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Abstract: This research is an extension of our earlier published (2+ 1) dimensional cosmological models
in f (R, T) gravity with Λ(R, T) (IOP Conf. Ser. J. Phys. Conf. Ser. 2019, 1258, 012026). A different
class of cosmological space model is studied under modified theories of f (R, T) gravity, where the
cosmological constant Λ is expressed as a function of the Ricci scalar R and the trace of the stress-
energy momentum tensor T. We call such a model as “Λ(R, T) gravity”. Such a specific form of
Λ(R, T) has been defined in the dust as well as in the perfect fluid case. We intend to search for a
combined model that satisfies the equation of state for dark energy matter or quintessence matter or
perfect matter fluid. Some geometric and intrinsic physical properties of the model are also described.
The energy conditions, pressure and density are discussed both when Λ = Λ(r) is a function of the
radial parameter r, as well as when Λ is zero. We study the effective mass function and also the
gravitational redshift function, both of which are found to be positive as per the latest observations.
The cosmological model is studied in f (R, T) modified theory of gravity, where the gravitational
Lagrangian is expressed both in terms of the Ricci scalar R and the trace of the stress-energy tensor
T. The equation of state parameter is discussed in terms of ω corresponding to the three cases
mentioned above. The behaviour of the cosmological constant is separately examined in the presence
of quintessence matter, dark energy matter and perfect fluid matter.

Keywords: general relativity; f (R, T) gravity; dark energy matter; quintessence matter; perfect
matter fluid; Λ(R, T)
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1. Introduction

We are acquainted with the fact that the standard theory of gravity is General Relativity.
Cosmologists have proposed that a mysterious substance called quintessence can explain
why our universe is accelerating. As numerous observations and experiments reshape the
field, many cosmologists are exploring the possibility that the vast majority of the energy in
the universe is in the form of an undiscovered substance until now, called “quintessence”.

Quintessence has the striking physical characteristic that it causes the expansion
of the universe to speed up. Most forms of energy, such as matter or radiation, cause
the expansion to slow down due to the attractive force of gravity. For quintessence,
however, the gravitational force is repulsive, and this causes the expansion of the universe
to accelerate. In this work, we study the quintessence field. The accelerating rate of
expansion of the universe is better explained by this quintessence field, which is a scalar
field or a hypothetical form of dark energy. Quintessence can be either attractive or
repulsive depending on the ratio of its kinetic and potential energy. We understand that
the value of the cosmological constant, by definition, does not change. But when we
explain dark energy cosmological models, it behaves as a dynamic quantity which changes
over time.
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Cosmic inflation and the accelerated expansion of the universe is, however, charac-
terized by the equation of the state of dark energy. The predicted amount of vacuum
energy differs from the measured amount, which is known as the cosmological constant
problem. If the cosmological constant Λ = 0, then there is an absence of matter (Tµν = 0)
which leads to an absence of space-time curvature. On the other hand, if Λ 6= 0, we have
gravity associated with the vacuum. Further, the coincidence problem is that the density of
the dark energy and matter evolves differently as the Universe expands, even if they are
comparable [1].

Alternative theories of gravity are now playing an interesting role to describe the
present day observed Universe. The authors of [2] have shown that dust matter-dark
energy combined phases can be achieved by the exact solution which is deduced from
the power law f (R) cosmological model. Hence it solves the query by which a dust-
dominated decelerated phase is required before the dark-energy accelerated phase to form
large scale structures.

To explain the present observed large scale structures and cosmic accelerating expan-
sion, we need to search for the huge amounts of “dark matter” and “dark energy”, but no
experimental evidence has yet been found to support such mysterious components. Dark
matter and dark energy can however bridge the “shortcomings” of General Relativity and
explain the “correct” theory of gravity by matching with the present day observational
data [3].

Ever since the pioneering work of Karl Schwarzschild in 1916, many authors have
investigated the static and spherically symmetric perfect fluid solutions in classical general
relativity. Schwarzschild has solved the field equations for the interior region by considering
a perfect fluid of constant energy density, and also for the outside vacuum region, the
so-called Schwarzschild solutions. The authors of [4] have examined static perfect fluid
spheres in the presence of a cosmological constant and hence generated new classes of
exact matter solutions. They obtained a class of solutions that generalizes the Einstein
static universe and observed that neither its energy density nor its pressure is constant
throughout the spacetime.

