
Citation: Cheng, Y.; Srivastava, R.;

Liu, J. Applications of the

q-Derivative Operator to New

Families of Bi-Univalent Functions

Related to the Legendre Polynomials.

Axioms 2022, 11, 595.

https://doi.org/

10.3390/axioms11110595

Academic Editor:

Clemente Cesarano

Received: 05 October 2022

Accepted: 23 October 2022

Published: 27 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Applications of the q-Derivative Operator to New Families of
Bi-Univalent Functions Related to the Legendre Polynomials
Ying Cheng 1, Rekha Srivastava 2,* and Jin-Lin Liu 1

1 Department of Mathematics, Yangzhou University, Yangzhou 225002, China
2 Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada
* Correspondence: rekhas@math.uvic.ca

Abstract: By using the q-derivative operator and the Legendre polynomials, some new subclasses
of q-starlike functions and bi-univalent functions are introduced. Several coefficient estimates and
Fekete–Szegö-type inequalities for functions in each of these subclasses are obtained. The results
derived in this article are shown to extend and generalize those in some earlier works.

Keywords: analytic functions; bi-univalent functions; q-derivative operator; subordination between
analytic functions; Legendre polynomials; Fekete–Szegö inequality

MSC: 30C45; 30C80; 33C45

1. Introduction

In the development of the Geometric Function Theory of Complex Analysis, the q-
derivative is an important research tool. The application of q-calculus was first considered
by Jackson (see [1–4]). Recently, many scholars have defined new subclasses of analytic func-
tions by combining the q-derivative operator with the principle of differential subordination
and studied their geometric properties (see [5–15]). In this article, we investigate two new
subclasses Iq

A[A, B, λ, β] and Iq
Σ[φ, λ, β] of the class of q-starlike functions and bi-univalent

functions associated with the q-derivative operator and the Legendre polynomials. For
each of these subclasses, we obtain certain coefficient estimates and Fekete–Szegö-type
inequalities. The results obtained in this article are also shown to extend and generalize
those in some earlier works. For motivation and incentive for further researches, the
reader’s attention is drawn toward some of the related recent developments in [12,16–19]
dealing with the coefficient inequalities and coefficient estimates of various subclasses
of analytic, univalent, and bi-univalent functions involving the second, third, and fourth
Hankel determinants and the Fekete–Szegö functional.

Let A be the class of analytic functions in the open unit disk

U = {z : z ∈ C and |z| < 1},

which have the following normalized form:

f (z) = z +
∞

∑
n=2

anzn. (1)

Also, let S ⊂ A be the class of functions that are univalent in U. Obviously, each function
f ∈ S has an inverse f−1, so that

f−1( f (z)
)
= z (z ∈ U)
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and

f−1( f (w)
)
= w

(
|w| < r0( f ); r0( f ) =

1
4

)
,

where

g(w) := f−1(w) = w− a2w2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + · · · . (2)

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent in
U. We denote this class using Σ. We remark that the study of the normalized class Σ of
analytic and bi-univalent functions in U was revived in recent years by a pioneering article
on the subject by Srivastava et al. [20], which has flooded the literature on the Geometric
Function Theory of Complex Analysis with a large number of sequels to [20].

For a function f ∈ A, given by (1), and a function g ∈ A, given by

g(z) = z +
∞

∑
n=2

bnzn (z ∈ U),

the Hadamard product (or convolution) of f and g is defined by

( f ∗ g)(z) := z +
∞

∑
n=2

anbnzn =: (g ∗ f )(z) (z ∈ U).

Let P be the class of Carathéodory functions h that are analytic in U and that satisfy

h(z) = 1 +
∞

∑
n=1

cnzn

and
R
(
h(z)

)
> 0 (z ∈ U).

For two analytic functions f and g, we say that f is subordinate to g and it is written
as f ≺ g or f (z) ≺ g(z), if there is a Schwarz function w such that f (z) = g

(
w(z)

)
. Further,

if g is univalent in U, then

f ≺ g⇔ f (0) = g(0) and f (U) ⊂ g(U).

Let q ∈ (0, 1) and define the q-number [λ]q as follows:

[λ]q :=



1− qλ

1− q
(λ ∈ C)

1 +
n−1
∑

j=1
qj (λ = n ∈ N).

