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1. Introduction

A branch of mathematics known as fractional calculus looks into the characteristics
of non-integer order derivatives and integrals (called fractional derivatives and integrals,
briefly differintegrals). The idea and techniques for solving differential equations with
fractional derivatives of the unknown function, often known as fractional differential
equations, are a focus of this field. Many authors have studied the fractional differential
equations (refer to [1–8]). Fractional differential equations provide an excellent tool for
describing memory and inherited traits of several materials and processes. The benefits of
fractional differential equations become apparent in modeling mechanical and electrical
characteristics of actual materials, as well as in the description of rheological effects of
rocks, and numerous fields. In [9–11], authors explained the applications of fractional
differential equations.

Differential equations including impulse conditions have been widely analyzed in the
literature. There has been a lot of interest in the research of these type of problems. The pres-
ence of solutions to several classes of fractional order implicit fractional differential equa-
tions with impulse conditions has gained a lot of attention recently (see references [12–14]).

Delay differential equations (DDEs) have emerged as a lively research area. It has
emerged in applications as a model of equations. In DDEs, the past dictates how the
system will evolve at a specific time instant. The life cycle stages, the interval between
contagion and the new viruses’ emergence, an infectious period, the immunological period,
etc. are examples of hidden processes that are related to time delays and time lags in
these models. ODEs simultaneously evaluate the unknown state and its derivatives. A
differential model becomes substantially more complex when such time delays are added.
Therefore, these models’ stability and bifurcation analysis are critical for comprehending
their qualitative behavior. These models have not undergone adequate sensitivity analysis
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or parameter identifiability investigations. In [15], Biao Zeng examined the fractional
impulsive feedback control systems with finite delay. The authors studied the existence of
impulsive neutral fractional differential equations with infinite delay in [16]. We could list
certain publications related to fractional differential equations including state-dependent
delay [17,18] and discrete delay [19].

Fractional differential equations are important in control, stellar interiors, star clusters,
electrochemistry, viscoelasticity, and in optics. The impulsive conditions mount from the
real-world problems to describe the dynamics of processes in which sudden, discontinuous
jumps occur. In many fields of the life sciences, including population dynamics, immunol-
ogy, epidemiology, neural networks, and physiology, modeling with DDEs is commonly
employed. The entire process is seen in optimal control, electric circuits, neutral network,
medicines, and so on. Because of the applications, we have included implicit, impulsive,
and delay to our main problem.

In [20], S. Krim and others investigated the existence and uniqueness of solutions
for the following Caputo–Hadamard implicit delay fractional differential equations with
boundary conditions

u(t) = ζ(t); t ∈ [1− h, 1],
(HCDr

1u)(t) = f (t, ut,HC Dr
1u)(t)); t ∈ I := [1, T],

u
′
(T) = uT ,

where r ∈ (1, 2), T > 1, h > 0, ζ(t) ∈ C, uT ∈ R, f : I × C × R → R is a continuous
function, HCDr

1 is the Caputo–Hadamard fractional derivative of order r, and the space of
continuous functions C := C([1− h, 1],R).

In [21], the authors studied the existence and uniqueness of positive solutions of the
given non-linear fractional relaxation differential equation{

LCDακ(t) + λκ(t) = f (t,κ(t)), 0 < t ≤ 1,
κ(0) = κ0 > 0,

where LCDα is the Liouville–Caputo fractional derivative, α ∈ (0, 1]. By using the fixed-
point theorems and the method of the lower and upper solutions, the existence and unique-
ness of solutions have been examined.

In [22], A. Lachouri, A. Djoudi, and A.Ardjouni discussed the existence and unique-
ness of solutions for the below fractional relaxation integrodifferential equations with
boundary conditions{

Dβ LCDακ(t) + λκ(t) = f (t,κ(t), Irκ(t)), λ ∈ R, 0 < t < T,
LCDακ(0) =LC Dακ(T) = 0, κ(0) = a

∫ T
0 κsds + b, a, b ∈ R,

where LCDα and Dβ are Liouville–Caputo (L-C) fractional derivative and the Riemann–
Liouville (R-L) fractional derivative of orders α and β, respectively, α ∈ (0, 1), β ∈ (1, 2), Ir

is the Riemann–Liouville fractional integral of order r ∈ (0, 1), and f : [0, T]×R×R→ R
is a nonlinear continuous function.