It is now important to study gravity in (2 + 1) dimensions. We know that such gravity
becomes relevant after the BTZ black hole solution. Bañados et al. [5] have observed
that a black hole solution, together with a negative cosmological constant, exists in (2 + 1)
dimensions of spacetime, for the standard Einstein-Maxwell equations. It was also observed
that the (2 + 1) spacetimes for the standard black hole exhibits thermodynamic properties
that resemble (3 + 1)-dimensions of Schwarzschild and Kerr black hole solutions [6]. The
simple nature of gravitation in such dimensions have also been studied in [7]. We find
in [8] that the authors have considered the Einstein theory in a standard form of (2 + 1)
dimensions and studied the geometry of the spinning black holes, having a negative
cosmological constant. Kamata et al. [9] considered an anti-self dual equation to obtain
an exact solution to the Einstein-Maxwell equations in such dimensions for an electrically
charged BTZ black hole. The authors of [10] have considered the relation between quantised
Chern-Simons gravity and (2 + 1) dimensional quantum theory, and hence obtained the
density of states of the BTZ black hole in (2 + 1) dimensions. Further, Oliva et al. [11]
observed that the conformally flat solution containing black holes, can be obtained for
any value of the cosmological constant. However, for a negative cosmological constant,
the black hole is characterized by the “gravitational hair” parameter as well as the mass.
In [12], the authors have studied asymptotically flat black holes with deformed horizons
in (2 + 1) dimensions. They obtained solutions for static and rotating black holes, as well
as for black holes with radiative gravitons. Koch et al. [13] obtained a scale dependent
black hole in (2 + 1) dimensions. They derived the corresponding field equations by
imposing the “null energy condition” alongwith stationary spherical symmetry. In the
BTZ black hole background, the relativistic scattering as well as propagation, with a
nonminimal gravitional coupling, has been analyzed in [14]. A new kind of “soft hairy
black holes” in (2 + 1) dimensions, with asymptotic symmetries for locally flat spacetime,
have been observed in [15]. The authors have derived the results on flat space and, also,
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made observations on the entropy. A generalization of the rotating black hole in (2 + 1)
dimensions is observed in [16], where the authors have analyzed the horizon structure,
asymptotic behavior as well as its thermodynamic properties.

The cosmological solutions in (2 + 1) dimensions have been significantly investigated
by different authors. In [17] the author has studied the scalar field cosmology in three-
dimensions and hence obtained an analytical solution to the Einstein’s equations under
three distinct space-times. Homogeneous and isotropic 3-d cosmological features, contain-
ing perfect-fluid matter, have been reviewed in [18]. Further, spatially flat Einstein-Gauss-
Bonnet cosmological models in various dimensions have been studied by Pavluchenko [19].
The author has also investigated the Einstein-Gauss-Bonnet cosmological models in a lower
dimension and in the presence of perfect fluid in [20]. The aspects of the polynomial affine
model of gravity in 3-d have been defined in [21], where the authors reformulated the
model and discussed the truncated sectors.

The “cosmological constant” problem is a widely debated issue. Variable cosmological
terms were studied almost extensively in this context. The evolution of the scale factor with
a variable Λ term has been studied in [22]. The authors regeneneralized the investigation
to include nonzero pressure and obtained new solutions using a variety of observational
criteria. The effect of the cosmological constant Λ on the trajectory of the photons and
hence on their bending angle as they arrive at the observer has been discussed in [23]. The
author found that Λ contributes at the first-order differential equation level.

Cosmological models in varying scenarios are well-known today. A new type of
decaying Λ cosmologies is observed by Bonanno et al. [24], where it was found that the
cosmological constant Λ = 0 as t → 0, at very late times. Further, to explain the cosmic
acceleration from the observational point of view, RG-improved swiss-cheese cosmology
has been discussed in [25], where variable G and Λ are used. The cosmological constant
problem is solved by strong quantum effects near the infrared [26]. Reuter et al. worked
on Quantum Einstein Gravity and derived a critical infrared fixed point, where gravity
is found to be the scale invariant. It was also found that cosmological models of gravity
are scale-dependent [27]. There is a huge discrepancy between the observed value and
theoretical value of the cosmological constant Λ in Einstein’s equations. It was earlier
thought as vacuum energy density and has been studied by Peracaula [28], where old and
new ideas are compared.

In [29] the authors have derived that the cosmological constant Λ varies as R2, where
R is the Ricci scalar. They obtained this behaviour considering some general assumptions
in compliance with quantum cosmology. We intend to make a thorough study of the
behaviour of the cosmological constant in presence of dark energy matter, quintessence
matter or perfect fluid matter. We look for an unified model that satisfies the equation
of state in all these cases. The author in [30] has observed that in a (2+1)-dimensional
gravitational model, the cosmological constant behaves as a dynamical variable. We are
motivated to investigate this dynamic nature of the cosmological constant in our unified
model and also when it behaves as a constant as well.

The authors of [31] have studied modified f (R, T) gravity with scalar field and flat
FRW model. A particular form f (R, T) = R + 2 f (T) is considered and hence obtained
the field with an effective energy momentum tensor expressed in terms of the normal
(phantom) scalar field and the matter contribution due to modified gravity.

The structure of this paper is as follows: In Section 2, the solutions are studied under
f (R, T) gravity models. We have recapitulated some discussions on models from our
previous published research paper. Section 3 deals with the field equations when the
cosmological constant Λ is zero, when it is defined in terms of the radial parameter r, as
well as when it is defined in terms of the Ricci scalar R. The density, pressure, energy
conditions [Null energy condition (NEC), Weak energy condition (WEC), Dominant energy
condition (DEC) and Strong energy condition (SEC)], cosmological constant are studied in
intricate details in all the three cases for quintessence field, dark energy matter and perefct
fluid matter. The effective mass and redshift function for the dark energy matter case are
discussed in Section 4. Concluding remarks are given in Section 5.
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2. Exploring New Solutions under f (R, T) Models

The modified gravity action is given by [32]

