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Abstract: In this study, an analysis of the rotating flow of viscoelastic Oldroyd-B fluid along with
porous medium featuring the Soret–Dufour effects is explored. The heat transport mechanism
is discussed with the involvement of thermal radiation and heat source/sink. Additionally, the
thermophoresis of particle deposition and chemical reaction are taken into the concentration equation
in order to investigate the mass transportation in the liquid. To formulate the non-linear ordinary
differential equations, the von Karman similarity approach is used in the system of partial differential
equations and then integrated numerically by the bvp midrich scheme in Maple programming.
Results are provided by graphical framework and tabular form. A quick parametric survey is carried
out concerning flow field, thermal, and solutal distributions through graph representation. The curves
show that increasing the values of the retardation time parameter decreases the radial velocity while
increasing the angular velocity. Additionally, when the relaxation time parameter becomes powerful,
the magnitude of the velocity curves decreases considerably in the radial and axial directions. The
presence of a radiation parameter indicates that the fluid will absorb a greater amount of heat, which
is equivalent to a higher temperature. Further, an increase in the stretching parameter leads to a
reduction in the temperature components.

Keywords: viscoelastic fluid; magnetic field; porous medium; thermophoresis; Soret–Dufour effects;
numerical solution

MSC: 00A69; 76A10

1. Introduction

In the field of fluid dynamics, research into rotating disk geometry has attracted a
great deal of attention and enthusiasm in recent years due to its many potential technical
and industrial applications, including jet engines, hard disks, turbine systems, etc. It is for
this reason that the phenomenon of fluid flow by a rotating disk has received a significant
amount of attention and has been extensively analyzed by researchers, particularly after
von Kerman′s seminal work on flow by a rotating disk. The overarching goal of the
discussion is to study the convection fluid motion of the Oldroyd-B fluid model [1] due to
a porous rotating disk using the novel perspective of thermophoresis particle deposition
together with the occurrence of Soret–Dufour impacts and chemical reactions.

Von Kármán [2], in his groundbreaking work, simplified the complete set of equations
guiding the solution to the rotating disk problem. After that, Cochran [3] made an attempt to
numerically solve the Kármán swirling flow problem. Further, Millsaps and Pohlhausen [4]
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studied the heat transfer properties to accommodate the supplementary extension. For a
viscous fluid, Shevchuk and Buschmann [5] found an exact solution to the heat transfer
problem in a rotating disk flow. Awad [6] offered the asymptotic solutions to the heat
transport properties for a range of Prandtl numbers. Through the use of a rotating porous
disc, Turkyilmazoglu [7] was able to obtain the closed-form solution for an incompressible
and viscous fluid. In a separate work, Turkyilmazoglu [8] investigated the impacts of
radial electric fields on MHD fluid flow and heat transfer for the rotating disk problem.
Recently, the study of viscoelastic fluid flow, along with heat transfer, is discussed by
Nuwairan et al. [9]. They demonstrated that heat generation/absorption and thermal
radiation contribute to raising the liquid′s temperature.

The rheological properties of non-Newtonian fluids are very dissimilar to those of
Newtonian fluids. Therefore, many different constitutive equations have been developed
to describe these fluids. Of these, a great deal of focus has been placed on rate-type models.
As earlier, Oldroyd [10] established a methodical approach to creating models of rate-type
viscoelastic fluids. He took great effort to incorporate into his framework the invariance
requirements that the model ought to be able to fulfill, but there is no indication that the
thermodynamical issue has been taken into account. In 2000, Rajagopal and Srinivasa [11]
made a systematic thermodynamic framework within which models of a variety of rate-
type viscoelastic fluids can be derived. Notable among these is the Oldroyd-B model,
which can adequately describe the behavior of some polymeric liquids. Both theoretical
and practical testing of this model is feasible. For this reason, many articles related to these
fluids have already been published via Refs. [12–15].

A survey of the research available shows that, despite the importance of fluid motion
over a porous rotating disk to many different types of industries, researchers have paid it
relatively little attention. Thus, the main purpose of this research is to examine the flow
of Oldroyd-B fluids due to a rotating disk subject to a convection boundary condition,
incorporating thermophoresis and Soret–Dufour impacts. In addition, the study elucidates
the significance of heat source/sink and thermal radiation, along with the chemical reaction
on the heat and mass transport characteristics that occur during fluid motion. The modeled
flow problem is solved numerically by a BVP (boundary value problem) midrich scheme in
Maple programming. To highlight the impact of active parameters, tabular and graphical
trends are obtained and elaborated in detail.