Motivated by the aforementioned works, by applying the Schauder and Banach fixed-
point theorems, we examine the existence and uniqueness of solutions for the following
implicit fractional relaxation differential equation with impulsive delay conditions of
the form
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Dβ LCDακ(τ) + λκ(τ) = f (τ,κτ , Dβ LCDακ(τ)), τ 6= τκ , τ ∈ L = [0, T], λ ∈ R,
∆κ(τκ) = Iκ(κ(τ−κ )), κ = 1, 2, ..., m,
κ(τ) = ζ(τ), τ ∈ [−h, 0]
LCDακ(0) =LC Dακ(T) = 0, κ(0) = µ

∫ T
0 κsds + ν, µ, ν ∈ R,

(1)

where Dβ and LCDα are the R-L fractional derivative and L-C fractional derivative of orders
β and α, respectively, 0 < α < 1, ζ ∈ C, 1 < β < 2, and f : L× PC([−h, 0],R)×R→ R is
a nonlinear continuous function. Ikappa : PC([−h, 0],R) → R, ∆κ(τκ) = κ(τ+

κ )− κ(τ−κ )
indicates the jump of κ at τ = τκ , κ(τ+

κ ) and κ(τ−κ ) represents the right and left limits
of κ(τ) at τ = τκ , respectively, and κ = 1, 2, ..., m. is the space of continuous functions
C := C([−h, 0],R). For any τ ∈ L, we represent κτ by

κτ(s) = κ(τ + s) and − h ≤ s ≤ 0.

that is, κτ(.) represents the history of the state from time τ − h up to time τ.
We utilize the usual fixed-point theorem due to Schauder and Banach, is used to

study the existence and uniqueness results. Finally, this work is strengthened by providing
examples. The main novelty of this paper is focused with implicit and delay conditions.
Basic results are discussed in preliminaries section. New findings are mentioned in the
main results and the illustration is presented in the example section.

2. Preliminaries

This section introduces several terminologies, notations, and results related to frac-
tional calculus.

Denote the Banach space of all continuous real functions by C(L) = C(L,R) on
L := [0, T] endowed with the norm

‖κ‖∞ := sup{|κ(τ)| : 0 ≤ τ ≤ T}.

Consider the sets of functions

PC([−h, 0],R) = {κ : [−h, 0]→ R : κ ∈ C((τk, τk+1],R), k = 0, ...., l, and there exist

κ(τ−K ) and κ(τ+
K ), k = 1, ..., l, withκ(τ−k ) = κ(τ−k )}.

PC([−h, 0],R) is a Banach space with the norm

‖κ‖PC = sup
τ∈[−h,0]

|κ(τ)|.

PC([0, T],R) = {κ : [0, T]→ R : κ ∈ C((τk, τk+1],R), k = 0, ...., m, and there exist

κ(τ−K ) and κ(τ+
K ), k = 1, ..., m, withκ(τ−k ) = κ(τ−k )}.

PC([0, T],R) is a Banach space with the norm

‖κ‖PC1 = sup
τ∈[0,T]

|κ(τ)|.

Moreover, the Banach space C := C([−h, T]) with the norm

‖κ‖C := sup{|κ(τ)| : −h ≤ τ ≤ T]}.
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The space of absolutely continuous valued functions AC(L) from L into R, and set

ACm(L) = {κ : L → R : κ,κ′ ,κ′′ , . . . ,κm−1 ∈ C and κm−1 ∈ AC(L)}.

Now we give out some fractional calculus results and properties.

