2 < · · · < αr. We will use the notation

ψαj(τ) =
(

t
αj
τ

)1/3(
log t

αj
τ

)26/15
,

and write (t
αj
T )′ in place of (t

αj
τ )′τ=T , j = 1, . . . , r.

Theorem 2. Suppose that ψα1(T)((t
α1
T )′)−1 6 H 6 T. For j = 1, . . . , r, let Kj ∈ K and

f j(s) ∈ H0(Kj). Then, for every ε > 0,

lim inf
T→∞

1
H

meas

{
τ ∈ [T, T + H] : sup

16j6r
sup
s∈Kj

|ζ(s + it
aj
τ )− f j(s)| < ε

}
> 0.

Moreover, “lim inf” can be replaced by “lim” for all but at most countably many ε > 0.

The next theorem is devoted to the approximation of analytic functions by shifts of
certain absolutely convergent Dirichlet series. Let θ > 0 be a fixed number, u > 0 and

vu(m) = exp
{
−
(m

u

)θ
}

, m ∈ N.

Because vu(m) decreases exponentially with respect to m, the series

ζu(s) =
∞

∑
m=1

vu(m)

ms

is absolutely convergent for σ > σ0, with arbitrary finite σ0.

Theorem 3. Suppose that ψα1(T)((t
α1
T )′)−1 6 H 6 T, and uT → ∞ and uT �

exp{o(T/ log T)α1}. For j = 1, . . . , r, let Kj ∈ K and f j(s) ∈ H0(Kj). Then, for every ε > 0,

lim inf
T→∞

1
H

meas

{
τ ∈ [T, T + H] : sup

16j6r
sup
s∈Kj

|ζuT (s + it
aj
τ )− f j(s)| < ε

}
> 0.

Moreover, “lim inf” can be replaced by “lim” for all but at most countably many ε > 0.

Theorem 2 can be generalized for certain compositions. We give one example. Let
S = {g ∈ H(D) : g(s) 6= 0 or g(s) ≡ 0}, for different a1, . . . , ak ∈ C

Ha1,...,ak (D) =
{

g ∈ H(D) : (g(s)− aj)
−1 ∈ H(D), j = 1, . . . , k

}
,

and H(K), K ∈ K, be the class of continuous functions on K that are analytic in the interior
of K.

Theorem 4. Suppose that ψα1(T)((t
α1
T )′)−1 6 H 6 T, and Φ : Hr(D)→ H(D) is a continuous

operator such that Φ(Sr) ⊃ Ha1,...,ak (D). For k = 1, let K ∈ K, and f (s) ∈ H(K) and f (s) 6= a1
on K. For k > 2, let K ⊂ D be a compact set and f (s) ∈ Ha1,...,ak (D). Then, for every ε > 0,

lim inf
T→∞

1
H

meas

{
τ ∈ [T, T + H] : sup

s∈K
|Φ(ζ(s + ita1

τ ), . . . , ζ(s + itαr
τ ))− f (s)| < ε

}
> 0.

Moreover, “lim inf” can be replaced by “lim” for all but at most countably many ε > 0.
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Let
Φ(g1, . . . , gr) = cos(g1 + · · ·+ gr).

Consider the equation
eiw + e−iw

2
= f

with f (s) ∈ H1,−1(D). It is easily seen that

w =
1
i

log( f ±
√

f 2 − 1).

Thus, we have

Φ
(

1
i

log( f +
√

f 2 − 1), 0, . . . , 0
)
= f .

Because (1/i log( f +
√

f 2 − 1), 0, . . . , 0) ∈ Sr, the inclusion Φ(Sr) ⊃ H−1,1(D) is
valid. Therefore, by Theorem 4, the functions of the set H−1,1(D) are approximated by
shifts cos(ζ(s + itα1

τ ) + · · ·+ ζ(s + itαr
τ )).

2. Mean Square Estimates

First, we recall the asymptotics for the function tτ and its derivative as τ → ∞.

Lemma 1 ([10]). Suppose that tτ , τ > 0, is the unique solution of Equation (2) satisfying
θ(tτ) > 0. Then, for τ → ∞,

tτ =
2πτ

log τ

(
1 +

log log τ

log τ
(1 + o(1))

)
and

t′τ =
2π

log τ

(
1 +

log log τ

log τ
(1 + o(1))

)
.

Note that, in view of Lemma 1,

ψα1(T)((t
α1
T )′)−1 = o(T), T → ∞.

Let α > 0 be one of the numbers α1, . . . , αr, and H satisfy the hypotheses of Theorem 2.
We will obtain the upper bound for

I(T, H, σ, t)
de f
=
∫ T+H

T
|ζ(σ + itα

τ + it)|2 dτ

with fixed σ and t ∈ R. Recall that the notation g �θ f , f > 0, means that there exists a
constant c = c(θ) > 0 such that |g| 6 c(θ) f .

Lemma 2. Suppose that 1/2 < σ 6 13/22 is fixed, t ∈ R and ψα1(T)((t
α1
T )′)−1 6 H 6 T. Then,

I(T, H, σ, t)�σ H(1 + |t|).