S =
1

16π

∫
(
√
−g f (R, T) +

√
−gLm)d3x, (1)

where we define T as the trace of the stress-energy momentum tensor of matter fields
in the space-time and f (R, T) as an arbitrary function of the Ricci scalar R. Tµν is given
by T = gµνTµν and Lm stands for the matter Lagrangian density. The matter may be
quintessence, dark matter or perfect fluid. Tµν is given by

Tµν = − 2√−g
δ
√−gLm

δgµν . (2)

Further, the variation of T with respect to the metric tensor is defined as

δgαβTαβ

δgµν = Tµν + Θµν, (3)

where the tensor

Θµν = gαβ
δTαβ

δgµν . (4)

Depending on the matter source, various models of f (R, T) gravity have been investi-
gated by different authors, which may be elucidated as follows

(i) f (R, T) = f1(R) + f2(T) (ii) f (R, T) = R + 2 f (T)

(iii) f (R, T) = f1(R) + f2(R) f3(T) (iv) f (R, Tφ), (5)

where φ is a scalar field.
The cosmological model with f (R, T) = R + 2 f (T) has been studied in [33,34].
We consider the case (iii) in Equation (5). We obtain the gravitational field equations in

(2 + 1)-dimensions as a counterpart to the (3 + 1)-dimensions, which are observed in [32].
We have

[ f ′1(R) + f ′2(R) f3(T)]Rµν −
1
2

f1(R)gµν + (gµν�−∇µ∇ν)[ f ′1(R) + f ′2(R) f3(T)]

= 2πTµν − f2(R) f ′3(T)Tµν − f2(R) f ′3(T)Θµν +
1
2

f2(R) f3(T)gµν. (6)

However, for the perfect fluid, they reduce as

[ f ′1(R) + f ′2(R) f3(T)]Rµν −
1
2

f1(R)gµν + (gµν�−∇µ∇ν)[ f ′1(R) + f ′2(R) f3(T)]

= 2πTµν + f2(R) f ′3(T)Tµν + f2(R)[ f ′3(T)p +
1
2

f3(T)]gµν. (7)

Here, the symbol � = ∇i∇i and the prime denotes the derivative with respect to the
argument. We have considered f1(R) = λ1R, f2(R) = λ2R, f3(T) = λ3T together with
λ1 = λ2 = λ3 = λ.

We consider (gµν�−∇µ∇ν)[ f ′1(R) + f ′2(R) f3(T)] = 0. Moreover, TRµν = RTµν in
Equation (7). [The term λ2TRµν appears on the left side of Equation (7) and the term
λ2RTµν appears on the right side of Equation (7) after simplification. However, they are
same because if we apply the metric gµνgµν to TRµν we obtain RTµν, and the symbols have
their usual meaning. Hence Equations (6) and (7) both reduce significantly [35]

λ[Rµν −
1
2

Rgµν] = 2πTµν + (λ2 p +
1
2

λ2T)Rgµν, (8)
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hence as,

Gµν − (p +
1
2

T)λRgµν =
2π

λ
Tµν. (9)

Comparing Equation (9) with Einstein equation [36]

Gµν −Λ(gµν) = −2πTµν, (10)

we obtain

Λ(R, T) = λ(p +
1
2

T)R. (11)

The arbitrary λ in Equation (9) takes a very small value. The above Equation (11), in
the dust case p = 0 reduce as

Λ = Λ(R, T) =
1
2

λRT. (12)

In the case of the perfect fluid [37], where T = ρ− 2p, the above Equation (11) becomes

Λ =
1
2

λρR. (13)

One may perceive that the universe is not only expanding but also accelerating as a
result of the cosmological constant, which is positive in sign. Moreover, if the equation
of Einstein general relativity theory is solved with a positive cosmological constant, one
would derive the solution for spacetime having a positive Gaussian curvature. So, we may
presume to be in a de-Sitter universe. Here, the positivity of the scalar curvature R > 0
implies that ρ > 0 for the positive cosmological constant. The cosmological constant can
be positive, negative or zero as found by different authors. It is, however, considered as
Λ ≈ 10−123 ()using geometric units) pertinent with the present observational data [38].

3. (2+1)-Dimensional Spacetime Metric

In (2 + 1)-dimensional gravity, the metric is given by [39]

ds2 = −e2A(r)dt2 + e2B(r)dr2 + r2dθ2, (14)

where A(r) and B(r) are two unknown metric functions. The stress-energy momentum
tensor is given by

Tµν = (ρ + p)uµuν + pgµν, (15)

Here, uµ = (1, 0, 0) is the velocity vector which satisfies uµuν = −1 and uµ∇νuµ = 0.
The energy density and pressure of the fluid are denoted by ρ and p, respectively.

We use the cosmological Equation (6) for the energy momentum tensor defined in
Equation (15) along with the metric in Equation (14), to derive the field equations as follows
(using geometrized units, such as the gravitational constant G and the speed of light c as
unity)
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e−2B(r)

r
B′ =

2π

λ
ρ + Λ, ................16(i),

e−2B(r)

r
A′ =

2π

λ
p−Λ, ................16(ii),

e−2B(r)(A′′ + A′2 − A′B′) =
2π

λ
p−Λ, ................16(iii),

R = −1
r
[2e−2B(r)(A′ + rA′2 − B′(1 + rA′) + rA′′)].................16(iv). (16)

Here, a ‘′’ denotes the derivative with respect to the parameter r and R is the Ricci
scalar.