Definition 1 ([10]). Let α > 0 be the fractional integral order of a function h : L → R is defined by

Iαh(τ) =
1

Γ(α)

∫ τ

0
(τ − s)α−1h(s)ds,

given that the integral exists.

Definition 2 ([10]). Let α > 0 be the L-C fractional derivative order of a function h : L → R is
denoted by

LCDαh(τ) = Dα

[
h(τ)−

m1−1

∑
j=0

h(j)(0)
j!

τ j

]
,

where

m1 = 1 + [α] f or α /∈ N0, m1 = α f or α ∈ N0, (2)

and Dα
0+ is a fractional derivative in R-L sense of order α given by

Dαh(τ) = Dm1 Im1−αh(τ) =
1

Γ(n− α)

dm1

dτm1

∫ τ

0
(τ − s)m1−α−1h(s)ds.

The Liouville–Caputo fractional derivative LCDα
0+ exists for κ belonging to ACm1(L). In this

case, it is defined by

LCDαh(τ) = Im1−αx(m1)(τ) =
1

Γ(n− α)

∫ τ

0
(τ − s)m1−α−1h(m)1(s)ds.

Remark that when α = m1, we get LCDαh(τ) = h(m1)(τ).

Lemma 1 ([10]). Let α > 0 and m be the given by (2). If h ∈ ACm(L,R), then

(IαLCDαh)(τ) = h(τ)−
m−1

∑
j=0

h(j)(0)
j!

τ j,

where h(j) is the usual derivative of h of order j.

Lemma 2 ([10]). For α > 0 and m be given by (2), then the L-C fractional differential equation
LCDαh(τ) = 0 has a general solution

h(τ) = a0 + a1τ + a2τ2 + ... + am−1τm−1,

where ak ∈ R, k = 0, 1, 2, ..., m− 1. Furthermore, the R-L fractional differential equation

Dαh(τ) = 0,

has a general solution

h(τ) = a1τα−1 + a2τα−2 + a3τα−3 + ... + amτα−m, ak ∈ R, k = 1, 2, ..., m.
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Lemma 3 ([10]). For any 0 ≤ α, β < ∞ and , then

1
Γ(α)

∫ τ

0
(τ − s)β−1sα−1ds =

Γ(β)

Γ(α + β)
τα+β−1.

Lemma 4. (Banach fixed-point theorem [7]). Let Ψ be a nonempty closed convex subset of a Banach
space (S∗, ‖ · ‖), and then any contraction mapping φ of Ψ into itself has a unique fixed point.

Lemma 5. (Schauder fixed-point theorem [7]). Let Ψ be a nonempty bounded closed convex subset
of a Banach space S∗ and φ : Ψ→ Ψ be a continuous compact operator. Then has a fixed point in Ψ.

The subsequent lemma is required to get our conclusions.

Lemma 6 ([22]). For any h ∈ C(L), then the problem
Dβ LCDακ(τ) + λκ(τ) = h(τ), τ 6= τκ , 0 ≤ τ ≤ T, λ ∈ R,
∆κ(τκ) = Iκ(κ(τ−κ )), κ = 1, 2, ..., m,
κ(τ) = ζ(τ), −h ≤ τ ≤ 0
LCDακ(0) =LC Dακ(T) = 0, κ(0) = µ

∫ T
0 κsds + ν, µ, ν ∈ R,

(3)

is identical to the integral equation

ζ(τ); τ ∈ [−h, 0]
1

Γ(α + β)

(∫ τ

0
(τ − s)α+β−1h(s)ds− λ

∫ τ

0
(τ − s)α+β−1κsds

)
− τβ+α−1

Tβ−1Γ(β + α)

(∫ T

0
(T − s)β−1h(s)ds− λ

∫ T

0
(T − s)β−1κsds

)
+µ

∫ T

0
κsds + ν if τ ∈ (0, τ1]

...
1

Γ(α + β)

κ

∑
i=1

(∫ τi

τi−1

(τi − s)α+β−1h(s)ds− λ
∫ τi

τi−1

(τi − s)α+β−1κsds
)

+
1

Γ(α + β)

(∫ τ

τκ

(τ − s)α+β−1h(s)ds− λ
∫ τ

τκ

(τ − s)α+β−1κsds
)

− τβ+α−1

Tβ−1Γ(β + α)

(∫ T

0
(T − s)β−1h(s)ds− λ

∫ T

0
(T − s)β−1κsds

)
+µ

∫ T

0
κsds + ν +

m

∑
κ=1

Iκ(κ(τ−κ )) if τ ∈ (τκ , τκ+1].

