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Abstract: Optimal defects-per-unit test plans based on posterior odds ratios are developed for the
disposition of product lots. The number of nonconformities per unit is modeled by the Conway–
Maxwell–Poisson distribution rather than the typical Poisson model. In essence, a submitted batch
is conforming if its posterior acceptability is sufficiently large. First, a useful approximation of
the optimal test plan is derived in closed form using the asymptotic normality of the log ratio.
A mixed-integer nonlinear programming problem is then solved via Monte Carlo simulation to find
the smallest number of inspected items per lot and the maximum tolerable posterior odds ratio.
The methodology is applied to the manufacturing of paper and glass. The suggested sampling
plan for lot sentencing provides the specified protections to both manufacturers and customers and
minimizes the needed sample size. In terms of inspection effort and accuracy, the proposed approach
is virtually an advantageous extension of the classical frequentist perspective. In many practical
cases, it yields more precise assessments of the current consumer and producer risks, as well as more
realistic decision rules.

Keywords: industrial quality control; acceptance sampling; Bayesian statistics; mixed-integer nonlinear
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1. Introduction

Sampling inspection plans for lot acceptance are often designed in industry to suitably
discriminate between satisfactory and unsatisfactory batches. In essence, the construction
of the best decision rule for lot disposition can be stated as a constrained optimization
problem. Generally, proper acceptance test plans must provide the desired protections
to both customers and manufacturers, and the required number of items to be sampled
should be as small as possible. Many test plans are available in the literature for sentencing
lots of incoming or outgoing goods. Papers [1–14] are just a sample of recent references.

The number of minor defects (or nonconformities) per unit is sometimes the quality
characteristic of interest; for example, when the inspected units are metal, linoleum, glass,
paper or plastic. In such cases, the Poisson model is commonly used for analyzing the
observed sample. For instance, Fernández [15] adopted Poisson models to describe the
number of blemishes per sheet in inspecting paper. In these situations, the Poisson parame-
ter, λ, is precisely the defect rate per sampled unit. Moreover, the number of events in a
specific time period is often modeled by a Poisson distribution. In particular, many studies
assume that the stochastic demands follow that distribution; see, e.g., [16–20].

The mean and variance of a Poisson distributed variable are both equal to λ, which
could be too restrictive in practice. Evidently, the Poisson distribution is not suitable for
fitting dispersed data. Due to this reason, Fernández [21] considers the Conway–Maxwell–
Poisson (CMP) distribution with centering parameter λ and dispersion parameter d for
modeling the defect count data. The CMP law with parameter (λ, d) is a generaliza-
tion of the Poisson distribution, where d can reflect under- (d > 1), equi- (d = 1) and
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over-dispersion (0 ≤ d < 1). Conway and Maxwell [22] introduced this distribution for
modeling queuing systems with state-dependent service rates. Samuel et al. [23] studied
some statistical and probabilistic properties of the CMP law. An extensive survey of pro-
cedures and applications of this model in a wide diversity of areas, including numerous
references, can be found in Sellers et al. [24]. Other interesting papers are Francis et al. [25],
Zhu [26] and Santarelli et al. [27].

In many practical situations, the combination of available empirical information with
a previous objective and subjective knowledge appreciably improves the efficiency of
the inferential methods; see, e.g., [28–38]. The presence of prior information is common
in most manufacturing processes. In such cases, the incorporation of earlier inspection
results and subjective expert opinions is frequently advantageous in acceptance sampling.
Fernández [21] studied the construction of acceptance test plans for CMP models using
exclusively sample information. In contrast, this paper deals with the determination of
optimal lot inspection schemes based on dispersed defect count data and prior knowledge.
A constrained minimization problem is solved via Monte Carlo simulation to determine
the optimal inspection scheme. The proposed sampling plan provides the demanded
protections to both consumers and producers and minimizes the needed sample size.
Essentially, a submitted lot is accepted whenever its posterior lot acceptability is large
enough. The suggested Bayesian approach is an appealing alternative to the typical
frequency-based perspective in terms of accuracy and inspection effort. Controlling the
Bayesian risks allows the practitioners to ensure that the rejected and accepted lots are, in
fact, rejectable and acceptable at the required confidence levels.