The generalized Tolman-Oppenheimer-Volkov (TOV) equation, also known as the
conservation equation in (2+1) dimensions is written as

(ρ + p)A′ + p′ = 0. (17)

We further consider the equation of state [40] with

ω =
p
ρ
=

1
2 Q̇2 −V(Q)
1
2 Q̇2 + V(Q)

. (18)

Here, quintessence (Q) denotes the scalar field, V(Q), and the potential energy, and
the kinetic energy is given by 1

2 Q̇2. The cosmological constant is interpreted as arising
from a form of energy having negative pressure, equal in magnitude to its (positive) energy
density, where ω = −1. Such a cosmological constant is also proposed as a form of dark
energy. On the other hand, considering ω = − 1

3 , we obtain a quintessence field or rather
a hypothetical form of dark energy. It is, more precisely, a scalar field that supports the
accelerating universe.

In the following, we consider some cases to generate new solutions:
Case (i): Let Λ = 0.
From Equations 16(i) and (ii) using, p = ωρ, we obtain

A(r) = ωB(r) + C1, .................19(i).

From Equations 16(ii) and (iii) one gets

eB(r) = eA(r) × A′(r)
r

, .................19(ii).

From Equation (17) we have

ρω × e(1+ω)A(r) = C3, .................19(iii), (19)

where C1 and C3 are constants. The following relations are obtained from Equations 19(i)
and (ii) as

A(r) =
ω

ω− 1
ln[(1−ω)(C2 −

e−C1 r2

2ω
)] + C1,

B(r) =
1

ω− 1
ln[(1−ω)(C2 −

e−C1 r2

2ω
)], (20)

where C2 is a constant.
Figures 1 and 2 indicate that the metric functions have a finite origin in both the above

cases (dark energy matter and quintessence matter, respectively), in the absence of the
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cosmological constant term. The metric functions do not, however, exist in the perfect
matter fluid case, when ω = 1.

AHrL

BHrL

0 2 4 6 8 10

-2

-1

0

1

2

r

M
e
tr

ic
fu

n
c
ti

o
n
s

Figure 1. The metric functions for dark energy matter case, ω = −1, are plotted against the radial
parameter r, for the values of constants C1 = 0.01, C2 = 0.5.

AHrL

BHrL

0 2 4 6 8 10

-4

-3

-2

-1

0

1

r

M
e
tr

ic
fu

n
c
ti

o
n

s

Figure 2. The metric functions for quintessence field, ω = −1/3, are plotted against the radial
parameter r, for the values of constants C1 = 0.01, C2 = 0.5.

The pressure and density are deduced as

p(r) = ω×
{

C3

e(1+ω)( ω
ω−1 ln[(1−ω)(C2− e−C1 r2

2ω )]+C1)

} 1
ω

, (21)
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ρ(r) =
{

C3

e(1+ω)( ω
ω−1 ln[(1−ω)(C2− e−C1 r2

2ω )]+C1)

} 1
ω

. (22)

It is observed from Figures 3 and 4 that the pressure is negative, whereas the density
is positive in both cases for the dark energy matter and quintessence matter field. Both the
pressure and density are non-existent in the perfect fluid matter case. The central density,
however, is positive whereas, the central pressure is negative in both existent cases and
given by

p0 = ω×
{

C3

e(1+ω)( ω
ω−1 ln[C2(1−ω)]+C1)

} 1
ω

, (23)

ρ0 =

{
C3

e(1+ω)( ω
ω−1 ln[C2(1−ω)]+C1)

} 1
ω

. (24)

The Ricci scalar as a function of r from Equation (16) is given as

R(r) =
4π(ρ− 2p)
λ(1− 3ρλ)

. (25)

Ω=-1

Ω=-1�3

0 2 4 6 8 10

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

r

p
Hr
L

Figure 3. The pressure is plotted against the radial parameter r, for both dark energy matter (ω = −1)
and quintessence field (ω = −1/3), for the values of constants C1 = 0.01, C2 = 0.5, C3 = 2.



Axioms 2022, 11, 605 9 of 26
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Figure 4. The density is plotted against the radial parameter r, for both dark energy matter (ω = −1)
and quintessence field (ω = −1/3), for the values of constants C1 = 0.01, C2 = 0.5, C3 = 2.

The radial profile of the Ricci scalar for λ = −0.1 is plotted in Figures 5 and 6. The Ricci
scalar is observed to be negative and constant in Figure 5 (dark energy matter), whereas it
is negative and decreasing in Figure 6 (quintessence matter).
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Figure 5. The Ricci scalar is plotted against the radial parameter r, for dark energy matter (ω = −1),
for the values of constants λ = −0.1, C1 = 0.01, C2 = 0.5, C3 = 2.
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Figure 6. The Ricci scalar is plotted against the radial parameter r, for quintessence matter (ω = − 1
3 ),

for the values of constants λ = −0.1, C1 = 0.01, C2 = 0.5, C3 = 2.