Proof. Let T(κ+λ+1)/2(κ+1)(log T)(2+κ)/(κ+1) 6 H 6 T, where (κ, λ) is an exponential pair
such that 2σ 6 1 + λ− κ. Then, by Theorem 7.1 of [11], uniformly in Ĥ

∫ T+Ĥ

T−Ĥ
|ζ(σ + it)|2 dt�σ Ĥ. (4)

Taking (κ, λ) = (4/11, 6/11) gives, for 1/2 < σ 6 13/22, uniformly in Ĥ, T1/3

(log T)26/15 6 Ĥ 6 T, the bound (4).
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In view of Lemma 1, for large τ, the function tα
τ is increasing, while the function (tα

τ)
′

is increasing and decreasing for α > 1 and 0 < α 6 1, respectively. Therefore, for α > 1,∫ T+H

T
|ζ(σ + itα

τ + it)|2 dτ =
∫ T+H

T

1
(tα

τ)′
|ζ(σ + itσ

τ + it|2 d(tα
τ)

=
∫ T+H

T

1
(tα

τ)′
d
(∫ tα

τ+t

T
|ζ(σ + iu|2 du

)
=

1
(tα

T)
′

∫ ξ

T
d
(∫ tα

τ+t

T
|ζ(σ + iu|2 du

)
=

1
(tα

T)
′

∫ tα
ξ+t

tα
T+t
|ζ(σ + iu)|2 du

6
1

(tα
T)
′

∫ tα
T+H+|t|

tα
T−|t|

|ζ(σ + iu)|2 du

=
1

(tα
T)
′

∫ tα
T+H(tα

ξ )
′+|t|

tα
T−|t|

|ζ(σ + iu)|2 du

6
1

(tα
T)
′

∫ tα
T+H(tα

2T)
′+|t|

tα
T−H(tα

2T)
′−|t|

|ζ(σ + iu)|2 du, (5)

where T 6 ξ 6 T + H. Here, we write (tα
ξ )
′ = (tα

τ)
′
τ=ξ . Now, we apply (4) with tα

T in place
of T and with H(tα

2T)
′ in place of H. We have

H(tα
2T)
′ + |t| > ψα1(T)

(tα
2T)
′

(tα1
T )′

> ψα(T)
(tα

T)
′

(tα
T)
′ = ψα(T).

Suppose that H(tα
2T)
′ + |t| 6 tα

T . Then, by (4) and (5),

I(T, H, σ, t)�σ
H(tα

2T)
′ + |t|

(tα
T)
′ 6σ,α H +

|t|
(tα

T)
′ �σ,α H

(
1 +

|t|
ψα1(T)

)
�σ,α H(1 + |t|). (6)

Now, let H(tα
2T)
′ + |t| > tα

T . Then, we apply the well-known estimate

∫ T

−T
|ζ(σ + it)|2 dt�σ T. (7)

In this case, we have tα
T + H(tα

2T)
′ + |t| < 2(H(tα

2T)
′ + |t|) and tα

T − H(tα
2T)
′ − |t| >

−2(H(tα
2T)
′ + |t|). Therefore, estimates (5) and (7) imply the bound

I(T, H, σ, α)�
∫ 2(H(tα

2T)
′+|t|)

−2(H(tα
2T)
′+|t|)

|ζ(σ + iu)|2 du�σ
H((tα

2T)
′ + |t|)

(tα
T)
′ �σ H(1 + |t|).

This, together with (6), proves the lemma in the case α > 1.
If α 6 1, then, in virtue of Lemma 1, the function (tα

τ)
′ is decreasing for large τ. Therefore,

∫ T+H

T
|ζ(σ + itα

τ + it)|2 dτ =
1

(tα
T+H)

′

∫ tα
T+H+t

tα
ξ+t

|ζ(σ + iu)|2 du

6
1

(tα
2T)
′

∫ tα
T+H+|t|

tα
T−|t|

|ζ(σ + iu)|2 du

6
1

(tα
2T)
′

∫ tα
T+H(tα

T)
′+|t|

tα
T−H(tα

T)
′−|t|

|ζ(σ + iu)|2 du. (8)

We observe that

H(tα
T)
′ + |t| > ψα1(T)

(tα
T)
′

(tα1
T )′

> ψα(T)
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because α > α1. Thus, if H(tα
T)
′ + |t| 6 tα

T , then, by (4) and (8),

I(T, H, σ, t)�σ
H(tα

T)
′ + |t|

(tα
2T)
′ �σ,α H +

|t|
(tα

2T)
′ �σ,α H

(
1 +

|t|(tα
T)
′

ψα1(T)(t
α
2T)
′

)
�σ,α H(1 + |t|). (9)

If H(tα
T)
′ + |t| > tα

T , then, similarly as above, we have by (7)

I(T, H, σ, t)�
∫ 2(H(tα

T)
′+|t|)

−2(H(tα
T)
′+|t|)

|ζ(σ + iu)|2 du�σ
H((tα

T)
′ + |t|)

(tα
2T)
′ �σ H(1 + |t|).

This and (9) prove the lemma in the case α 6 1.

We will apply Lemma 2 for estimation of the distance between the shifts ζ(s + itα
τ)

and ζu(s + itα
τ).