The rest of this paper is structured as follows. Section 2 presents the posterior odds
ratio criterion for lot sentencing based on dispersed defect count data and prior information.
The design of sampling plans with controlled Bayesian consumer and producer risks and
minimum sample size is developed in Section 3. A mixed-integer nonlinear programming
problem is formulated in order to find the best inspection scheme. Then, explicit approx-
imations of the Bayesian risks and the optimal plan are deduced in Section 4 by using
the asymptotic normality of the test statistic. Next, Section 5 introduces a Monte Carlo
simulation approach to calculate the optimal scheme, which is applied in Section 6 to the
manufacturing of paper and glass. Finally, Section 7 offers some concluding remarks.

2. Posterior Odds Ratio Testing

A random variable X is said to follow the CMP probability model with parameter
(λ, d) ∈ Θ, which is denoted by X ∼ CMP(λ, d), if its probability mass function is given by

f (x; λ, d) = Pr(X = x | λ, d) =
λx/(x!)d

Z(λ, d)
, x ∈ N∗,

where N∗ denotes the set of nonnegative integers,

Z(λ, d) =
∞

∑
i=0

λi

(i!)d ,

and Θ = (0, ∞)× (0, ∞) ∪ (0, 1)× {0} is the parameter space.
Clearly, the i-th moment of the random variable X ∼ CMP(λ, d) is given by

E[Xi | λ, d] =
∞

∑
x=0

xiλx

(x!)dZ(λ, d)
, i ∈ N,

where N represents the set of natural numbers. Hence, the mean and variance of X can be
expressed as

µ = E[X | λ, d] and σ2 = V[X | λ, d] = E[X2 | λ, d]− {E[X | λ, d]}2.
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Consider that in a certain production process, the number X of minor defects or
nonconformities detected in a given item follows the CMP(λ, d) distribution and also that
a large batch of products has been submitted to determine its acceptability. In addition,
the experimental information is contained in a simple random sample X = (X1, . . . , Xn) of
size n from the variable X ∼ CMP(λ, d), where Xi represents the number of imperfections
observed in the i-th inspected item from the lot for i = 1, . . . , n.

The manufacturer assumes that the CMP(λ0, d0) distribution is an acceptable model
for X, whereas the customer supposes that the CMP(λ1, d1) distribution is rejectable, where
E[X | λ0, d0] is less than E[X | λ1, d1]. In other words, the manufacturer considers that
the null hypothesis H0 : (λ, d) = (λ0, d0) is admissible, while the customer specifies the
alternative hypothesis H1 : (λ, d) = (λ1, d1). In short, (λ0, d0) is the acceptable parameter
and (λ1, d1) is the unacceptable one.

In Bayesian hypothesis testing, the null hypothesis H0 is accepted whenever its pos-
terior probability Pr(H0 | X) is large enough. Obviously, it is needed to estimate prior
probabilities for H0 and H1 before applying Bayes’ theorem. Suppose that p0 = Pr(H0)
is a numerical value in the interval (0, 1) representing the decision-maker’s prior level of
credibility in the acceptability of the submitted batch based on available expert opinions
and previous data. Hence, Pr(H1) = 1− p0 and r = (1− p0)/p0 is the prior odds ratio in
favor of H1 versus H0.

The submitted lot would be accepted by the Bayesian test whenever the posterior
odds ratio of H1 against H0 given X, which is defined as Pr(H1 | X)/ Pr(H0 | X), is small
enough. In our situation, the posterior odds ratio Rn ≡ Rn(X) based on the available data
X is given by

Rn = r
n

∏
i=1

f (Xi; λ1, d1)

f (Xi; λ0, d0)
=

r(λ1/λ0)
Un exp{(d0 − d1)Vn}

{Z(λ1, d1)/Z(λ0, d0)}n ,

where Un = ∑n
i=1 Xi and Vn = ∑n

i=1 log(Xi!). Since the log ratio is given by

log(Rn) = Tn + log(r) + n log{Z(λ0, d0)/Z(λ1, d1)},

where Tn = Un log(λ1/λ0) + (d0− d1)Vn, it is clear that the posterior odds ratio test would
accept H0 if and only if the test statistic Tn is at most the so-called acceptance constant c,
i.e., the batch is accepted whenever Tn ≤ c. The test statistic Tn is based on the sufficient
statistic (Un, Vn), which captures all relevant information in the data.