The radial profile of the Ricci scalar for λ = 0.1 is plotted in Figures 7 and 8 below.
The Ricci scalar is observed to be positive and constant in Figure 7 (dark energy matter),
whereas it is positive and increasing in Figure 8 (quintessence matter).
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Figure 7. The Ricci scalar is plotted against the radial parameter r, for dark energy matter (ω = −1),
for the values of constants λ = 0.1, C1 = 0.01, C2 = 0.5, C3 = 2.
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Figure 8. The Ricci scalar is plotted against the radial parameter r, for quintessence matter (ω = − 1
3 ),

for the values of constants λ = 0.1, C1 = 0.01, C2 = 0.5, C3 = 2.

In the Riemannian geometry, the Ricci scalar resembles the simplest curvature invari-
ant of a Riemannian manifold. At each point on a Riemannian manifold, it represents a
single real number defined by the intrinsic geometry of the manifold in the vicinity of that
point. Moreover, the scalar curvature represents the amount by which the volume of a
small geodesic ball in a Riemannian manifold deviates from that of the ball (standard) in
an Euclidean space.

If the scalar curvature is positive at a point, the volume of a ball (small) about that
point has smaller volume than a ball having the same radius in the Euclidean space. On
the other hand, when the scalar curvature is rather negative at a point, the volume of a ball
(small) is larger than it would be in the Euclidean space.

Hamilton’s Ricci flow on a 3-manifold with a metric of positive scalar curvature has
been studied in [41]. In [42], the author observed that positive mean curvature on some time
interval is the case of the expanding universe, which confirms with recent cosmological
observations. Zero Ricci scalar has been observed in [43] and negative Ricci scalar in [44].

Presently, we intend to search for the energy conditions, which are expressed as

(i) Null energy condition or NEC : ρ + p ≥ 0,
(ii) Weak energy condition or WEC : ρ + p ≥ 0, ρ ≥ 0,
(iii) Dominant energy condition or DEC : ρ ≥ |p|,
(iv) Strong energy condition or SEC : ρ + p ≥ 0, ρ + 2p ≥ 0.

Figure 9 shows that all the energy conditions NEC, WEC, DEC are satisfied. SEC is,
however, not satisfied.

From Figure 10 we observe that all the energy conditions NEC, WEC, DEC and SEC
are satisfied.
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Figure 9. The energy conditions are plotted against the radial parameter r, for dark energy matter
(ω = −1), and for the values of constants C1 = 0.01, C2 = 0.5, C3 = 2.
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Figure 10. The energy conditions are plotted against the radial parameter r, for quintessence matter
(ω = −1/3), and for the values of constants C1 = 0.01, C2 = 0.5, C3 = 2.

Case (ii): Let Λ 6= 0, ω = −1.
We consider [39]

A(r) = C4 +
1
2

ln(r2 + C5). (26)
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The following relations are then relevant from Equations (16) and (17)

B(r) = A(r) + lnA′(r)− lnr = C4 −
1
2

ln(r2 + C5),

ρ(r) =
{

C3

e(1+ω)[C4+
1
2 ln(r2+C5)]

} 1
ω

, p(r) = ω×
{

C3

e(1+ω)[C4+
1
2 ln(r2+C5)]

} 1
ω

. (27)

We find that the above solutions are valid only for ω = −1, i.e., for dark matter.
Hence the pressure and density reduce as

ρ(r) = C−1
3 , p(r) = −C−1

3 . (28)

Figure 11 indicates that the metric functions have a finite origin in presence of the
cosmological constant term. Figure 12 reveals that the pressure is negative and constant,
whereas Figure 13 shows a positive and constant energy density.
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Figure 11. The metric functions are plotted against the radial parameter r for the values of constants
ω = −1, C4 = 0.001, C5 = 10.
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Figure 12. The pressure is plotted against the radial parameter r for the values of constants C3 = 2,
C4 = 0.001, C5 = 10.
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Figure 13. The density is plotted against the radial parameter r with the values of arbitrary constants
C3 = 2, C4 = 0.001, C5 = 10.

Figure 14 shows that the strong energy condition (SEC) is not satisfied in presence of
the cosmological constant term.
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Figure 14. The energy conditions for dark energy matter source are shown against the radial parame-
ter r with the values of arbitrary constants C3 = 2, C4 = 0.001, C5 = 10.

The cosmological constant, expressed as a function of r, i.e., Λ = Λ(r), is deduced
from Equations (16) and (17) as (shown graphically in Figure 15).

Λ(r) = − e−2[c4− 1
2 ln(r2+c5)]

(r2 + C5)
− 2π

λ

{
C3

e(1+ω)[C4+
1
2 ln(r2+C5)]

} 1
ω

. (29)

0

5

10
-1.0

-0.5

0.0
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30.4023

30.4024

Figure 15. The behaviour of the cosmological constant in presence of dark energy matter source is
plotted against r with the values of the arbitrary constants λ = −0.1, C3 = 2, C4 = 0.001, C5 = 10.

Case (iii): Let Λ 6= 0, ω 6= −1.