Especially, we note that [0]q = 0.
Let q ∈ (0, 1) and define the q-factorial [n]q! by

[n]q! :=


1 (n = 0)

n
∏

k=1
[k]q (n ∈ N).
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Let r ∈ N0 = N∪ {0}. Define [r]q,n by

[r]q,n :=


1 (n = 0)

r+n−1
∏

k=r
[k]q (n ∈ N).

Now, we recall here the q-derivative (or the q-difference) operator Dq (0 < q < 1) of a
function f ∈ A as follows:

(Dq f )(z) =


f (z)− f (qz)
(1− q)z

(z 6= 0)

f ′(0) (z = 0),

where f ′(0) exists. Also, we write

(D(2)
q f )(z) =

(
Dq(Dq f )

)
(z).

The Legendre polynomials Pn(x) are the particular solutions to the Legendre differen-
tial equation:

(1− x2)y′′ − 2xy′ + n(n + 1)y = 0 (n ∈ N0).

The Legendre polynomials Pn(x) are defined by

Pn(x) =
1

2n n!
dn

dxn (x2 − 1)n (n ∈ N0) (3)

for arbitrary real or complex values of the variable x. The Legendre polynomials Pn(x) are
generated by (see, for details, [21])

(1− 2xt + t2)−
1
2 =

∞

∑
n=0

Pn(x)tn,

where (1− 2xt + t2)−
1
2 is taken to be 1 when t → 0. The first few Legendre polynomials

are given by

P0(x) = 1, P1(x) = x, P2(x) =
1
2
(3x2 − 1) and P3(x) =

1
2
(5x3 − 3x).

The function φ(z) given by

φ(z) =
1− z√

1− 2z cos α + z2
(4)

belongs to the class P for every real number α (see [22]). By using (3), it is easy to see that

φ(z) = 1 +
∞

∑
n=1

[Pn(cos α)− Pn−1(cos α)]zn = 1 +
∞

∑
n=1

ln zn,

where
ln = Pn(cos α)− Pn−1(cos α).

We also note that

l1 = cos α− 1 and l2 =
1
2
(cos α− 1)(1 + 3 cos α).

For more details, one can see the earlier work [23].
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For f ∈ A, the q-Ruscheweyh operator Rq,λ is defined as follows (see [24]):

Rq,λ f (z) = f (z) ∗ Fq,λ+1(z) (z ∈ U; λ > −1),

where

Fq,λ+1(z) = z +
∞

∑
n=2

[λ + 1]q,n−1

[n− 1]q!
zn.

Let f ∈ A. The q-integral operator R−1
q,λ is defined by (see [5] and [25])

R−1
q,λ(z) ∗ Rq,λ(z) = z

(
Dq f (z)

)
.

Further, we have

R−1
q,λ(z) = z +

∞

∑
n=2

ψn−1zn,

where

ψn−1 =
[n]q!

[λ + 1]q,n−1
(n = 2). (5)

When q→ 1−1, the q-integral operator R−1
q,λ reduces to an integral operator studied

by Noor [26].
For f ∈ A, the q-integral operator Iλ

q is defined by (see [5])

Iλ
q f (z) = f (z) ∗ R−1

q,λ(z) = z +
∞

∑
n=2

ψn−1anzn, (6)

where ψn−1 is given by (5). Clearly, one can see that

I0
q f (z) = z

(
Dq f (z)

)
and I1

q f (z) = f (z).

Next, we will define the analytic function class Iq
A[A, B, λ, β] and the bi-univalent

function class Iq
Σ[φ, λ, β].

Definition 1. Let λ > −1, −1 5 B < A 5 1, and 0 5 β 5 1. A function f ∈ A is said to be in
the class Iq

A[A, B, λ, β] if

z(Dq Iλ
q f )(z) + βz2(D(2)

q Iλ
q f )(z)

(1− β)Iλ
q f (z) + βz(Dq Iλ

q f )(z)
≺ 1 + Az

1 + Bz
(z ∈ U), (7)

or equivalently, ∣∣∣∣∣∣∣∣
z(Dq Iλ

q f )(z)+βz2(D(2)
q Iλ

q f )(z)
(1−β)Iλ

q f (z)+βz(Dq Iλ
q f )(z)

− 1

A− B
z(Dq Iλ

q f )(z)+βz2(D(2)
q Iλ

q f )(z)
(1−β)Iλ

q f (z)+βz(Dq Iλ
q f )(z)

∣∣∣∣∣∣∣∣ < 1. (8)

Remark 1. (i) For λ = 1 and β = 0, we have

Iq
A[A, B, 1, 0] = S∗q [A, B],

where the class S∗q [A, B] was introduced by Srivastava et al. [27].
(ii) For λ = 1, β = 0, and q→ 1−, we get

lim
q→1−

Iq
A[A, B, 1, 0] = S∗[A, B],

where the class S∗[A, B] was considered by Janowski [28].
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(iii) For A = 1− 2α (0 5 α < 1) and B = −1, the class S∗[A, B] reduces to the class S∗(α),
which was studied by Silverman [29].