The acceptance sampling plan (n, c) based on the posterior odds ratio criterion can be
summarized as follows: Step 1: At random, select n items from the submitted batch. Step 2:
Count the number of minor defects in n items, X1, . . . , Xn, and calculate Un = ∑n

i=1 Xi and
Vn = ∑n

i=1 log(Xi!). Step 3: Compute the value of the test statistic Tn = Un log(λ1/λ0) +
(d0 − d1)Vn. Step 4: Accept the batch if Tn ≤ c, and reject it otherwise.

Assuming that Y = X log(λ1/λ0) + (d0 − d1) log(X) with X ∼ CMP(λ, d), it is de-
rived from the central limit theorem that (Tn − nq)/(s

√
n) converges in law to a standard

normal random variable Z ∼ N(0, 1) as n→ ∞, where q = E[Y | λ, d] and s2 = V[Y | λ, d]
are the mean and variance of Y, respectively. Consequently, the test statistic Tn is approxi-
mately normally N(nq, ns2) distributed when n is large enough.

It should be noted that the posterior lot acceptability Pr(H0 | X), which represents the
conditional degree of belief in H0 given the observed sample X, and the posterior odds
ratio Rn may be revised in light of additional subjective and objective information.

3. Design of Lot Acceptance Sampling Plans

Sampling inspection schemes for lot acceptance purposes are usually designed in in-
dustrial quality control to minimize the needed sample size for lot judgment while ensuring
that the so-called producer and consumer risks are sufficiently small; say, at most, α and β,
respectively, where 0 < α, β < 0.5. An agreement between the manufacturer and the customer
is commonly assumed on the choices of the prior probabilities of the hypotheses, H0 and H1,
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the acceptable and unacceptable CMP parameters, (λ0, d0) and (λ1, d1), and the maximum
allowable Bayesian producer and consumer risks, α and β, respectively.

Essentially, the Bayesian consumer risk is the probability that an accepted batch has
an unacceptable quality level, whereas the Bayesian producer risk is the probability that
a rejected batch has an acceptable quality level. These risks provide the assurance that
practitioners typically require. The manufacturer wants a small maximum probability
α that H0 is true when the lot is rejected, while the consumer desires a small maximum
probability β that H0 is false when the batch is accepted.

In our situation, the Bayesian producer and consumer risks associated with the inspec-
tion scheme (n, c) can be expressed as

Pr(H0 | Tn > c) and Pr(H1 | Tn ≤ c),

respectively. Based on Bayes’ theorem, the Bayesian producer risk is defined as

Pr(H0 | Tn > c) =
p0 Pr(Tn > c | λ0, d0)

Pr(Tn > c)
,

where
Pr(Tn > c) = p0 Pr(Tn > c | λ0, d0) + (1− p0)Pr(Tn > c | λ1, d1),

whereas the Bayesian consumer risk is given by

Pr(H1 | Tn ≤ c) =
(1− p0)Pr(Tn ≤ c | λ1, d1)

1− Pr(Tn > c)
.

Equivalently, in terms of the prior odds ratio r, the Bayesian risks can be expressed as

Pr(H0 | Tn > c) =
{

1 +
r Pr(Tn > c | λ1, d1)

Pr(Tn > c | λ0, d0)

}−1

and

Pr(H1 | Tn ≤ c) =
{

1 +
Pr(Tn ≤ c | λ0, d0)

r Pr(Tn ≤ c | λ1, d1)

}−1

.