We consider

A(r) = C4 +
1
2

ln(r2 + C5). (30)
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The following relations are then relevant from Equations (16) and (17)

B(r) =
(1 + ω)C4

2ω
− 1

2
ln
[

4C
1
ω
3 π(r2 + C5)

λω
×
{

ω2(r2 + c5)
− (1+ω)

2ω + 2(1−ω2)C6

}]
, (31)

where C6 is an arbitrary constant. We have

B′(r) = (1−ω)r
{

4C6(r2 + C5)
1+ω
2ω + ω(4C6(r2 + C5)

1+ω
2ω − 1)

}
×[2(r2 + C5)

{
ω2(2C6(r2 + C6)

1+ω
2ω − 1)− 2C6(r2 + C6)

1+ω
2ω
}
]−1. (32)

Figure 16 indicates that the metric functions have a finite origin. Both theory and
observations confirm that in the very early universe, there was an inflationary phase where
the metric changed very rapidly. The metric function B(r) is constant for λ = 1 and does
not exist for λ = −1.

The pressure and density for ω = −1/3, is given below as

ρ(r) =
{

C3

e
2
3 [C4+

1
2 ln(r2+C5)]

}−3

, p(r) = −1
3
×
{

C3

e
2
3 [C4+

1
2 ln(r2+C5)]

}−3

. (33)

Other relation for perfect fluid, ω = 1, follows significantly and is shown in the figures
below.

Figure 17 also indicates that the metric functions have a finite origin. We observe from
the Figures 12 and 13 and Figures 18 and 19 that the pressure is negative and energy density
is positive throughout as r → ∞ in all the three cases for dark energy matter (ω = −1),
quintessence field (ω = − 1

3 ) and perfect matter fluid source (ω = 1).
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Figure 16. The metric functions are plotted against the radial parameter r with the values of the
arbitrary constants ω = −1/3, λ = −0.1, C4 = 0.001, C5 = 10, C6 = 1.
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Figure 17. The metric functions are plotted against the radial parameter r with the values of the
arbitrary constants ω = 1, λ = 0.1, C4 = 0.001, C5 = 10, C6 = 1.
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Figure 18. The pressure is plotted against the radial parameter r with the values of arbitrary constants
C3 = 2, C4 = 0.001, C5 = 10.
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Figure 19. The density is plotted against the radial parameter r with the values of arbitrary constants
C3 = 2, C4 = 0.001, C5 = 10.

The energy conditions are shown below.
The energy conditions plotted in Figure 14 indicate that only the NEC, DEC and WEC

are satisfied for the dark energy matter source. However, Figures 20 and 21 indicate that all
the energy conditions NEC, WEC, DEC and SEC are satisfied for the quintessence field and
perfect matter fluid source, respectively.
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Figure 20. The energy conditions for quintessence field are shown against the radial parameter r with
the values of the arbitrary constants C3 = 2, C4 = 0.001, C5 = 10.
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Figure 21. The energy conditions for perfect matter fluid source are plotted against the radial
parameter r with the values of the arbitrary constants C3 = 2, C4 = 0.001, C5 = 10.

The cosmological parameter results from Equations (16) and (17) as

Λ(r) =
1
r

e−2 (1+ω)C4
2ω ×

[
4C

1
ω
3 π(r2 + C5)

λω
×
{

ω2(r2 + c5)
− (1+ω)

2ω + 2(1−ω2)C6

}]− 1
2

×(1−ω)r
{

4C6(r2 + C5)
1+ω
2ω + ω(4C6(r2 + C5)

1+ω
2ω − 1)

}
× [2(r2 + C5)

{
ω2(2C6(r2

+C6)
1+ω
2ω − 1)− 2C6(r2 + C6)

1+ω
2ω
}
]−1 − 2π

λ

{
C3

e(1+ω)[C4+
1
2 ln(r2+C5)]

} 1
ω

(34)

and it is shown graphically below.
Figure 22 shows that the cosmological constant is negative and decreasing, in the

presence of the quintessence field or perfect fluid matter.
We observe that the actual cosmological constant Λ is almost static, with a fixed

energy density and when ω = −1 (shown in Figure 15), whereas in presence of the
quintessence field or perfect matter fluid it does not appear to be constant. It is found
that the cosmological constant behaves as a dynamical quantity, which is a positive and
decreasing function in the perfect fluid matter case ω = 1 (Figure 23) and negative and
decreasing function in the presence of the quintessence field ω = − 1

3 (Figure 24). Thus, we
observe here that the cosmological constant can vary with respect to the radial parameter r
in the presence of the perfect fluid or quintessence field.
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Figure 22. Variation of cosmological constant in presence of quintessence field (ω = − 1
3 ) and perfect

fluid matter (ω = 1) is plotted against r with the values of the arbitrary constants λ = −0.1, C3 = 2,
C4 = 0.001, C5 = 10, C6 = 1.
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Figure 23. Variation of cosmological constant in presence of perfect fluid matter (ω = 1) is plotted
against r with the values of the arbitrary constants λ = 0.1, C3 = 2, C4 = 0.001, C5 = 10, C6 = 1.
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Figure 24. Variation of cosmological constant in presence of quintessence field (ω = − 1
3 ) is shown

against r with the values of the arbitrary constants λ = −0.1, C3 = 2, C4 = 0.001, C5 = 10, C6 = 1.