Definition 2. Let λ > −1 and 0 5 β 5 1. A function f ∈ Σ is said to be in the class Iq
Σ[φ, λ, β] if

z(Dq Iλ
q f )(z)+βz2(D(2)

q Iλ
q f )(z)

(1−β)Iλ
q f (z)+βz(Dq Iλ

q f )(z)
≺ φ(z)

w(Dq Iλ
q g)(w)+βw2(D(2)

q Iλ
q g)(w)

(1−β)Iλ
q g(w)+βw(Dq Iλ

q g)(w)
≺ φ(w),

(9)

where the functions g and φ are given by (2) and (4), respectively.

To derive our main results, we need the following lemmas.

Lemma 1 (see [30]). Let ϕ(z) = 1 + ω1z + ω2z2 + · · · ∈ P . Then,

|ω2 − νω2
1 | 5


−4ν + 2 (ν < 0)

2 (0 5 ν 5 1)

4ν− 2 (ν > 1).

(10)

Lemma 2 (see [13]). Let

M(z) = 1 +
∞

∑
n=1

Cnzn ≺ H(z) = 1 +
∞

∑
n=1

dnzn.

If H(z) is univalent in U and H(U) is convex, then

|Cn| 5 |d1| (n ∈ N).

Lemma 3 (see [31]). If p(z) = 1 + ∑∞
n=1 cnzn ∈ P , then

|cn| 5 2 (n ∈ N).

2. Main Results

In this section, we derive certain coefficient estimates and the Fekete–Szegö-type
inequalities for functions in the classes Iq

A[A, B, λ, β] and Iq
Σ[φ, λ, β], which are defined

above (see Definition 1 and Definition 2). Many special cases and consequences of our main
findings are pointed out.

Theorem 1. Let a function f ∈ Iq
A[A, B, λ, β] be of the form given by (1). Then,

|an| 5
A− B(

q(1− β) + β[n]q
)
ψn−1

·
n−1

∏
j=1

{
q(1− β) + β[j]q

}
[j− 1]q +

{
(1− β) + β[j]q

}
(A− B){

q(1− β) + β[j]q
}
[j]q

(n = 2), (11)

where ψn−1 is given by (5).

Proof. For f ∈ Iq
A[A, B, λ, β], we have

ν(z) :=
z(Dq Iλ

q f )(z) + βz2(D(2)
q Iλ

q f )(z)

(1− β)Iλ
q f (z) + βz(Dq Iλ

q f )(z)
≺ 1 + Az

1 + Bz
(z ∈ U), (12)
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where

1 + Az
1 + Bz

= 1 +
∞

∑
n=0

(A− B)(−B)nzn+1 = 1 + (A− B)z− B(A− B)z2 + · · · .

Since ν(z) = 1 + ∑∞
n=1 νnzn, we get from Lemma 2 that

|νn| 5 A− B (n ∈ N). (13)

From (12), we have

z(Dq Iλ
q f )(z) + βz2(D(2)

q Iλ
q f )(z) = ν(z)[(1− β)Iλ

q f (z) + βz
(

Dq Iλ
q f (z)

)
]

which shows that

z +
∞

∑
n=2

[n]q[1 + β[n− 1]q]anψn−1zn

=

(
1 +

∞

∑
n=1

νnzn

)(
z +

∞

∑
n=2

[1 + β([n]q − 1)]anψn−1zn

)
. (14)

Comparing the coefficients of zn on both sides of the equation (14), we get

[n− 1]q[q(1− β) + β[n]q]anψn−1 =
n−1

∑
l=1

[1 + β([l]q − 1)]alψl−1νn−l ,

where a1 = 1, ν1 = 1 and ψ0 = 1. The above equation gives

|an| 5
A− B

[n− 1]q[q(1− β) + β[n]q]ψn−1

n−1

∑
l=1

[1 + β([l]q − 1)]|al |ψl−1.