A suitable Bayesian inspection scheme (n, c) must satisfy the requirements

Pr(H0 | Tn > c) ≤ α and Pr(H1 | Tn ≤ c) ≤ β. (1)

It is assumed that α < p0 and β < 1− p0 because it is natural to consider that Pr(H0 |
Tn > c) < Pr(H0) and Pr(H1 | Tn ≤ c) < Pr(H1). That is, biased tests are not admissible.
The optimal inspection scheme (n∗, c∗) would then be the test plan with a minimal sample
size that simultaneously satisfies the conditions (1). The constrained minimization problem
to determine the required number of items to test, n∗, and the optimal acceptance constant,
c∗, is a mixed-integer nonlinear programming problem, which can be stated as

Minimize n

Subject to Pr(H0 | Tn > c) ≤ α,

Pr(H1 | Tn ≤ c) ≤ β,

n ∈ N, c ∈ R,

(2)

where R = (−∞,+∞) is the set of real numbers. More compactly, the optimization
problem (2) may be formulated as

min{n ∈ N : (n, c) ∈ Ω},
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where
Ω = {(n, c) ∈ N×R : Pr(H0 | Tn > c) ≤ α, Pr(H1 | Tn ≤ c) ≤ β}

denotes the feasible region.
Since Pr(H0 | Tn > c) is non-increasing in c and Pr(H1 | Tn ≤ c) is non-decreasing in

c, it is deduced that the required sample size is

n∗ = min{n ∈ N : A0
α;n < A1

β;n},

where
A0

α;n = inf{c ∈ R : Pr(H0 | Tn > c) ≤ α}

and
A1

β;n = sup{c ∈ R : Pr(H1 | Tn ≤ c) ≤ β}.

It should be noted that the optimal sample size, n∗, is finite because, as n→ ∞,

A0
α;n

A1
β;n
−→E[Y | λ0, d0]

E[Y | λ1, d1]
,

which is less than 1. That is, A0
α;n is less than A1

β;n if n is sufficiently large. In addition, any

value in the nonempty interval (A0
α;n∗ , A1

β;n∗) is a feasible value of the acceptance constant.
The midpoint of the above interval is a neutral choice for c∗. It is assumed in the present
paper that

c∗ = (A0
α;n∗ + A1

β;n∗)/2

is the optimal acceptance constant. Generally, A0
α;n and A1

β;n cannot be explicitly expressed.
Nevertheless, accurate estimates can be computed by Monte Carlo simulation.

4. Explicit Approximate Risks and Plans

Closed-form approximations of the Bayesian risks and the optimal inspection scheme
can be deduced by using the asymptotic normality of Tn under the null and alternative
hypotheses. For later use, Φ[·] denotes the standard normal cumulative distribution
function and zp = Φ−1[p] for 0 < p < 1.

Assuming that n is large enough, it follows that the distribution of the test statistic
Tn is approximately N(nqi, ns2

i ) when X ∼ CMP(λi, di), where qi = E[Y | λi, di] and
s2

i = V[Y | λi, di], i = 0, 1. In such a case, an approximation of the Bayesian producer risk
Pr(H0 | Tn > c) is given by

p0 − p0Φ[(c− nq0)/(s0
√

n)]
1− p0Φ[(c− nq0)/(s0

√
n)]− (1− p0)Φ[(c− nq1)/(s1

√
n)]

.

Similarly, the Bayesian consumer risk Pr(H1 | Tn ≤ c) is approximately

(1− p0)Φ[(c− nq1)/(s1
√

n)]
p0Φ[(c− nq0)/(s0

√
n)] + (1− p0)Φ[(c− nq1)/(s1

√
n)]

.

Equating the above approximate risks to α and β, respectively, it is derived that

1−Φ
[

c− nq0

s0
√

n

]
= γ and Φ

[
c− nq1

s1
√

n

]
= δ, (3)

where

γ =
α(1− p0 − β)

p0(1− α− β)
and δ =

β(p0 − α)

(1− p0)(1− α− β)
.
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Consequently, it is derived from (3) that

c− nq0

s0
√

n
= z1−γ and

c− nq1

s1
√

n
= zδ,

which imply that (q0 − q1)
√

n = zγs0 + zδs1. It is then deduced that

na =

⌈(
zγs0 + zδs1

q0 − q1

)2
⌉

is an approximation of the smallest sample size n∗, where d·e stands for the least integer
upper bound. Moreover,

c0 = naq0 − zγs0
√

na and c1 = naq1 + zδs1
√

na.

are approximate estimates of the optimal acceptance constant. A balanced estimation of c∗

would be ca = (c0 + c1)/2, which is given by

ca = na(q0 + q1)/2−
√

na(zγs0 − zδs1)/2.