Case(iii)(a): Λ = Λ(R): In perfect fluid matter case, we observe from Equations (13)
and (25) that

Λ =
1
2

ρλR, (35)

which is plotted below in Figures 25 and 26. We observe here that the cosmological constant
varies with respect to the scalar factor R, of our expanding universe, as well
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Figure 25. The behaviour of the cosmological constant in presence of perfect fluid matter source
is plotted against the Ricci scalar R with the values of the arbitrary constants λ = −0.1, C3 = 2,
C4 = 0.001, C5 = 10.
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Figure 26. The behaviour of the cosmological constant in presence of perfect fluid matter source
is shown against the Ricci scalar R with the values of the arbitrary constants λ = 0.1, C3 = 2,
C4 = 0.001, C5 = 10.
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4. Effective Mass and Redshift Function

We obtain the effective mass of an object with radius R for dark energy matter case,
(ω = −1, Λ = 0) using Equation (22), as in [45]

M =
∫ R

0
2πrρ(r)dr =

∫ R

0

2π

C3
rdr =

πR2

C3
. (36)

We observe the same result when (ω = −1, Λ = Λ(r)). The corresponding gravita-
tional redshift using Equation (36) is given by

Z = (1− 2M
R

)−
1
2 − 1 = (1− 2πR

C3
)−

1
2 − 1. (37)

Hence, the mass function M(r) and redshift function Z(r) are shown graphically in
Figures 27 and 28, respectively.
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Figure 27. The mass function is shown against r for the value of constant C3 = 2.
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Figure 28. The redshift function is shown against r for the value of constant C3 = 2.

We find that both mass function and and redshift function are positive. As per latest
observations, galaxies and the objects producing gamma ray bursts have the highest known
redshifts. The most reliable redshifts are confirmed from spectroscopic data, and the highest
spectroscopic redshift of a galaxy is that of GN − z11 [46], with a redshift of Z = 11.1,
which corresponds to 400 million years after the Big Bang.
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5. Concluding Remarks

We have investigated a feasible combined cosmological model under the f (R, T)
gravity that satisfies the equation of the state for dark energy matter, quintessence matter
or perfect matter fluid. Various physical properties of the model are elaborated, which
satisfies all the energy conditions.

It is believed that the energy conditions do not represent the physical constraints but
are rather mathematically imposed boundary conditions. We know that the energy should
be positive [47].

Most energy conditions do not correspond with physical reality. The dark energy and
its observable effects are very well-known, and they violate the strong energy condition
(SEC) [48,49].

Figure 9 (Case i) and Figure 14 (Case ii) refer to the Dark Energy matter source
(Λ = 0, ω = −1 and Λ 6= 0, ω = −1, respectively), where we observe that the SEC is not
satisfied or is violated.

However, we observe that all the energy conditions (including SEC) are satisfied for
quintessence matter in Figure 10 (Λ = 0, ω = − 1

3 ) and Figure 20 (Λ 6= 0, ω = − 1
3 ), as well

as for perfect matter in Figure 21 (Λ 6= 0, ω = 1).
We have analysed the properties in the framework of f (R, T) theory. The density is

positive throughout in all the three cases, whereas the pressure remains negative. The
equation of state p = ωρ, yields an exact model where the proportonality constant ω is
expressed accordingly. For stability, we find that the energy conditions pertaining to matter
content are satisfied. The cosmological constant does not exist if, however, we take ω = 0.
Such vanishing of ω also gives rise to an infinite positive energy density and vanishing
of pressure, as is evident from Equation (18). This is comparable to the dust model of the
universe [ω = 0]. Dust models find its place in cosmology as models of a toy universe,
where the dust particles are considered as highly idealized models of galaxies, clusters, or
superclusters [50]. Hence, the f (R, T) model displays the necessary features corresponding
to expectations.

This study indicates that the cosmological constant can vary with respect to the radial
parameter r, in the presence of the perfect fluid matter or quintessence field. On the other
hand, the actual cosmological constant Λ is almost static, with a fixed energy density when
ω = −1, that is in the presence of dark energy matter source. The cosmological constant
also varies with respect to the scalar factor R of our expanding universe, in the presence
of the perfect fluid matter source. Hence, we are able to portray a clear picture of the
cosmological constant Λ.

The effective mass and gravitational redshift are discussed for the dark energy matter
case (ω = −1), both when (Λ = 0) and Λ = Λ(r), as it is most relevant according to present
day observations for accelerating the universe.

We intend to further study the f (R, T) modified gravity combined with the cosmolog-
ical model, in (3 + 1) and higher dimensions. Such study is in progress.
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28. Solà, P.J. Cosmological constant and vacuum energy: old and new ideas. J. Phys. Conf. Ser. 2013, 453, 012015.
29. Chen, W.; Wu, Y.S. Implications of a cosmological constant varying as R−2. Phys. Rev. D 1990, 41, 695; Erratum Phys. Rev. D 1992,

45, 4728. [CrossRef]
30. Izawa, K. Dynamics of the Cosmological Constant in Two-Dimensional Universe. Prog. Theor. Phys. 1994, 91, 2. [CrossRef]
31. Singh, V.; Singh, C.P. Modified f (R, T) gravity theory and scalar field cosmology. Astrophys. Space Sci. 2015, 356, 153. [CrossRef]
32. Harko, T. f (R, T) gravity. Phys. Rev. D, 2011, 84, 024020. [CrossRef]
33. Pawar, D.D.; Dagwal, V. J. Cosmological models in f (R, T) theory of gravitation. Aryabhatta J. Math. Inform. 2015, 7, 17.
34. Houndjo, M.J.S.; Batista, C.E.M.; Campos, J.P.; Piattella, O.F. Finite-time singularities in f (R, T) gravity and the effect of conformal

anomaly. Can. J. Phys. 2013, 91, 548. [CrossRef]
35. Islam, S.; Kumar, P.; Khadekar, G.S.; Das, T. K. (2 + 1) dimensional cosmological models in f (R, T) gravity with Λ(R, T). IOP