Thus, we get

|a2| 5
A− B

(q + β)ψ1
;

|a3| 5
A− B

(q(1− β) + β[3]q)ψ2
· (q + β) + (1 + βq)(A− B)

[2]q(q + β)
;

|a4| 5
A− B

(q(1− β) + β[4]q)ψ3
·
(
(q + β) + (1 + βq)(A− B)

[2]q(q + β)

)
·
(
[2]q{q(1− β) + β[3]q}+

(
(1− β) + β[3]q

)
(A− B)

[3]q

)
;

· · · · · ·

|an| 5
A− B

(q(1− β) + β[n]q)ψn−1

·
n−1

∏
j=1

{q(1− β) + β[j]q}[j− 1]q + {(1− β) + β[j]q}(A− B)
{q(1− β) + β[j]q}[j]q

.

This proves Theorem 1.

For λ = 1 and β = 0 in Theorem 1, we obtain a result of the class S∗q [A, B], which was
considered by Srivastava et al. [27].
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Corollary 1. Let a function f ∈ S∗q [A, B] be of the form given by (1). Then,

|an| 5
1
q

n−1

∏
j=1

q[j− 1]q + (A− B)
q[j]q

(n = 2).

Theorem 2. Let a function f ∈ Iq
Σ[φ, λ, β] be given by (1). Then,

|a2| 5 min


| cos α− 1|
(q + β)ψ1

,
√

2| cos α− 1|√
|2[2]q[q + β(q2 + 1)](cos α− 1)ψ2 − (q + β)[2(1 + βq)(cos α− 1) + (q + β)(3 cos α− 1)]ψ2

1 |

(15)

and

|a3| 5 min


| cos α− 1|2

(q + β)2ψ2
1
+

| cos α− 1|
[2]q[q + β(q2 + 1)]ψ2

,

| cos α−1|
[2]q [q+β(q2+1)]ψ2

+ 2(cos α−1)2

|{2[2]q [q+β(q2+1)](cos α−1)ψ2−(q+β)[2(1+βq)(cos α−1)+(q+β)(3 cos α−1)]ψ2
1}|

.
(16)

Proof. From (9), we know that there are two Schwarz functions u(z) and ν(w), such that

z(Dq Iλ
q f )(z) + βz2(D(2)

q Iλ
q f )(z)

(1− β)Iλ
q f (z) + βz

(
Dq Iλ

q f (z)
) = φ

(
u(z)

)
(17)

and
w(Dq Iλ

q g)(w) + βw2(D(2)
q Iλ

q g)(w)

(1− β)Iλ
q g(w) + βw

(
Dq Iλ

q g(w)
) = φ

(
ν(w)

)
. (18)

Now we define the functions s(z) and t(w) by

s(z) =
1 + u(z)
1− u(z)

= 1 + s1z + s2z2 + · · · ∈ P

and

t(w) =
1 + ν(w)

1− ν(w)
= 1 + t1z + t2z2 + · · · ∈ P .

Since

φ(z) = 1 +
∞

∑
n=1

[Pn(cos α)− Pn−1(cos α)]zn = 1 +
∞

∑
n=1

lnzn,

we get

φ
(
u(z)

)
= 1 + 1

2 l1s1z +
[

1
2 l1

(
s2 −

s2
1
2

)
+ 1

4 l2s2
1

]
z2 + · · · ,

φ
(
ν(w)

)
= 1 + 1

2 l1t1w +

[
1
2 l1

(
t2 −

t2
1
2

)
+ 1

4 l2t2
1

]
w2 + · · · .

(19)

Using the Taylor series formula, we have

z(Dq Iλ
q f )(z) + βz2(D(2)

q Iλ
q f )(z)

(1− β)Iλ
q f (z) + βz

(
Dq Iλ

q f (z)
) = 1 + (q + β)ψ1a2z

+ {[q(q + 1) + (q2 + 1)[2]qβ]ψ2a3 − (1 + βq)(q + β)ψ2
1a2

2}z2 + · · ·
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and

w(Dq Iλ
q g)(w) + βw2(D(2)

q Iλ
q g)(w)

(1− β)Iλ
q g(w) + βw

(
Dq Iλ

q g(w)
) = 1− (q + β)ψ1a2w

+ {[q(q + 1) + (q2 + 1)[2]qβ]ψ2(2a2
2 − a3)− (1 + βq)(q + β)ψ2

1a2
2}w2 + · · · .