In general, the acceptance plan (na, ca) is often a satisfactory approximation of the
best scheme (n∗, c∗) if n∗ is sufficiently large. Evidently, the approximation is not excellent
when n∗ is small. Anyway, (na, ca) is always a convenient initial point in order to find
(n∗, c∗) via iterative procedures.

5. Computation of Optimal Inspection Schemes

Monte Carlo methods are widely used in optimization, especially when it is difficult
or impossible to apply other approaches. Essentially, their key idea is using randomness to
solve complex deterministic problems.

In our situation, it is needed to use Monte Carlo simulation to find the best inspection
scheme because the Bayesian risks cannot be assessed in closed forms. The global solution of the
minimization program (2) can be practically determined by using repeated random sampling.

Assume that (Ti
n;1, . . . , Ti

n;m) is a simple random sample of a large size m of the test
statistic Tn when X ∼ CMP(λi, di) for i = 0, 1. Suppose also that Fi

n(·) represents the
empirical cumulative distribution function of Tn based on the corresponding sample for
i = 0, 1. That is,

Fi
n(t) =

1
m

m

∑
j=1

I(Ti
n;j ≤ t)

for t ∈ R and i = 0, 1, where I(·) denotes the indicator function.
Strongly consistent estimations of the Bayesian producer and consumer risks associ-

ated with the sampling plan (n, c) are then given by

P̂r(H0 | Tn > c) =
p0{1− F0

n(c)}
1− p0F0

n(c)− (1− p0)F1
n(c)

and

P̂r(H1 | Tn ≤ c) =
(1− p0)F1

n(c)
p0F0

n(c) + (1− p0)F1
n(c)

.

An accurate approximation of the best inspection scheme can be obtained by simula-
tion. If m is large enough, the optimal sample size would be precisely

n∗ = min
{

n ∈ N : Â0
α;n < Â1

β;n

}
,



Axioms 2022, 11, 604 7 of 13

where
Â0

α;n = inf
{

c ∈ R : P̂r(H0 | Tn > c) ≤ α
}

and
Â1

β;n = sup
{

c ∈ R : P̂r(H1 | Tn ≤ c) ≤ β
}

are the natural sample estimates of A0
α;n and A1

β;n, respectively. In terms of the prior odds

ratio r, the estimations Â0
α;n and Â1

β;n can alternatively be expressed as

Â0
α;n = inf

{
c ∈ R :

1− F0
n(c)

1− F1
n(c)

≤ αr
1− α

}
and

Â1
β;n = sup

{
c ∈ R :

F1
n(c)

F0
n(c)

≤ β

(1− β)r

}
.

Computationally, it is convenient to use starting values for n∗ and c∗. The approximate
plan (na, ca) can serve as the initial point in the iterative process to find the best scheme
(n∗, c∗), which is of vital importance to decrease calculation costs. The size m of the
simulated samples is assumed here to be 106 with the intention of obtaining accurate results.

6. Illustrative Examples

An application to glass manufacturing presented in Fernández [39] is first consid-
ered in this section to illustrate the methodology developed for the CMP distribution.
In this case, an analyst wants to find the optimal inspection scheme to accept or reject
large lots of 0.64 m2 sheets of glass. The number X of blemishes per sheet of glass is the
quality characteristic of interest, and the decision rule to determine the lot acceptability
is based on a simple random sample from the variable X. Fernández [39] assumes that
X has a Poisson model with parameter λ. However, in many cases, the defect count
data are under- or over-dispersed with respect to the Poisson distribution. Due to this
reason, the number of imperfections occurring on each sheet is assumed here to follow
the CMP(λ, d) distribution.

The manufacturer deems that the CMP(λ0, d0) model is acceptable when the defect
rate per unit is λ0 = 0.3 and d0 = 0.8, whereas the customer supposes that the CMP(λ1, d1)
distribution is rejectable if λ1 = 0.7 and d1 = 0.6. Table 1 shows the best inspection scheme,
(n∗, c∗), and the approximately optimal plan, (na, ca), for α = 0.01, 0.05, β = 0.05, 0.10 and
p0 = 0.2, 0.5, 0.8. The Bayesian producer and consumer risks (BPR and BCR) of the schemes
(n∗, c∗) and (na, ca) are also reported. In light of Table 1, the required sample size tends to
reduce when α and/or β increase. Likewise, the reduction in sampling inspection effort is
clear when Pr(H0) is high.