Conf. Ser. J. Phys. Conf. Ser. 2019, 1258, 012026. [CrossRef]
36. Cornish, N.J.; Frankel, N.E. Gravitation in 2 + 1 dimensions. Phys. Rev. D 1991, 43, 8. [CrossRef]
37. Ahmed, N.; Pradhan, A.; Fekry, M.; Alamri,S.Z. V cosmological models in modified gravity with by using generation technique.

NRIAG J. Astron. Geophys. 2016, 5, 35–47. [CrossRef]

http://doi.org/10.1103/PhysRevD.79.043511
http://dx.doi.org/10.1016/j.physletb.2008.04.061
http://dx.doi.org/10.1016/j.newar.2006.11.036
http://dx.doi.org/10.1103/PhysRevD.15.2752
http://dx.doi.org/10.1103/PhysRevD.42.2647
http://dx.doi.org/10.1016/0370-2693(95)00583-7
http://dx.doi.org/10.1016/S0550-3213(99)00069-3
http://dx.doi.org/10.1088/1126-6708/2009/07/011
http://dx.doi.org/10.1103/PhysRevD.93.084003
http://dx.doi.org/10.1088/0264-9381/33/22/225010
http://dx.doi.org/10.1016/j.physletb.2017.07.014
http://dx.doi.org/10.1103/PhysRevD.95.106005
http://dx.doi.org/10.1140/epjc/s10052-018-6488-3
http://dx.doi.org/10.1590/S0103-97332001000300017
http://dx.doi.org/10.1088/0264-9381/23/17/012
http://dx.doi.org/10.1103/PhysRevD.94.084019
http://dx.doi.org/10.1140/epjc/s10052-019-6624-8
http://dx.doi.org/10.1140/epjc/s10052-021-09938-4
http://dx.doi.org/10.1103/PhysRevD.58.043506
http://dx.doi.org/10.1142/S0217732313501812
http://dx.doi.org/10.1088/1367-2630/14/2/025008
http://dx.doi.org/10.1103/PhysRevD.105.083532
http://dx.doi.org/10.1002/prop.200310158
http://dx.doi.org/10.1088/1475-7516/2021/06/019
http://dx.doi.org/10.1103/PhysRevD.41.695
http://dx.doi.org/10.1143/ptp/91.2.393
http://dx.doi.org/10.1007/s10509-014-2183-5
http://dx.doi.org/10.1103/PhysRevD.84.024020
http://dx.doi.org/10.1139/cjp-2013-0023
http://dx.doi.org/10.1088/1742-6596/1258/1/012026
http://dx.doi.org/10.1103/PhysRevD.43.2555
http://dx.doi.org/10.1016/j.nrjag.2016.04.002


Axioms 2022, 11, 605 26 of 26

38. Padmanabhan, T. Cosmological constant-the weight of the vacuum. Phys. Rep. 2003, 380, 235–320. [CrossRef]
39. Rahaman, F.; Bhar, P.; Biswas, R.; Usmani, A.A. Exact interior solutions in 2 + 1-dimensional spacetime. Eur. Phys. J. C 2014, 74,

2845. [CrossRef]
40. Caldwell, R.R.; Dave, R.; Steinhardt, P.J. Cosmological Imprint of an Energy Component with General Equation of State. Phys.

Rev. Lett. 1988, 80, 1582–1585. [CrossRef]
41. Qian, Z. Ricci flow on a 3-manifold with positive scalar curvature. Bull. Sci. Math 2009, 133, 145–168. [CrossRef]
42. Kim, J.R. Relative Lorentzian volume comparison with integral Ricci and scalar curvature bound. J. Geom. Phys. 2011, 61,

1061–1069. [CrossRef]
43. Eisenhart, L.P. Spaces for which the Ricci scalar R is equal to zero. Proc. Natl. Acad. Sci. USA 1958, 44, 695–698. [CrossRef]

[PubMed]
44. Kawakami, H. On some pasting cylinders onto a manifold with negative (Ricci, scalar) curvature along compact boundaries.

Tsukuba J. Math. 1990, 14, 413–421. [CrossRef]
45. Rahaman, F.; Usmani, A.A.; Ray, S.; Islam, S. The (2 + 1)-dimensional charged gravastars. Phys. Lett. B 2012, 707, 319. [CrossRef]
46. Oesch, P.A.; Brammer, G.; Dokkum, V.P. A remarkably luminous galaxy at Z = 11.1 measured with hubble space telescope grism

spectroscopy. Astrophys. J. 2016, 819, 129. [CrossRef]
47. Curiel, E. A Primer on Energy conditions. arXiv 2014, arXiv: 1405.0403.
48. Farnes, J.S. A Unifying Theory of Dark Energy and Dark Matter: Negative Masses and Matter Creation within a Modified ΛCDM

Framework. Astron. Astrophys. 2018, 620, A92. [CrossRef]
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