3. Main Result

The following uses fixed point theorems to prove the problem’s existence and unique-
ness of the (1). The following hypotheses are required to get our results.

(H1) Take the constants k > 0, 0 < l < 1 such that

| f (τ,κ1, κ̄1)− f (τ,κ2, κ̄2)| ≤ k‖κ1 −κ2‖PC + l|κ̄1 − κ̄2|,

for any τ ∈ L and each κi ∈ PC([−h, 0],R), κ̄i ∈ R, i = 1, 2.
(H2) There exists a constants K > 0 and L ∈ (0, 1) such that

| f (τ,κ, κ̄)| ≤ K‖κ‖PC + L|κ̄|,

for any κ ∈ PC([−h, 0],R), κ̄ ∈ R and each τ ∈ L.
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(H3) There exist ρ > 0 that says

|Ik(κ)− Ik(κ̄)| ≤ ρ‖κ − κ̄‖PC, for all κ, κ̄ ∈ PC([−h, 0],R) with k = 1, 2, ..., m.

3.1. Existence and Uniqueness Results via Banach’s Fixed-Point Theorem

Theorem 1. Consider (H1) holds. If

χ =

(
(m + 2)β + α

β(α + β)

)
Tα+β

Γ(α + β)

(
k

1− l
+ |λ|

)
+ |µ|T + mρ < 1,

then the solution of (1) is unique on [−h,T].

Proof. Denote the operator σ : C → C as

(σκ)(τ) =



ζ(τ); τ ∈ [−h, 0]
1

Γ(α + β)

κ

∑
i=1

(∫ τi

τi−1

(τi − s)α+β−1h(s)ds− λ
∫ τi

τi−1

(τi − s)α+β−1κsds
)

+
1

Γ(α + β)

(∫ τ

τκ

(τ − s)α+β−1h(s)ds− λ
∫ τ

τκ

(τ − s)α+β−1κsds
)

− τβ+α−1

Tβ−1Γ(β + α)

(∫ T

0
(T − s)β−1h(s)ds− λ

∫ T

0
(T − s)β−1κsds

)
+µ

∫ T

0
κsds + ν +

m

∑
κ=1

Iκ(κ(τ−κ )) if τ ∈ (τκ , τκ+1].

Obviously, the solutions of problem (1) are the fixed points of operator σ. By (H1) and
(H3), for each κ, y ∈ C and τ ∈ L, where h ∈ C(L) such that h(τ) = f (τ,κτ , h(τ)).

Take κ, y ∈ C(L), and then for each τ ∈ [−h, 0], we have

‖(σκ)(τ)− (σy)(τ)‖ = |ζ(τ)− ζ(τ)| = 0

and for each τ ∈ L, we have |(σκ)(τ)− (σy)(τ)|

≤ 1
Γ(α + β) ∑

0<τk<τ

∫ τk

τk−1

(τk − s)α+β−1|h(s)− g(s)|ds

+
1

Γ(α + β)

∫ τ

τm
(τ − s)α+β−1|h(s)− g(s)|ds

+
1

Γ(α + β)
|λ| ∑

0<τk<τ

∫ τk

τk−1

(τk − s)α+β−1|κs − ys|ds

+
1

Γ(α + β)
|λ|
∫ τ

τm
(τ − s)α+β−1|κs − ys|ds

+
τβ+α−1

Tβ−1Γ(β + α)