Comparing the left-side and right-side coefficients of (17) and (18), we obtain

(q + β)ψ1a2 =
1
2

l1s1, (20)

[2]q[q + β(q2 + 1)]ψ2a3 − (1 + βq)(q + β)ψ2
1a2

2 =
1
2

l1

(
s2 −

s2
1
2

)
+

1
4

l2s2
1, (21)

− (q + β)ψ1a2 =
1
2

l1t1 (22)

and

[2]q[q + β(q2 + 1)]ψ2(2a2
2 − a3)− (1 + βq)(q + β)ψ2

1a2
2 =

1
2

l1

(
t2 −

t2
1
2

)
+

1
4

l2t2
1. (23)

From (20) and (22), we have

a2 =
l1s1

2(q + β)ψ1
=

−l1t1

2(q + β)ψ1
. (24)

Thus, we find that
s1 = −t1 (25)

and
8(q + β)2ψ2

1a2
2 = l2

1(s
2
1 + t2

1). (26)

Using Lemma 3, we find from (24) that

|a2| 5
| cos α− 1|
(q + β)ψ1

. (27)

Now from (21), (23), (24), and (25), we have

4{[2]q[q + β(q2 + 1)]l2
1ψ2 − (q + β)[(1 + βq)l2

1 + (q + β)(l2 − l1)]ψ2
1}a2

2 = l3
1(s2 + t2).

Since
l1 = cos α− 1 and l2 =

1
2
(cos α− 1)(1 + 3 cos α),

we obtain

a2
2 =

l3
1(s2 + t2)

4{[2]q[q + β(q2 + 1)]l2
1ψ2 − (q + β)[(1 + βq)l2

1 + (q + β)(l2 − l1)]ψ2
1}

=
(cos α− 1)2(s2 + t2)

2{2[2]q[q + β(q2 + 1)](cos α− 1)ψ2 − (q + β)[2(1 + βq)(cos α− 1) + (q + β)(3 cos α− 1)]ψ2
1}

. (28)

Applying Lemma 3 to the coefficients s2 and t2, we have

|a2| 5
√

2| cos α− 1|√
|2[2]q[q + β(q2 + 1)](cos α− 1)ψ2 − (q + β)[2(1 + βq)(cos α− 1) + (q + β)(3 cos α− 1)]ψ2

1 |
.
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By subtracting (23) from (21), we have

2[2]q[q + β(q2 + 1)](a3 − a2
2)ψ2 =

1
2

l1(s2 − t2) +
1
4
(l2 − l1)(s2

1 − t2
1). (29)

From (24), (25), and (29), we obtain

a3 = a2
2 +

l1(s2 − t2)

4[2]q[q + β(q2 + 1)]ψ2
. (30)

Now taking the modulus of (30) and using Lemma 3, we get

|a3| 5 |a2|2 +
l1

[2]q[q + β(q2 + 1)]ψ2
. (31)

Further, by using (27) and (31), we find

|a3| 5
l2
1

(q + β)2ψ2
1
+

|l1|
[2]q[q + β(q2 + 1)]ψ2

=
| cos α− 1|
(q + β)2ψ2

1
+

| cos α− 1|
[2]q[q + β(q2 + 1)]ψ2

.

Also, using (26) and (31), we derive

|a3| 5 |a2
2|+

l1
[2]q[q + β(q2 + 1)]ψ2

=
| cos α− 1|

[2]q[q + β(q2 + 1)]ψ2

+
2(cos α− 1)2

|{2[2]q[q + β(q2 + 1)](cos α− 1)ψ2 − (q + β)[2(1 + βq)(cos α− 1) + (q + β)(3 cos α− 1)]ψ2
1}|

.

This completes the proof of Theorem 2.

Theorem 3. Let a function f ∈ Iq
A[A, B, λ, β] be of the form given by (1). Then,

|a3 − µa2
2| 5



A− B
(1 + q)[q + (q2 + 1)β]ψ2

Λ(q) (µ < σ1)

A− B
(1 + q)[q + (q2 + 1)β]ψ2

(σ1 5 µ 5 σ2)

B−A
(1+q)[q+(q2+1)β]ψ2

Λ(q) (µ > σ2),

where µ is real and

Λ(q) =
(q + β)[(1 + βq)(A− B)− (q + β)B]ψ2

1 − µ(1 + q)[q + (q2 + 1)β](A− B)ψ2

(q + β)2ψ2
1

,

σ1 =
(q + β)[(1 + βq)(A− B)− (q + β)(B + 1)]ψ2

1
(1 + q)[q + (q2 + 1)β](A− B)ψ2

and

σ2 =
(q + β)[(1 + βq)(A− B)− (q + β)(B− 1)]ψ2

1
(1 + q)[q + (q2 + 1)β](A− B)ψ2

.
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Proof. Let f ∈ Iq
A[A, B, λ, β]. Using the Taylor series formula, we have

z(Dq Iλ
q f )(z) + βz2(D(2)

q Iλ
q f )(z)