2. Problem Description

We assume an incompressible magnetized Oldroyd-B fluid flow through porous
medium caused by a rotating disk that stretches and rotates at different rates. The surface is
considered to be porous, with a mass flux velocity of w0 (w0 < 0 for suction and w0 > 0 for
injection). To express the mathematical modelling of the problem, cylindrical coordinates
(r, ϕ, z) are used. The stretching and rotating velocities of the disk (positioned at z = 0) are,
respectively, a and Ω, as referred in Figure 1. All physical quantities are not depending onϕ,
as the flow is axisymmetric in the z direction. By ignoring the induced electric and magnetic
fields, a uniform beam of magnetic field, B0, is imposed along the z-axis. The temperature
equation is used along with the presence of heat source/sink and radiation to express
the heat transportation in the liquid. For the mass transportation, the chemical reaction
and thermophoresis particle deposition are both taken into the concentration equation.
Additionally, the impact of Soret and Dufour and the convective boundary condition are
also considered.
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From the aforementioned assumptions, the modeled equations [1] are as follows:
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The radiative flux qrad [13,16] is given by:

qrad = −4
3

σ∗

k∗
∂T4

∂z
, (6)

The thermophoretic velocities are defined by:

UT = −kν
1
T

∂T
∂r

and WT = −kν
1
T

∂T
∂z

, (7)

where the values of k are in the range of 0.2 to 1.2, as expressed by Batchelor and Shen [17],
and are defined from the theory of Talbot et al. [18] by:

2Cs
(
λg/λp + CtKn

)[
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(
C1 + C2e−C3/kn

)]
(1 + 3CmKn)

[
1 + λg/λp + 2CtKn

] (8)

where (Cs, Ct, Cm, C1, C2, C3) = (1.147, 2.20, 1.146, 1.2, 0.41, 0.88) are, respectively, con-
stants. Additionally, Kn is the Knudsen number and

(
λp, λg

)
are the thermal conductivities

of the diffusion particles and the fluid. The respective boundary conditions are:

u = cr, v = Ωr, w = w0,−k∗1
∂T
∂z = h f

(
Tf − T

)
, C = Cw at z = 0,

u→ 0, v→ 0, T → T∞, C → C∞ as z→ ∞
(9)
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Introducing the similarity variables [13] are:

(η, u, v, w) =

(√
Ω
ν z, ΩrF, ΩrG,

√
ΩνH

)
,

[T, C, ∆T] =
[

T∞ + ∆Tθ, C∞φ, Tf − T∞

] (10)

Applying Equation (10) into Equations (1)–(5), we have:

H′ + 2F = 0, (11)

F2 − G2 + F′H − F′′ + γF + β1
(

F′′H2 + 2FF′H − 2GG′H
)
+ β2

(
2F′2 + 2F′H′′ − F′′′H

)
+M(F + β1F′H) = 0,

(12)
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(
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)
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4
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2
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The transformed boundary conditions (BCs) are:

F(η) = R, G(η) = 1, H(η) = s, θ′(η) = −Bi(1− θ(η)), φ(η) = 0 at η = 0,
F(η)→ 0, G(η)→ 0, θ(η)→ 0, φ(η)→ 1 as η → ∞,

(16)

The parameters are expressed as:
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The physical parameters are defined as:
The Nusselt number, Nur, and Sherwood number, Shr, are of the form:

Nur = −
rk∗1
([

∂T
∂z

]
+ qrad

)
z=0

k∗1
(

Tf − T∞

) , and Shr =
rDm

(
∂C
∂z

)
z=0

Dm(Cw − C∞)
(18)

Their dimensionless forms are:

Re−
1
2 Nur = −

{
1 +

4Rd
3

}
θ′(0), and Re−

1
2 Shr = −φ′(0), (19)

in which, Re =
(

r2Ω
ν

)
is the local Reynold number.