Assume that the maximum permissible producer and consumer risks are α = 0.05
and β = 0.10, respectively. In the non-informative case, i.e., when p0 = 0.5 or r = 1, the
optimal plan (n∗, c∗) is obtained to be (17, 8.6809). Thus, the best decision rule consists of
taking 17 sheets of glass at random from the submitted lot and then accepting the whole
lot if Tn is at most c∗ = 8.6809; otherwise, the lot is rejected. The proposed approximate
plan (na, ca) is given by (17, 8.2708). The optimal plan and the Bayesian risks of (n∗, c∗)
and (na, ca) have been obtained by simulating m = 106 random samples of size 17 from the
CMP(λ0, d0) and CMP(λ1, d1) distributions. In this balanced situation, the approximate
plan (na, ca) is nearly optimal because na = n∗, the BCR is lower than 10%, and the BPR is
only slightly higher than 5%.
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Table 1. Optimal and approximate plans, (n∗, c∗) and (na, ca), and the corresponding Bayesian risks,
BPR and BCR, when (λ0, d0) = (0.3, 0.8) and (λ1, d1) = (0.7, 0.6).

Optimal Test Plan Approximate Test Plan

α β p0 n∗ c∗ BPR BCR na ca BPR BCR

1% 5% 0.2 33 14.575 0.963% 4.870% 36 15.214 1.151% 2.760%
0.5 31 15.956 0.943% 4.758% 30 14.855 1.647% 3.785%
0.8 24 15.068 0.997% 4.982% 19 11.591 3.265% 5.177%

10% 0.2 28 12.852 0.956% 9.899% 30 13.202 1.186% 6.278%
0.5 25 13.769 0.900% 9.487% 22 11.710 1.693% 9.667%
0.8 17 12.443 0.839% 9.475% 11 8.1634 4.051% 10.71%

5% 5% 0.2 23 8.3266 4.720% 4.228% 28 9.9554 4.440% 1.959%
0.5 22 10.376 4.909% 4.864% 23 10.361 6.117% 3.521%
0.8 18 10.734 4.536% 4.997% 15 8.7219 10.19% 4.742%

10% 0.2 18 6.8477 4.856% 9.766% 22 8.0255 4.361% 5.688%
0.5 17 8.6809 4.622% 9.919% 17 8.2708 5.212% 9.157%
0.8 12 8.5751 4.270% 9.459% 8 5.8200 11.04% 10.57%

Suppose now that the producer and the consumer agreed to assign a prior probability
p0 = 0.8 to the lot acceptability, which implies that the prior odds ratio r is 1/4. Thus, there is a
strong prior belief that the lot is acceptable. In this case, the approximate plan (8, 5.8200) is quite
different from the optimal scheme (12, 8.5751). Similarly, (na, ca) is not a good approximation
of the best inspection scheme when p0 = 0.2. Evidently, the normality of Tn is not reasonable
when n is small. In all events, however, na is a useful initial estimate of n∗.

According to Fernández [21], the optimal plan under the frequentist perspective is
(17, 8.4770), which is quite similar to (n∗, c∗) when the prior odds ratio is r = 1. In general,
the Bayesian viewpoint produces a significant reduction in sample size when r is small. For
example, n∗ is only 12 when r = 1/4. However, in the non-informative case, the optimal
Bayesian and frequentist test plans are often nearly equivalent.

With the aim of studying the effect of the dispersion parameter d on the optimal test
plan, Table 2 presents the approximate and optimal inspection schemes, (na, ca) and (n∗, c∗),
and their corresponding Bayesian risks when λ0 = 0.3, λ1 = 0.7, d1 = d2 = d, α = 0.05 and
β = 0.10 for d = 0.5, 1.0, 1.5 and p0 = 0.2, 0.5, 0.8. In view of Table 2, it is clear that n∗ is a
non-decreasing function of d when λ0 = 0.3 and λ1 = 0.7 are fixed. Therefore, the required
sample size in the Poisson case is an upper bound of n∗ when the dispersion parameter is
less than 1, and a lower bound of n∗ when d is greater than 1.