Lemma 3. Suppose that K ⊂ D is a compact set, and ψα1(T)((t
α1
T )′)−1 6 H 6 T. Then, there

exists ε > 0 and C > 0 such that

1
H

∫ T+H

T
sup
s∈K
|ζ(s + itα

τ)− ζu(s + itα
τ)|dτ �ε,θ,K u−ε + u1/2−2ε exp

{
−C
(

T
log T

)α}
.

Proof. Denote
lu(s) =

s
θ

Γ
( s

θ

)
us.

The Mellin formula

1
2πi

∫ a+i∞

a−i∞
Γ(s)b−s ds = e−b, a, b > 0,

leads to the representation, see, for example, [2],

ζu(s) =
1

2πi

∫ θ1+i∞

θ1−i∞
ζ(s + z)

lu(z)
z

dz, (10)

where θ1 > 1/2. Because K ⊂ D, there exists 1/11 > ε > 0 such that 1/2 + 2ε 6 σ 6 1− ε

for s = σ + it ∈ K. Thus, for s ∈ K, we have 0 > 1/2 + ε− σ
de f
= θ2, and take θ1 = 1/2 + ε.

Then, the representation (10) and the residue theorem show that, for s ∈ K,

ζu(s)− ζ(s) =
1

2πi

∫ θ2+i∞

θ2−i∞
ζ(s + z)

lu(z)
z

dz +
lu(1− s)

1− s

because of simple poles of the integration function at the points z = 0 and z = 1− s. Hence,
for s ∈ K,

ζu(s + itα
τ)− ζ(s + itα

τ) =
1

2πi

∫ ∞

−∞
ζ

(
1
2
+ ε + it + itα

τ + iv
)

lu(1/2 + ε− σ + iv)
1/2 + ε− σ + iv

dv

+
lu(1− s− itα

τ)

1− s− itα
τ

�
∫ ∞

−∞

∣∣∣∣ζ(1
2
+ ε + itα

τ + iv
)∣∣∣∣ sup

s∈K

∣∣∣∣ lu(1/2 + ε− s + iv)
1/2 + ε− s + iv

∣∣∣∣dv

+ sup
s∈K

∣∣∣∣ lu(1− s− itα
τ)

1− s− itα
τ

∣∣∣∣
after a shift t + v→ v. Therefore,
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1
H

∫ T+H

T
sup
s∈K
|ζ(s + itα

τ)− ζu(s + itα
τ)|dτ

�
∫ ∞

−∞

(
1
H

∫ T+H

T

∣∣∣∣ζ(1
2
+ ε + itα

τ + iv
)∣∣∣∣dτ

)
sup
s∈K

∣∣∣∣ lu(1/2 + ε− s + iv)
1/2 + ε− s + iv

∣∣∣∣dv

+
1
H

∫ T+H

T
sup
s∈K

∣∣∣∣ lu(1− s− itα
τ)

1− s− itα
τ

∣∣∣∣dτ
de f
= I1 + I2. (11)

An application of Lemma 2 gives

1
H

∫ T+H

T

∣∣∣∣ζ(1
2
+ ε + itα

τ + iv
)∣∣∣∣dτ 6

(
1
H

∫ T+H

T

∣∣∣∣ζ(1
2
+ ε + itα

τ + iv
)∣∣∣∣2 dτ

)1/2

�ε (1 + |v|)1/2 �ε 1 + |v|. (12)

Using the well-known estimate

Γ(σ + it)� exp{−c|t|}, c > 0, (13)

which is uniform in any interval σ1 6 σ 6 σ2, σ1 < σ2, we find, for all s ∈ K,

lu(1/2 + ε− s + iv)
1/2 + ε− s + iv

�θ u1/2+ε−σ exp
{
− c

θ
|v− t|

}
�θ,K u−ε exp{−c1|v|}, c1 > 0.

This together with (12) yields

I1 �ε,θ,K u−ε
∫ ∞

−∞
(1 + |v|) exp{−c1|v|}dv�ε,θ,K u−ε. (14)

Similarly, as above, (13) implies, for all s ∈ K,

lu(1− s− itα
τ)

1− s− itα
τ
�θ u1−σ exp

{
− c

θ
|tα

τ + t|
}
�θ,K u1/2−2ε exp{−c2tα

τ}, c2 > 0.

Therefore, by Lemma 1,

I2 �θ,K u1/2−2ε 1
H

∫ T+H

T
exp{−c2tα

τ}dτ �θ,K u1/2−2ε 1
H

∫ T+H

T
exp

{
−c3

(
τ

log τ

)α}
dτ

�θ,K u1/2−2ε exp
{
−c4

(
T

log T

)α}
, c3, c4 > 0.

This, together with estimates (14) and (11), proves the lemma.

3. Limit Theorems

In this section, we will prove a probabilistic joint limit theorem for the Riemann zeta-
function twisted by the Gram function in short intervals. Denote by B(X) the Borel σ-field
of the space X, and α = (α1, . . . , αr), tα

τ = (tα1
τ , . . . , tαr

τ ),

ζ(s + itα
τ) = (ζ(s + itα1

τ ), . . . , ζ(s + itαr
τ )).