3. Results and Discussion

In this section, a discussion is presented in the form of graphs and tables regarding
the effect different physical parameters have had on the current investigation. These
results are achieved through the utilization of the numerical technique called the bvp
midrich Maple package. In light of this, the following fixed values are assigned for the
computations: M = 2.0, β = 0.05, R = 1.3, s = 0.1, Pr = 6.5, Sc = 6.5, Sr = 0.1, K2 = 0.01,
Du = 0.1, γ = 0.1, Rd = 0.1, Bi = 0.1, δ = 0.1, k = 0.2, and Nt = 0.1. To obtain illustrative
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results, Figures 2–4 are plotted to illustrate the impact of various involved parameters on
the flow fields, thermal, and solutal distributions.
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Figure 2a–e highlight the effect of stretching parameter R on the flow, thermal, and
solutal fields. The sketches make it clear that the velocity field is radially increasing and
azimuthally decreasing. Because R is the stretch to swirl rate ratio, when the rate of the
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stretching parameter begins to thrive, the stretch rate becomes higher relative to the swirl
rate. Therefore, the velocities enhance and reduce in the radial and angular directions,
respectively. In addition, the axial velocity component shows a diminishing trend with
an increasing rotating parameter, as shown in Figure 2c. Moreover, the evidence shown
in Figure 2d indicates that the temperature of the fluid is decreasing as the stretching
parameter becomes intensified. A converse trend can be seen for the mass concentration
(see Figure 2e).

The influence of β2 on the velocity, thermal, and solutal curves on a fixed magnetic
parameter and stretching parameter, suction parameter, and porosity parameter are shown
in Figure 3a–e. It is obvious that, as the relaxation time parameter, β2, becomes powerful, the
magnitude of the velocity curves decreases considerably in the radial and axial directions.
In addition, an increase of β2 from 0.05 to 0.5 has a positive effect on the angular velocity
of the liquid. Moreover, curves are plotted in order to examine the impact that β2 has on
temperature as well as solutal distributions. It can be observed from the curves that the
temperature of the liquid rises under the influence of β2, while the mass concentration in
the liquid reduces, as displayed in Figure 3d,e.
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Figure 4. Variation of θ(η) on (a) Rd, (b) Bi, and (c) δ.

The elaboration of the curves of the thermal field for a variety of different values
of Rd is shown in Figure 4a. The higher rate of Rd cause the thermal field to rise, along
with the boundary layer thickness associated with it. As predicted, the presence of a
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radiation parameter, Rd, indicates that the fluid will absorb a greater amount of heat, which
is equivalent to a higher temperature. Figure 4b indicates the peculiarities of the Biot
number, Bi, on the fluid temperatures. In a physical point of view, an increase in the Biot
number leads to larger convection at the disk surface, which in turn causes an increase in
the fluid’s temperature. In addition to this, the higher the Biot number, the more prominent
the boundary layer thickness. A similar kind of trend may be seen on the thermal profile,
which is caused by an increase in the heat generation parameter (see Figure 4c).

Table 1 displays the values of the local Nusselt number on β1, β2, Bi, Sr, and Du,
respectively. The heat transfer rate increases with the increases in Bi and Sr, while it reduces
due to the influence of β1, β2, and Du. The changes in mass transfer rate in the liquid due
to Nt, Kr, k, Sr, and Du can be seen in Table 2. It is noted that the Sherwood number is a
monotonically increasing function of Nt, k, and Du, while it is a decreasing function of Kr and Sr.

Table 1. Variation of Re−
1
2 Nur on β1, β2, Bi, Sr, and Du, respectively.

β1 β2 Bi Sr Du Re−
1
2 Nur

0.03 0.05 0.1 0.1 0.01 0.09229430

0.05 0.09227085

0.07 0.09224773

0.05 0.1 0.09224401

0.2 0.09218679

0.3 0.09212443

0.05 0.1 0.3 0.25443032

0.5 0.39242589

0.7 0.51127541

0.05 0.1 0.1 0.3 0.09229828

0.5 0.09235327

0.7 0.09241036

0.05 0.1 0.01 0.09224401

0.05 0.07831140

0.08 0.06707660

Table 2. Variation of Re−
1
2 Shr on Nt, Kr, k, Sr, and Du, respectively.