Table 2. Optimal and approximate plans, (n∗, c∗) and (na, ca), and the corresponding Bayesian risks,
BPR and BCR, when λ0 = 0.3, λ1 = 0.7, α = 0.05, β = 0.10 and d0 = d1 = d.

Optimal Test Plan Approximate Test Plan

d p0 n∗ c∗ BPR BCR na ca BPR BCR

0.5 0.2 20 8.0493 3.987% 8.566% 21 8.0642 4.713% 5.862%
0.5 19 9.7439 4.367% 8.110% 17 8.6257 4.632% 10.05%
0.8 14 9.7439 3.886% 8.359% 8 5.9554 8.544% 11.81%

1.0 0.2 27 8.8966 4.716% 8.739% 29 9.4692 4.124% 8.143%
0.5 27 11.439 3.982% 9.600% 25 10.320 4.583% 10.44%
0.8 19 10.591 3.993% 9.770% 14 7.8529 7.929% 10.89%

1.5 0.2 33 9.7439 4.939% 8.821% 35 10.328 4.220% 8.793%
0.5 33 12.286 4.296% 9.908% 31 11.315 5.144% 10.11%
0.8 24 11.439 4.279% 9.812% 19 9.0881 9.565% 9.628%

As graphical illustrations of the influence of r on the optimal and approximate sam-
pling inspection schemes, Figures 1 and 2 show the values of the approximate and optimal
sample sizes and acceptance constants, respectively, versus r when λ0 = 0.3, λ1 = 0.7,



Axioms 2022, 11, 604 9 of 13

d0 = d1 = 1, α = 0.05 and β = 0.10. Clearly, na and ca are smaller than n∗ and c∗,
respectively, when r is small. Otherwise, (na, ca) is a practical estimate of (n∗, c∗).

Figure 1. Optimal (solid line) and approximate (dashed line) sample sizes, n∗ and na, versus the prior
odds ratio when λ0 = 0.3, λ1 = 0.7, d0 = d1 = 1, α = 0.05 and β = 0.10.

Figure 2. Optimal (solid line) and approximate (dashed line) acceptance constants, c∗ and ca, versus the
prior odds ratio when λ0 = 0.3, λ1 = 0.7, d0 = d1 = 1, α = 0.05 and β = 0.10.

An application to the production of paper is now discussed to exemplify the determi-
nation of optimal sampling plans based on prior odds ratio tests. The number of impurities
discovered per inspection unit is typically the most important quality characteristic in
paper manufacturing. In our case, a practitioner wishes to determine the best decision rule
to reject or accept large lots of 0.49 m2 sheets of paper, assuming that the number X of
imperfections per sheet follows a CMP(λ, d) distribution with mean µ.

The maximal Bayesian risks that the consumer and the producer are willing to incur in
the development of a test plan for lot acceptance are 10% and 5%, respectively. Furthermore,
the presence of sixty-five impurities is considered rejectable by the customer, whereas
thirty-five blemishes per hundred sheets is deemed acceptable by the manufacturer. Thus,
α = 0.05, β = 0.10, and the acceptable and rejectable means are µ0 = 0.35 and µ1 = 0.65.
Table 3 reports the optimal and approximate inspection schemes, (n∗, c∗) and (na, ca), and
their corresponding Bayesian risks when µ0 = 0.35, µ1 = 0.65, d0 = d1 = d, α = 0.05 and
β = 0.10 for d = 0.5, 1.0, 1.5 and p0 = 0.2, 0.5, 0.8.
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Table 3. Optimal and approximate plans, (n∗, c∗) and (na, ca), and the corresponding Bayesian risks,
BPR and BCR, when µ0 = 0.35, µ1 = 0.65, α = 0.05, β = 0.10 and d0 = d1 = d.