Moreover, let H(D) stand for the space of analytic functions on D equipped with the
topology of uniform convergence on compacta, and

Hr(D) = H(D)× · · · × H(D)︸ ︷︷ ︸
r

.
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For A ∈ B(Hr(D)), define

PT,H(A) =
1
H

meas
{

τ ∈ [T, T + H] : ζ(s + itα
τ) ∈ A

}
,

and consider the weak convergence for PT,H as T → ∞.
For the definition of a limit measure, we need one topological structure. Let γ = {s ∈

C : |s| = 1}, and
Ω = ∏

p∈P
γp,

where γp = γ for all p ∈ P. With the product topology and pointwise multiplication, the
torus Ω is a compact topological Abelian group. Define one more set

Ωr = Ω1 × · · · ×Ωr,

where Ωj = Ω for all j = 1, . . . , r. Then, again, Ωr is a compact topological Abelian group.
Hence, on (Ωr,B(Ωr)), the probability Haar measure mH can be defined, and we obtain
the probability space (Ωr,B(Ωr), mH). By ωj(p) denote the pth component, p ∈ P, of an
element ωj ∈ Ωj, j = 1, . . . , r, and by ω = (ω1, . . . , ωr) denote the elements of Ωr. On the
probability space (Ωr,B(Ωr), mH), define the Hr(D)-valued random element

ζ(s, ω) = (ζ(s, ω1), . . . , ζ(s, ωr)),

where

ζ(s, ωj) = ∏
p∈P

(
1−

ωj(p)
ps

)−1

, j = 1, . . . , r.

Note that the latter products, for almost all ωj with respect to the Haar measure mjH
on (Ωj,B(Ωj)), are uniformly convergent on compact subsets of D, see, for example, [2],
and define the H(D)-valued random elements. Because the Haar mH is the product of the
measures mjH , ζ(s, ω) is the Hr(D)-valued random element. Denote by Pζ the distribution
of the random element ζ(s, ω), i.e.,

Pζ(A) = mH

{
ω ∈ Ωr : ζ(s, ω) ∈ A

}
, A ∈ B(Hr(D)).

Recall that the support SPζ
of the measure Pζ is a minimal closed subset of Hr(D) such

that Pζ(SPζ
) = 1. The set SPζ

consists of all elements g ∈ Hr(D) such that, for every open
neighborhood G of g, the inequality Pζ(G) > 0 is satisfied. Let S = {g ∈ H(D) : g(s) 6=
0 or g(s) ≡ 0}.

Now, we state a limit theorem for PT,H .

Theorem 5. Suppose that ψα1(T)((t
α1
T )′)−1 6 H 6 T. Then, PT,H converges weakly to Pζ , as

T → ∞. Moreover, the support of the measure Pζ is the set Sr.

We divide the proof of Theorem 5 into several lemmas.
We start with a limit lemma on the space Ωr. For A ∈ B(Ωr), define

QT,H(A) =
1
H

meas
{

τ ∈ [T, T + H] :
(
(p−t

α1
τ : p ∈ P), . . . , (p−tαr

τ : p ∈ P)
)
∈ A

}
.

Lemma 4. Under hypotheses of Theorem 5, QT,H converges weakly to the Haar measure mH as
T → ∞.



Axioms 2022, 11, 613 9 of 17

Proof. We will apply the Fourier transform method. Denote by gT,H(k1, . . . , kr),
kj = (k jp : k jp ∈ Z, p ∈ P), j = 1, . . . , r, the Fourier transform of QT,H , i.e.,

gT,H(k1, . . . , kr) =
∫

Ωr

(
r

∏
j=1

∏
p∈P

∗
ω

kjp
j (p)

)
dQT,H ,

where the sign “∗” shows that only a finite number of integers k jp are distinct from zero.
The definition of QT,H implies

gT,H(k1, . . . , kr) =
1
H

∫ T+H

T

(
r

∏
j=1

∏
p∈P

∗ p−ikjpt
αj
τ

)
dτ

=
1
H

∫ T+H

T
exp

{
−i

r

∑
j=1

t
αj
τ ∑

p∈P

∗ k jp log p

}
dτ. (15)

Let 0 = (0, . . . , 0, . . . ). Obviously, by (15),

gT,H(0, . . . , 0) = 1. (16)

Denote
aj = ∑

p∈P

∗ k jp log p,

and suppose that (k1, . . . , kr) 6= (0, . . . , 0). Then, there exists j ∈ {1, . . . , r} such that kj 6= 0.
It is well known that the set {log p : p ∈ P} is linearly independent over Q. Therefore,
aj 6= 0. Let j0 = max(j : aj 6= 0), and

A(τ)
de f
=

r

∑
j=1

t
αj
τ ∑

p∈P

∗ k jp log p =
r

∑
j=1

ajt
αj
τ .