∫ T

0
(T − s)β−1|h(s)− g(s)|ds

+
τβ+α−1

Tβ−1Γ(β + α)
|λ|
∫ T

0
(T − s)β−1|κ(s)− y(s)|ds

+|µ|
∫ T

0
|κ(s)− y(s)|ds +

m

∑
k=1
|Ik(κ(τ−k ))− Ik(y(τ−k ))|

where h, g ∈ C(L) such that

h(τ) = f (τ,κτ , h(τ)) and g(τ) = f (τ, yτ , g(τ)).
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From (H1), we get

|h(τ)− g(τ)| = | f (τ,κτ , h(τ))− f (τ, yτ , g(τ))|

≤ k
1− l

‖κτ − yτ‖PC.

Thus, for each τ ∈ L, we get
|(σκ)(τ)− (σy)(τ)|

≤ Tα+βm
Γ(α + β + 1)

k
1− l

‖κτ − yτ‖PC +
Tα+β

Γ(α + β + 1)
k

1− l
‖κτ − yτ‖PC

+
|λ|m

Γ(α + β + 1)
‖κτ − yτ‖PC +

|λ|
Γ(α + β + 1)

‖κτ − yτ‖PC

+
Tβ+α

βΓ(β + α)

k
1− l

‖κτ − yτ‖PC +
Tβ+α

βΓ(β + α)
|λ|‖κτ − yτ‖PC

+|µ|T‖κτ − yτ‖PC + mρ‖κτ − yτ‖PC

≤
[(

(m + 2)β + α

β(α + β)

)
Tα+β

Γ(α + β)

(
k

1− l
+ |λ|

)
+ |µ|T + mρ

]
‖κτ − yτ‖PC1 .

≤ χ‖κτ − yτ‖PC1

≤
[(

(m + 2)β + α

β(α + β)

)
Tα+β

Γ(α + β)

(
k

1− l
+ |λ|

)
+ |µ|T + mρ

]
‖κ − y‖C .

≤ χ‖κ − y‖C .

Thus,

‖σκ − σy‖ ≤ χ‖κ − y‖.

From (4), σ is a contraction. By the Banach contraction mapping theorem, σ has a fixed
point that is the unique solution of the problem (1) on [−h, T]. This finishes the proof.

3.2. Existence Results via Schauder’s Fixed-Point Theorem

Theorem 2. Let the hypotheses (H1) and (H2) be fulfilled. If(
(m + 2)β + α

β(α + β)

)
Tα+β

Γ(α + β)

(
k

1− l
+ |λ|

)
≤ 1,

then (1) has at least one solution on [−h,T].

Proof. Take the operator σ : C → C. Let P > 0 such that

P ≥ max

{
‖ζ‖C([−h,0],R)

|a|T + |b|+ mρ

1−
[(

(m+2)β+α
β(α+β)

)
Tα+β

Γ(α+β)

(
k

1−l + |λ|
)]}.

Denote the ball
BP = {κ ∈ C(L,R), ‖κ‖C ≤ P}.

Consider that the operator σ : BP → BP fulfills all conditions of Lemma 3 . Three
steps would be taken to present the proof.

Step 1: σ is continuous.
Consider the sequence κn such that κn → κ in BP . For each τ ∈ [−h, 0], we get

‖(σκn)(τ)− (σκ)(τ)‖ = |ζ(τ)− ζ(τ)| = 0
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and for each τ ∈ L, we have
‖(σκn)(τ)− (σκ)(τ)‖

≤ 1
Γ(α + β) ∑

0<τk<τ

∫ τk

τk−1

(τk − s)α+β−1|hn(s)− h(s)|ds

+
1

Γ(α + β)

∫ τ

τm
(τ − s)α+β−1|hn(s)− h(s)|ds

+
1

Γ(α + β)
|λ| ∑

0<τk<τ

∫ τk

τk−1

(τk − s)α+β−1|κns −κs|ds

+
1

Γ(α + β)
|λ|
∫ τ

τm
(τ − s)α+β−1|κns −κs|ds

+
τβ+α−1

Tβ−1Γ(β + α)

∫ T

0
(T − s)β−1|hn(s)− h(s)|ds

+
τβ+α−1

Tβ−1Γ(β + α)
|λ|
∫ T

0
(T − s)β−1|κns −κs|ds

+|a|
∫ T

0
|κns −κs|ds +

m

∑
k=1
|Ik(κn(τ

−
k ))− Ik(κ(τ−k ))|

where hn, h ∈ C(L,R) such that

hn(τ) = f (τ,κnτ , hn(τ)) and h(τ) = f (τ,κτ , h(τ)).