Nt Kr k Sr Du Re−
1
2 Shr

0.1 0.01 0.2 0.1 0.01 2.35092312

0.2 2.35418081

0.3 2.35767071

0.1 0.02 2.29027125

0.03 2.23131286

0.04 2.17416908

0.1 0.01 0.3 2.35253616

0.4 2.35415123

0.5 2.35596540

0.1 0.01 0.2 0.3 2.31108474

0.5 2.26928009

0.7 2.22710225
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Table 2. Cont.

Nt Kr k Sr Du Re−
1
2 Shr

0.1 0.01 0.2 0.1 0.02 2.34526541

0.03 2.48338698

0.05 2.63922405

Moreover, we computed F′(0),−G′(0) and −θ′(0), and these results are compared
with the available published results of [19,20] in Table 3, and it was found that they are in
excellent agreement with each other.

Table 3. A link table between [19,20] with the current problem on fixed Pr = 6.5 and M = 0 = γ =

R = s = β = Rd = δ = Du.

[19] [20] Present Result

F′(0) 0.5102 0.51023262 0.5101162643
−G′(0) 0.6159 0.61592201 0.6158492796
−θ′(0) 0.9337 0.93387794 0.9336941128

4. Conclusions

The axisymmetric swirling flow of Oldroyd-B fluid through a porous medium fea-
turing the Soret–Dufour impacts is discussed. Further, heat and mass transportations are
examined, along with numerous physical features. Numerical solutions are determined
with the help of a numerical procedure. Below is a summary of some important findings:

• The magnitude of velocity curves decreases substantially in the radial and axial
directions when the relaxation time parameter is changed to dynamic.

• A higher rate of radiation parameter causes the thermal field to rise, along with the
boundary layer thickness associated with it.

• An increasing trend is observed on the thermal profile, which is due to the increase in
the heat generation parameter.

• The higher the Biot number, the more pronounced is the thermal boundary layer thickness.
• The heat transfer rate enriches with an increase in the Soret number.
• The Sherwood number is a monotonically increasing function of the Dufour number.
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Nomenclature

r, ϕ, z cylindrical coordinate τ heat capacities ratio
u, v, w components of velocity cp specific heat capacity
T fluid temperature T∞ ambient temperature
Tf convective fluid temperature Cw wall concentration
h f convective heat transfer coefficient w0 mass flux velocity
σ the electric conductivity µ dynamic viscosity
ν kinematic viscosity ρ fluid density
C fluid concentration C∞ ambient concentration
Dm molecular diffusion coefficient K permeability of medium
kT the thermal-diffusion ratio K1 the reaction rate
Ω angular velocity rate Bo strength of magnetic field
c stretching rate cs the concentration susceptibility
λ1 time relaxation λ2 time retardation
k the thermophoretic coefficient k∗ mean spectral absorption coefficient
M magnetic field k∗1 thermal conductivity
σ∗ the Stefan-Boltzmann constant β1 relaxation time parameter
R stretching parameter γ porosity parameter
β2 retardation time parameter Pr Prandtl number
Bi Biot number Kr the chemical reaction parameter
Re the local Reynold number Nt relative temperature difference parameter
δ heat source/sink Rd the radiation parameter
s the suction parameter Sc Schmidt number
Nur the Nusselt number Shr the Sherwood number
η dimensionless variable ′ differentiation with respect to η
qr radiative heat flux G azimuthal velocity
H axial velocity F radial velocity
θ dimensionless temperature φ dimensionless concentration

References
1. Hafeez, A.; Khan, M.; Ahmed, J. Flow of magnetized Oldroyd-B nanofluid over a rotating disk. Appl. Nanosci. 2020, 10, 5135–5147.

[CrossRef]
2. Kármán, T.V. Uber laminare and turbulente reibung. Z. Angew. Math. Mech. 1921, 1, 233–252. [CrossRef]
3. Cochran, W.G. The flow due to a rotating disk. In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge

University Press: Cambridge, UK, 1934; Volume 30, pp. 365–375.
4. Millsaps, K.; Pohlhausen, K. Heat transfer by laminar flow from a rotating-plate. J. Aeronaut. Sci. 1952, 19, 120–126. [CrossRef]
5. Shevchuk, I.V.; Buschmann, M.H. Rotating disk heat transfer in a fluid swirling as a forced vortex. Heat Mass Transf. 2005, 41,

1112–1121. [CrossRef]
6. Awad, M.M. Heat transfer from a rotating disk to fluids for a wide range of Prandtl numbers using the asymptotic model. J. Heat

Transf. 2008, 130, 014505. [CrossRef]
7. Turkyilmazoglu, M. Exact solutions corresponding to the viscous incompressible and conducting fluid flow due to a porous

rotating disk. J. Heat Transf. 2009, 131, 091701. [CrossRef]
8. Turkyilmazoglu, M. Effects of uniform radial electric field on the MHD heat and fluid flow due to a rotating disk. Int. J. Eng. Sci.