Because α1 < · · · < αr, we have, by Lemma 1,

A′(τ) =
r

∑
j=1

αjajt
αj−1
τ tτ

′ = aj0(t
αj0
τ )′(1 + o(1))

as τ → ∞. Hence,

(A′(τ))−1 =
1

aj0(t
αj0
τ )′

(1 + o(1))

as τ → ∞. Then,

1
H

∫ T+H

T
cos A(τ)dτ =

1
H

∫ T+H

T

1
A′(τ)

d sin A(τ)

=
1

aj0 H

∫ T+H

T

1

(t
αj0
τ )′

d sin A(τ) +
1
H

∫ T+H

T

o(1)

(t
αj0
τ )′

d sin A(τ)

�j0 (H(t
αj0
T )′)−1 + o(1)�j0 (H(tα1

T )′)−1 + o(1) = o(1)

as T → ∞. Similarly, we obtain that

1
H

∫ T+H

T
sin A(τ)dτ = o(1)

as T → ∞. Therefore, the last two estimates and (15) show that

gT,H(k1, . . . , kr) = o(1), T → ∞.
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Thus, by (16),

lim
T→∞

gT,H(k1, . . . , kr) =

{
1 if (k1, . . . , kr) = (0, . . . , 0),
0 if (k1, . . . , kr) 6= (0, . . . , 0).

Because the right-hand side of this equality is the Fourier transform of the measure
mH , the lemma is proved.

Lemma 4 is a key lemma to obtain limit lemmas for Dirichlet series in the space Hr(D).
Extend the function ωj(p) to the set N by

ωj(m) = ∏
pl |m

pl+1-m

ωl
j(p), m ∈ N, j = 1, . . . r,

and, for n ∈ N, define
ζn(s, ω) = (ζn(s, ω1), . . . , ζ(s, ωr)),

where

ζn(s, ωj) =
∞

∑
m=1

vn(m)ωj(m)

ms , j = 1, . . . , r.

The latter series is absolutely convergent for σ > σ0 with arbitrary finite σ0. Therefore,
the mapping wn : Ωr → Hr(D) given by wn(ω) = ζn(s, ω) is continuous. For A ∈
B(Hr(D), define

PT,H,n(A) =
1
H

meas
{

τ ∈ [T, T + H] : ζn(s + itα
τ) ∈ A

}
.

The weak convergence of PT,H,n as T → ∞ is based on one simple property of weak
convergence of probability measures. Let X1 and X2 be two spaces, and w : X1 → X2 a
(B(X1),B(X2))-measurable mapping, i.e.,

w−1B(X2) ⊂ B(X1).

Then, every probability measure P on (X1,B(X1)) induces the unique probability
measure Pw−1 on (X2,B(X2)) defined by

Pw−1(A) = P(w−1 A), A ∈ B(X2).

Moreover, it turns out that in such a situation, the weak convergence is preserved, i.e.,
the following lemma is valid; see, for example, [12], Theorem 5.1.

Lemma 5. Suppose that P and Pn, n ∈ N, are probability measures on (X1,B(X1)),w : X1 → X2
a continuous mapping, and Pn converges weakly to P as n→ ∞. Then, Pnw−1 converges weakly to
Pw−1 as n→ ∞.

Now, we state a limit lemma for PT,H,n.

Lemma 6. Under hypotheses of Theorem 5, PT,H,n converges weakly to the measure Vn
de f
= mHw−1

n
as T → ∞.

Proof. By the definition of wn,

wn

(
(p−it

α1
τ : p ∈ P), . . . , (p−itαr

τ : p ∈ P)
)
= ζn(s + itα

τ).
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Therefore, the definition of PT,H,n implies, for A ∈ B(Hr(D)),

PT,H,n(A) =
1
H

meas
{

τ ∈ [T, T + H] :
(
(p−it

α1
τ : p ∈ P), . . . , (p−itαr

τ : p ∈ P)
)
∈ w−1

n A
}

= QT,H(w−1
n A).

Thus, PT,H,n = QT,Hw−1
n . Because the mapping wn is continuous, this equality and

Lemmas 4 and 5 prove the lemma.

The measure Vn plays an important role for the proof of Theorem 5. Because Vn is
independent on any hypotheses, we have the following statement: see proofs of Lemma 10
and Theorem 3 in [9].

Lemma 7. The measure Vn converges weakly to Pζ as n→ ∞. Moreover, the support of Pζ is the
set Sr.

Before the proof of Theorem 5, we recall one lemma on convergence in distribution

( D−→) of random elements; see, for example, [12], Theorem 4.2.

Lemma 8. Suppose that the space (X, d) is separable, and the X-valued random elements Yn and
Xkn are defined on the same probability space with measure µ. Let, for every k,

Xkn
D−−−→

n→∞
Xk,

and
Xk

D−−−→
k→∞

X.

If, for every ε > 0,
lim
k→∞

lim sup
n→∞

µ{d(Xkn, Yn) > ε} = 0,

then
Yn

D−−−→
n→∞

X.

Proof of Theorem 5. Let θT,H be a random variable defined on a certain probability space
with measure µ, and uniformly distributed on [T, T + H]. Define the Hr(D)-valued ran-
dom elements

XT,H,n = XT,H,n(s) = ζn(s + itα
θT,H

)

and
XT,H = XT,H(s) = ζ(s + itα

θT,H
).