Optimal Test Plan Approximate Test Plan

d p0 n∗ c∗ BPR BCR na ca BPR BCR

0.5 0.2 56 12.412 4.857% 9.455% 60 13.231 4.273% 8.455%
0.5 55 14.524 4.749% 9.674% 53 13.881 5.114% 9.976%
0.8 41 13.468 4.127% 9.864% 31 10.248 8.326% 10.567%

1.0 0.2 48 12.690 4.421% 9.735% 50 12.987 5.517% 6.300%
0.5 47 14.547 4.985% 9.248% 45 13.894 5.361% 9.721%
0.8 35 13.309 4.886% 9.349% 28 10.835 7.965% 10.22%

1.5 0.2 43 12.956 4.255% 9.445% 43 12.677 4.259% 9.528%
0.5 43 15.057 4.844% 8.594% 40 14.040 4.365% 11.08%
0.8 33 14.357 3.670% 9.623% 25 10.973 8.547% 9.896%

According to Table 3, if the acceptable and rejectable means, µ0 and µ1, are fixed,
the optimal sample size n∗ is reduced when the dispersion parameter d assumed by the
manufacturer and customer increases. Therefore, the required sample size in the Poisson
case is a lower bound of n∗ when the dispersion parameter is d < 1 and an upper bound of
n∗ when d > 1. For example, if p0 = 0.8, the minimal sample size n∗ = 35 when d = 1 is
a lower/upper bound of the value of n∗ when the dispersion parameter d is less/greater
than 1. Clearly, the needed sample size increases when the observed random sample is
over-dispersed compared to the Poisson distribution. For instance, if p0 = 0.5, the optimal
sample size is n∗ = 47 when d = 1, whereas n∗ = 55 if d = 0.5.

For illustrative and comparative purposes, Figure 3 displays the optimal sample size
under the frequentist perspective n f = 47 and the optimal Bayesian sample size n∗ as
a function of the prior odds ratio when µ0 = 0.35, µ1 = 0.65, d0 = d1 = 1, α = 0.05
and β = 0.10. The corresponding acceptance constants c f = 14.5474 and c∗ are shown
in Figure 4. In view of these figures, it is evident that the Bayesian approach greatly
decreases the required sample size and acceptance constant when the prior lot acceptability,
p0 = Pr(H0), is high; i.e., when the prior odds ratio r is low. In the non-informative case,
the best frequentist and Bayesian plans are quite similar.

Figure 3. Optimal Bayesian (solid line) and frequentist (dashed line) sample sizes, n∗ and n f , versus
the prior odds ratio when µ0 = 0.35, µ1 = 0.65, d0 = d1 = 1, α = 0.05 and β = 0.10.
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Figure 4. Optimal Bayesian (solid line) and frequentist (dashed line) acceptance constants, c∗ and c f ,
versus the prior odds ratio when µ0 = 0.35, µ1 = 0.65, d0 = d1 = 1, α = 0.05 and β = 0.10.

7. Concluding Remarks

Lot acceptance sampling is widely used in industrial quality control to develop inspection
schemes for defects per unit. The CMP model is a plausible generalization of the Poisson
law that adds a parameter to represent the dispersion level. Assuming the presence of prior
information on the production process, this paper has determined the best test plans for lot
acceptance purposes when the number of minor defects per unit has a CMP distribution.

The proposed test plan for screening lots protects the consumer and the producer
at the requested confidence levels and minimizes the sampling inspection effort. Mixed-
integer nonlinear programming problems were solved through Monte Carlo simulation
to determine the best inspection schemes based on posterior odds ratio tests. An explicit
asymptotic approximation of the best plan was used as a starting point for iteratively
searching the optimal scheme, which is of exceeding importance because the calculation of
the optimal plan can be very computer intensive. The presented results were applied to the
production of paper and glass.

The suggested approach is practically an extension of the classical frequentist per-
spective because both are quite similar in the non-informative case. Nonetheless, note that
a classical statistician considers a probability is a frequency, whereas a Bayesian views a
probability as a degree of belief. Our setting offers some advantages to the decision-maker.
In particular, the producer and the consumer may assign different probabilities to the lot
acceptability, even if they have identical background knowledge. A convenient way of
combining new sample evidence with prior beliefs is also provided. Bayes’ rule can be used
to continually update the posterior odds ratio as new subjective or objective information is
acquired. In general, the inclusion of the dispersion parameter in the underlying probability
distribution leads to improved decision rules for lot disposition based on under- or over-
dispersed samples. Moreover, the incorporation of prior knowledge provides more precise
assessments of the actual consumer and producer risks, as well as substantial savings in
sample size when the prior lot acceptability is high.
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