Here, f , h, and hn are continuous and ‖κn − κ‖C → 0 as n → ∞ then by the
Lebesgue-dominated convergence theorem

‖σ(κn)− σ(κ)‖C → 0 as n→ ∞.

Hence, σ is continuous.

Step 2: σ(BP ) ⊂ BP .
Consider κ ∈ BP , If −h ≤ τ ≤ 0, and then

‖(σκ)(τ)‖ ≤ ‖ζ‖ ≤ P

for each τ ∈ L, and from (H2), we get

|h(τ)| ≤ | f (τ,κτ , h(τ))|
≤ K‖κτ‖[−h,0] + L|h(τ)|
≤ K‖κτ‖C + L‖h‖∞

≤ KP + L‖h‖∞.

Then

‖h‖∞ ≤ PK
1− L

.

Thus,

|(σκ)(τ)| ≤ 1
Γ(α + β) ∑

0<τk<τ

∫ τk

τk−1

(τk − s)α+β−1|h(s)|ds

+
1

Γ(α + β)
|λ| ∑

0<τk<τ

∫ τk

τk−1

(τk − s)α+β−1|κs|ds

+
1

Γ(α + β)

∫ τ

τm
(τ − s)α+β−1|h(s)|ds
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+
1

Γ(α + β)
|λ|
∫ τ

τm
(τ − s)α+β−1|κs|ds

+
τβ+α−1

Tβ−1Γ(β + α)

∫ T

0
(T − s)β−1|h(s)|ds

+
τβ+α−1

Tβ−1Γ(β + α)
|λ|
∫ T

0
(T − s)β−1|κs|ds

+|µ|
∫ T

0
|κs|ds +

m

∑
k=1
|Ik(κ(τ−k ))|

≤
[(

(m + 2)β + α

β(α + β)

)
Tα+β

Γ(α + β)

(
k

1− l
+ |λ|

)
+ |µ|T + mρ + |ν|

]
≤ P .

Hence,
‖σ(κ)‖C ≤ C.

Consequently, σ(BP ) ⊂ BP .

Step 3: σ(BP ) is equicontinuous.
For 0 ≤ τk−1 ≤ τk ≤ T and κ ∈ BP , we have
|(σκ)(τk)− (σκ)(τk−1)|

≤ 1
Γ(α + β) ∑

0<τk<τ

∫ τk−1

0

(
(τk − s)α+β−1 − (τk−1 − s)α+β−1

)
|h(s)|ds

+
1

Γ(α + β) ∑
0<τk<τ

∫ τk

τk−1

(τk − s)α+β−1|h(s)|ds

+
1

Γ(α + β)

∫ τk−1

0

(
(τk − s)α+β−1 − (τk−1 − s)α+β−1

)
|h(s)|ds

+
1

Γ(α + β)

∫ τk

τk−1

(τk − s)α+β−1|h(s)|ds

+
1

Γ(α + β)
|λ| ∑

0<τk<τ

(∫ τk−1

0
(τk − s)α+β−1 − (τk−1 − s)α+β−1|κs|ds

+
∫ τk

τk−1

(τk − s)α+β−1|κs|ds
)

+
1

Γ(α + β)
|λ|
(∫ τk−1

0
(τk − s)α+β−1 − (τk−1 − s)α+β−1|κs|ds

+
∫ τk

τk−1

(τk − s)α+β−1|κs|ds
)