Moreover, denote by Xn the Hr(D)-valued random element having the distribution
Vn. Then, by Lemma 7,

Xn
D−−−→

n→∞
Pζ (17)

and, by Lemma 6,

XT,H,n
D−−−→

T→∞
Xn. (18)

Now, recall the metric in Hr(D). Let {Kl : l ∈ N} ⊂ D be a sequence of embedded
compact subsets such that

D =
∞⋃

l=1

Kl ,
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and every compact set K of D lies in a certain Kl . For example, we can take Kl closed
rectangles of D. Then,

ρ(g1, g2) =
∞

∑
l=1

2−l
sups∈Kl

|g1(s)− g2(s)|
1 + sups∈Kl

|g1(s)− g2(s)|
, g1, g2 ∈ H(D),

is a metric in H(D) inducing the topology of uniform convergence on compacta. Taking

ρ(g
1
, g

2
) = max

16j6r
ρ(g1j, g2j), g

k
= (gk1, . . . , gkr) ∈ Hr(D), k = 1, 2,

we obtain a metric in Hr(D) inducing the product topology.
Now, return to Lemma 3. Taking u = n, we find by Lemma 3 that, for every compact

set K ⊂ D,

lim
n→∞

lim sup
T→∞

1
H

∫ T+H

T
sup
s∈K
|ζ(s + itα

τ)− ζn(s + itα
τ)|dτ = 0.

This, and the definitions of the metrics ρ and ρ, imply

lim
n→∞

lim sup
T→∞

1
H

∫ T+H

T
ρ(ζ(s + itα

τ), ζn(s + itα
τ))dτ = 0.

Hence, by the definitions of XT,H,n and XT,H , we find that, for every ε > 0,

lim
n→∞

lim sup
T→∞

µ
{

ρ(XT,H , XT,H,n) > ε
}

6 lim
n→∞

lim sup
T→∞

1
εH

∫ T+H

T
ρ(ζ(s + itα

τ), ζn(s + itα
τ))dτ = 0.

The latter equality, together with relations (17) and (18), shows that all hypotheses
of Lemma 8 are satisfied by the random elements Xn, XT,H,n and XT,H . Therefore, we
obtain that

XT,H
D−−−→

T→∞
Pζ ,

and this relation is equivalent to the assertion of the theorem.

The weak convergence of probability measures has several equivalents; see, for exam-
ple, [12], Theorem 2.1.

Lemma 9. Let P and Pn, n ∈ N, be probability measures on (X,B(X)). Then, the following
statements are equivalent:

1◦ Pn converges weakly to P as n→ ∞;
2◦ For every open set G ⊂ X,

lim inf
n→∞

Pn(G) > P(G);

3◦ For every closed set F ⊂ X,

lim sup
n→∞

Pn(F) 6 P(F);

4◦ For every continuity set A of P (A is a continuity set of P if P(∂A) = 0, where ∂A is the
boundary of A),

lim
n→∞

Pn(A) = P(A).
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For A ∈ B(Hr(D)), define

PT,H,uT (A) =
1
H

meas
{

τ ∈ [T, T + H] : ζuT
(s + itα

τ) ∈ A
}

.

Theorem 6. Under hypotheses of Theorem 3, PT,H,uT converges weakly to Pζ as T → ∞.

Proof. We preserve the notation of the proof of Theorem 5 for θT,H and XT,H and define
one more Hr(D)-valued random element

XT,H,uT = XT,H,uT (s) = ζuT
(s + itα

θT,H
).

Let ε > 0 and a closed set F ⊂ Hr(D) be fixed, and Fε = {g ∈ Hr(D) : ρ(g, F) 6 ε},
where ρ(g, F) = infg

1
∈F ρ(g, g

1
). Then, the set Fε is closed. Therefore, by Theorem 5 and 3◦

of Lemma 9,
lim sup

T→∞
µ{XT,H ∈ Fε} 6 Pζ(Fε). (19)

It is easily seen that

{XT,H,uT ∈ F} ⊂ {XT,H ∈ Fε} ∪ {ρ(XT,H , XT,H,uT ) > ε},

thus
µ{XT,H,uT ∈ F} 6 µ{XT,H ∈ Fε}+ µ{ρ(XT,H , XT,H,uT ) > ε}. (20)

An application of Lemma 3 yields

lim
T→∞

1
H

∫ T+H

T
ρ(ζ(s + itα

τ), ζuT
(s + itα

τ))dτ = 0.

Hence,

lim
T→∞

µ{ρ(XT,H , XT,H,uT ) > ε} 6 1
εH

∫ T+H

T
ρ(ζ(s + itα

τ), ζuT
(s + itα

τ))dτ = 0.

The latter equality and (19) and (20) imply

lim sup
T→∞

µ{{XT,H,uT ∈ F} 6 Pζ(Fε),

and if ε→ 0,
lim sup

T→∞
µ{{XT,H,uT ∈ F} 6 Pζ(F),

which, together with 3◦ of Lemma 9, proves the theorem.

For A ∈ B(H(D)), define

PT,H,Φ(A) =
1
H

meas
{

τ ∈ [T, T + H] : Φ(ζ(s + itα
τ)) ∈ A

}
.

Theorem 7. Under hypotheses of Theorem 4, PT,H,Φ converges weakly to Pζ Φ−1. Moreover, the
support of the measure Pζ Φ−1 contains the closure of the set Ha1,...,ak (D).