2012, 51, 233–240. [CrossRef]
9. AL Nuwairan, M.; Hafeez, A.; Khalid, A.; Syed, A. Heat generation/absorption effects on radiative stagnation point flow of

Maxwell nanofluid by a rotating disk influenced by activation energy. Case Stud. Ther. Eng. 2022, 35, 102047. [CrossRef]
10. Oldroyd, J.G. On the formulation of rheological equations of state. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1950, 200, 523–541.
11. Rajagopal, K.R.; Srinivasa, A.R. A thermodynamic frame work for rate type fluid models. J. Non-Newtonian Fluid Mech. 2000, 88,

207–227. [CrossRef]
12. Vieru, D.; Fetecau, C.; Fetecau, C. Flow of a generalized Oldroyd-B fluid due to a constantly accelerating plate. Appl. Math.

Comput. 2008, 201, 834–842. [CrossRef]
13. Hafeez, A.; Khan, M.; Ahmed, J. Stagnation point flow of radiative Oldroyd-B nanofluid over a rotating disk. Comput. Methods

Programs Biomed. 2020, 199, 105342. [CrossRef] [PubMed]
14. Lee, J.; Hwang, W.R.; Cho, K.S. Effect of stress diffusion on the Oldroyd-B fluid flow past a confined cylinder. J. Non-Newtonian

Fluid Mech. 2021, 297, 104650. [CrossRef]
15. Shaqfeh, E.S.; Khomami, B. The Oldroyd-B fluid in elastic instabilities, turbulence and particle suspension. J. Non-Newtonian Fluid

Mech. 2021, 298, 104672. [CrossRef]
16. Rosseland, S. Astrophysik: Auf Atomtheoretischer Grundlage; Springer: Berlin/Heidelberg, Germany, 1931; Volume 11, pp. 41–44.

http://doi.org/10.1007/s13204-020-01401-2
http://doi.org/10.1002/zamm.19210010401
http://doi.org/10.2514/8.2175
http://doi.org/10.1007/s00231-005-0635-8
http://doi.org/10.1115/1.2780185
http://doi.org/10.1115/1.3139187
http://doi.org/10.1016/j.ijengsci.2011.09.011
http://doi.org/10.1016/j.csite.2022.102047
http://doi.org/10.1016/S0377-0257(99)00023-3
http://doi.org/10.1016/j.amc.2007.12.045
http://doi.org/10.1016/j.cmpb.2020.105342
http://www.ncbi.nlm.nih.gov/pubmed/32113101
http://doi.org/10.1016/j.jnnfm.2021.104650
http://doi.org/10.1016/j.jnnfm.2021.104672


Axioms 2022, 11, 608 11 of 11

17. Batchelor, G.K.; Shen, C. Thermophoretic deposition of particles in gas flowing over cold surfaces. J. Colloid Interface Sci. 1985, 107,
21–37. [CrossRef]

18. Talbot, L.; Cheng, R.K.; Schefer, R.W.; Willis, D.R. Thermophoresis of particles in a heated boundary layer. J. Fluid Mech. 1980, 101,
737–758. [CrossRef]

19. Bachok, N.; Ishak, A.; Pop, I. Flow and heat transfer over a rotating porous disk in a nanofluid. Phys. B Condens. Matter 2011, 406,
1767–1772. [CrossRef]

20. Turkyilmazoglu, M. Nanofluid flow and heat transfer due to a rotating disk. Comput. Fluids 2014, 94, 139–146. [CrossRef]

http://doi.org/10.1016/0021-9797(85)90145-6
http://doi.org/10.1017/S0022112080001905
http://doi.org/10.1016/j.physb.2011.02.024
http://doi.org/10.1016/j.compfluid.2014.02.009

	Introduction 
	Problem Description 
	Results and Discussion 
	Conclusions 
	References