+
τ

β+α−1
2 − τ

β+α−1
1

Tβ−1Γ(β + α)

(∫ T

0
(T − s)β−1|h(s)|ds + |λ|

∫ T

0
(T − s)β−1|κs|ds

)
+

m

∑
k=1
|Ik(κ(τ−k ))− Ik(κ(τ−k−1))|

≤ (m + 1)
Γ(α + β + 1)

(
|λ|+ PK

1− L

)(
τ

α+β
k − τ

α+β
k−1

)
+

(
τ

β+α−1
k − τ

β+α−1
k−1

)
βΓ(β + α)

(
|λ|+ PK

1− L

)
+|µ|(τk − τk−1) + ρ‖(κ(τk))− (κ(τk−1))‖.

As τk−1 → τk, we see that the right side of the above inequality tends to zero, and the
convergence is not dependent on κ in BP . This implies σ(BP ) is equicontinuous. By the
Arzela–Ascoli theorem, σ is compact. Thus, by the Lemma 5, we prove that σ has at least
one fixed point κ ∈ BP , which is a solution of the problem (1) on [−h, T].
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4. Example

Consider the following fractional relaxation impulsive integro-differential equation
D

3
2 LCD

1
2 κ(τ) + 1

4κ(τ) = f
(

τ,κ(τ), D
3
2 LCD

1
2 κ(τ)

)
, τ 6= τκ τ ∈ [0, 1],

∆κ(τκ) = Iκ(κ(τ−κ )), κ = 1, 2, ..., m,
κ(τ) = 1 + τ2 : τ ∈ [−1, 0]
LCD

1
2 κ(0) =LC D

1
2 κ(1) = 0, κ(0) = 1

10

∫ 1
0 κ(s)ds + 2.

(4)

Here α = 1
2 , β = 3

2 , λ = 1
4 , µ = 1

10 , and ν = 2. Set

f
(

τ,κ(τ), D
3
2 LCD

1
2 κ(τ)

)
=

sin(τ)
exp(τ2) + 7

(
1

90(|κ(τ)|+ 1)
+

1

1 + |D 3
2 LCD

1
2 κ(τ)|

)
.

For κi, yi ∈ R, i = 1, 2, we have
| f (τ,κ1,κ2)− f (τ, y1, y2)|

=

∣∣∣∣∣ sin(τ)
exp(τ2) + 7

((
1

90(|κ1|+ 1)
− 1

90(|y1|+ 1)

)

+

(
1

1 + |D 3
2 LCD

1
2 κ(τ)|

− 1

1 + |D 3
2 LCD

1
2 y(τ)|

))∣∣∣∣∣
≤ 1

exp(τ2) + 7

(
‖κ1 − y1‖[−h,0]

90(1 + |κ1|)(1 + |y1|)
+

|κ2 − y2|
30(1 + |κ2|)(1 + |y2|)

)

≤ 1
8
(

1
90
‖κ1 − y1‖[−h,0] +

1
30
|κ2 − y2|),

and thus, the assumption (H1) is satisfied with k = 1
720 , l = 1

240 , T = 1, ρ = 1
2 & m = 1. We

will evaluate that condition (4) is satisfied. Indeed,

σ =

(
(m + 2)β + α

β(α + β)

)
Tα+β

Γ(β + α)

(
k

1− l
+ |λ|

)
+ |µ|T + mρ

=

(
(1 + 2) 3

2 + 1
2

3
2 (

1
2 + 3

2 )

)(
1

720

1− 1
240

+
1
4

)
+

1
10

+
1
3

' 0.7651 < 1.

The conditions of Theorem 1 are fulfilled.

(
(m + 2)β + α

β(α + β)

)
Tα+β

Γ(α + β)

(
k

1− l
+ |λ|

)
=

(
(1 + 2) 3

2 + 1
2

3
2 (

1
2 + 3

2 )

)(
1

720

1− 1
240

+
1
4

)
= 0.3351 < 1.

The conditions of Theorem 2 are fulfilled.
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