Proof. Because PT,H,Φ = PT,HΦ−1, and the operator Φ is continuous, the first assertion of
the theorem follows from Theorem 5 and Lemma 5.

Let g be an arbitrary element of the set Φ(Sr), and G an open neighborhood of g.
Because Φ is continuous, Φ−1G is an open neighborhood of a certain element of the set Sr.
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In view of Theorem 5, the set Sr is the support of the measure Pζ ; therefore, Pζ(Φ−1G) > 0.
Hence, Pζ Φ−1(G) > 0. Moreover,

Pζ Φ−1(Φ(Sr)) = Pζ(Φ−1Φ(Sr)) = Pζ(Sr) = 1.

However, the support of Pζ Φ−1 is a closed set, and we have that the support of Pζ Φ−1

contains the closure of the set Φ(Sr). Because, by a hypotheses of theorem, Φ(Sr) ⊃
Ha1,...,ak (D), we obtain that the support of Pζ Φ−1 contains the closure of Ha1,...,ak (D). The
theorem is proved.

4. Proofs of Approximation Theorems

The proofs of Theorems 2–4 are based on limit Theorems 5–7 and the Mergelyan
theorem on approximation of analytic functions by polynomials [13]. For convenience, we
state the latter theorem as the next lemma.

Lemma 10. Let K ⊂ C be a compact set with connected complement and g(s) a continuous
function on K and analytic in the interior of K. Then, for every ε > 0, there exists a polynomial
p(s) such that

sup
s∈K
|g(s)− p(s)| < ε.

Proof of Theorem 2. For polynomials p1(s), . . . , pr(s), define the set

Gε =

{
(g1, . . . , gr) ∈ Hr(D) : sup

16j6r
sup
s∈Kj

∣∣∣gj(s)− epj(s)
∣∣∣ < ε

2

}
.

Because, by Theorem 5, (ep1(s), . . . , epr(s)) is an element of the support of the measure
Pζ , we have

Pζ(Gε) > 0. (21)

Now, using Lemma 10, we choose the polynomials p1(s), . . . , pr(s) such that

sup
16j6r

sup
s∈Kj

∣∣∣gj(s)− epj(s)
∣∣∣ < ε

2
,

and define the set

Ĝε =

{
(g1, . . . , gr) ∈ Hr(D) : sup

16j6r
sup
s∈K

∣∣gj(s)− f j(s)
∣∣ < ε

}
.

Then, we have Gε ⊂ Ĝε. Therefore, by (21), Pζ(Ĝε) > 0. Hence, by Theorem 5 and 2◦

of Lemma 9,
lim inf

T→∞
PT,H(Ĝε) > Pζ(Ĝε) > 0.

This, and the definitions of PT,H and Ĝε, prove the first assertion of the theorem.
For the proof of the second assertion of the theorem, observe that the boundaries ∂Ĝε1

and ∂Ĝε2 do not intersect for different positive ε1 and ε2. Therefore, Pζ(∂Ĝε) > 0 for at most

countably many ε > 0. Hence, the set Ĝε is a continuity set of the measure Pζ for all but at
most countably many ε > 0. Therefore, by Theorem 5 and 4◦ of Lemma 9, we have

lim
T→∞

PT,H(Ĝε) = Pζ(Ĝε) > 0

for all but at most countably many ε > 0, and the definitions of PT,H and Ĝε yield the
second assertion of the theorem.
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Proof of Theorem 3. We use Theorem 6 and repeat the proof of Theorem 2.

Proof of Theorem 4. The case k = 1. By Lemma 10, there exists a polynomial p(s) such that

sup
s∈K
| f (s)− p(s)| < ε

4
. (22)

Because f (s) 6= a1 on K, also p(s) 6= a1 (if ε is small enough) on K. Therefore, by
Lemma 10 again, there exists a polynomial q(s) such that

sup
s∈K

∣∣∣p(s)− a1 − eq(s)
∣∣∣ < ε

4
. (23)

The function g1(s) =de f eq(s) + a1 6= a1, thus g1(s) ∈ Ha1(D). Therefore, in view of
Theorem 7, the function g1(s) belongs to the support of the measure Pζ Φ−1. Hence,

Pζ Φ−1(G1ε) > 0, (24)

where

G1ε =

{
g ∈ H(D) : sup

s∈K
|g(s)− g1(s)| <

ε

2

}
.

Let

Gε =

{
g ∈ H(D) : sup

s∈K
|g(s)− f (s)| < ε

}
.

Then, in virtue of (22) and (23), we have G1ε ⊂ Gε. Therefore, by (24),

Pζ Φ−1(Gε) > 0. (25)

This, Theorem 7 and 1◦ and 2◦ of Lemma 9 show that

lim inf
T→∞

PT,H,Φ(Gε) > Pζ Φ−1(Gε).

This and (25) prove the first assertion of the theorem.
As in the proof of Theorem 2, the set Gε is a continuity set of the measure Pζ Φ−1 for all

but at most countably many ε > 0. Therefore, by Theorem 7, 1◦ and 4◦ of Lemma 9 and
(25), we have the limit

lim
T→∞

PT,H,Φ(Gε) = Pζ Φ−1(Gε)

exists and is positive for all but at most countably many ε > 0. This gives the second
assertion of the theorem.

The case k > 2. Because f (s) ∈ Ha1,...,ak (D), by Theorem 7, f (s) is an element of the
support of the measure Pζ Φ−1. Thus, inequality (25) is valid, and it remains to repeat the
above arguments of the case k = 1 for the set Gε.

5. Conclusions

The Gram function tτ , τ > 0, is defined as a solution of the equation θ(t) = (τ − 1)π,
τ > 0, where θ(t) is the increment of the argument of the function π−s/2Γ(s/2) along the
segment connecting the points s = 1/2 and s = 1/2 + it. In the paper, the approximation
theorems of a collection of analytic functions by shifts (ζ(s + itα1

τ ), . . . , ζ(s + itαr
τ )) of the

Riemann zeta-function, where α1, . . . , αr are different positive numbers, are obtained. It is
proved that the set of those shifts has a positive density in the intervals [T, T + H] with
H = o(T) as T → ∞. This shows that this set is infinite. A similar result is obtained for
an absolutely convergent Dirichlet series ζuT (s), where uT → ∞ as T → ∞. Moreover, the
approximation of the analytic functions by a composition Φ(ζ(s + itα1

τ ), . . . , ζ(s + itαr
τ )),
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where Φ : Hr(D)→ H(D) is a certain continuous operator, is obtained. The case of short
intervals is one of the ways of effectivization of universality theorems for zeta-functions.

All the theorems of the paper are results of pure mathematics, more precisely, contri-
butions to the theory of the Riemann zeta-function. On the other hand, they are a starting
point for the development of some of the problems of the theory of ζ(s). One of the classical
problems of ζ(s) is related to the value denseness of ζ(s). Let 1/2 < σ < 1 be fixed. By the
Bohr–Courant theorem [14], the set

{ζ(σ + it) : t ∈ R}

is dense in C. Voronin proved [15] a more general result on the denseness in CN of the set{
ζ(σ + it), ζ ′(σ + it), . . . , ζ(N−1)(σ + it) : t ∈ R

}
.

The theorems of the paper allow to consider the denseness of more complicated sets,
for example, of the set{(

ζ(σ + itα1
τ ), ζ ′(σ + itα1

τ ), . . . , ζ(N1−1)(σ + itα1
τ ), . . . ,

ζ(σ + itαr
τ ), ζ ′(σ + itαr

τ ), . . . , ζ(Nr−1)(σ + itαr
τ )
)

: τ ∈ R
}

in CN1+···+Nr , Nj ∈ N, j = 1, . . . , r.
The second problem connected to the results of the paper is the independence of the

function ζ(s). This problem was mentioned in the description of the 18th Hilbert problem
presented during the ICM of 1900. A. Ostrowski proved [16] the algebraic-differential
independence of ζ(s). Voronin obtained [17] the functional independence of ζ(s), i.e., he
proved that if F0, F1, . . . , Fm : CN → C are continuous functions, and the equality

m

∑
l=0

sl Fl

(
ζ(s), ζ ′(s), . . . , ζ(N−1)(s)

)
= 0

holds identically for s ∈ C, then Fl ≡ 0 for l = 0, 1, . . . , m. We have a conjecture that the
results of the paper can extend the latter Voronin theorem, including its joint version.

Finally, at it was mentioned in the introduction, the universality theorems for ζ(s)
are closely connected to the Riemann hypothesis (RH) which is one of the seven most
important Millenium problems of mathematics. Therefore, the development of various
types of universality, maybe, leads to the proof or disproof of RH.

The theorems of the paper also have some practical application aspects connected to
the estimation of complicated analytic functions. If α1 is sufficiently large, then H can be
small enough. Thus, the approximation value τ lies in a very short interval, and we can
estimate f j(s) by using the inequality

sup
s∈Kj

∣∣ f j(s)
∣∣ 6 sup

s∈Kj

∣∣∣ζ(s + it
αj
τ )
∣∣∣+ ε,

and the known estimates and continuity for ζ(s). For example, this can be applied for the
estimation of multiple integrals over analytic curves in quantum mechanics, as it was done
in a one-dimensional case in [18]. In general, universality theorems for ζ(s) can be applied
in all fields of mathematics that use estimates of analytic functions.

Moreover, universality theorems can be used [19] in quantum mechanics for the
description of the behaviour of particles.

We note that in the applications, discrete versions of universality theorems are more
convenient. Therefore, our next paper will be devoted to a more complicated discrete
generalization of the theorems of the paper.
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2. Laurinčikas, A. Limit Theorems for the Riemann Zeta-Function; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston,

MA, USA; London, UK, 1996.
3. Mauclaire, J.-L. Universality of the Riemann zeta-function: Two remarks. Ann. Univ. Sci. Budapest. Sect. Comp. 2013, 39, 311–319.
4. Bagchi, B. Recurrence in topological dynamics and the Riemann hypothesis. Acta Math. Hung. 1987, 50, 227–240. [CrossRef]
5. Nakamura, T. Joint value approximation and joint universality for several types of zeta functions. Acta Arith. 2008, 134, 67–82.

[CrossRef]
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