(1− β)Iλ
q f (z) + βz

(
Dq Iλ

q f (z)
) = 1 + (q + β)ψ1a2z

+ {[q(q + 1) + (q2 + 1)[2]qβ]ψ2a3 − (1 + βq)(q + β)ψ2
1a2

2}z2 + · · · . (32)

From (7), we know that there exists a Schwarz function h such that

z(Dq Iλ
q f )(z) + βz2(D(2)

q Iλ
q f )(z)

(1− β)Iλ
q f (z) + βz

(
Dq Iλ

q f (z)
) =

1 + Ah(z)
1 + Bh(z)

.

We now define a function w ∈ P by

w(z) =
1 + h(z)
1− h(z)

= 1 + w1z + w2z2 + · · · .

This implies that

h(z) =
w(z)− 1
w(z) + 1

= 1 +
1
2

w1z +
(

1
2

w2 −
1
4

w2
1

)
z2 + · · · .

Also, we have

1 + Ah(z)
1 + Bh(z)

= 1 +
1
2
(A− B)w1z +

[
1
2
(A− B)w2 −

1
4
(B + 1)(A− B)w2

1

]
z2 + · · · . (33)

Therefore, we obtain

a2 =
(

A−B
2(q+β)ψ1

)
w1,

a3 =
(

A−B
2(1+q)[q+(q2+1)β]ψ2

){
w2 − 1

2

[
(B + 1)−

(
1+βq
q+β

)
(A− B)

]
w2

1

}
.

(34)

Now, we can find that

|a3 − µa2
2| =

A− B
2(1 + q)[q + (q2 + 1)β]ψ2

∣∣∣∣{w2 −
1
2

[
(B + 1)−

(
1 + βq
q + β

)
(A− B)

]
w2

1

}
−µ

(A− B)2

4(q + β)2ψ2
1

w2
1

∣∣∣∣∣
=

A− B
2(1 + q)[q + (q2 + 1)β]ψ2

∣∣∣∣{w2 −
1
2
[(B + 1)

−
(
(1 + βq)(q + β)ψ2

1 + µ(1 + q)[q + (q2 + 1)β]ψ2

(q + β)2ψ2
1

)
(A− B)

]
w2

1

}∣∣∣∣∣
=

A− B
2(1 + q)[q + (q2 + 1)β]ψ2

|{w2 − k1(q)w2
1}|, (35)

where

k1(q) =
(q + β)[(q + β)(B + 1)− (1 + βq)(A− B)]ψ2

1 + µ(1 + q)[q + (q2 + 1)β](A− B)ψ2

2(q + β)2ψ2
1

.

Applying Lemma 1 in (35), we get the desired results. The proof of Theorem 3 is com-
pleted.

For λ = 1, β = 0, and q→ 1−, we get a result of the class S∗[A, B] that was considered
by Janowski [28].
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Corollary 2. Let a function f ∈ S∗[A, B] be of the form given by (1). Then,

|a3−µa2
2| 5



(
A− B

2

)
[(A− 2B)− µ(A− B)]

(
µ <

A− 2B− 1
2(A− B)

)
A− B

2

(
A− 2B− 1
2(A− B)

5 µ 5
A− 2B + 1
2(A− B)

)
(

B− A
2

)
[(A− 2B)− µ(A− B)]

(
µ >

A− 2B + 1
2(A− B)

)
.

Theorem 4. Let a function f ∈ Iq
Σ[φ, λ, β] be of the form given by (1). Then,

|a3 − µa2
2| 5


| cos α− 1|

[2]q[q + β(q2 + 1)]ψ2

(
0 5 |h(µ)| 5 | cos α−1|

4[2]q [q+β(q2+1)]ψ2

)

4|h(µ)|
(
|h(µ)| = | cos α− 1|

4[2]q[q + β(q2 + 1)]ψ2

)
,

where µ is real and

h(µ) =
(1− µ)(cos α− 1)2

2{2[2]q[q + β(q2 + 1)](cos α− 1)ψ2 − (q + β)[2(1 + βq)(cos α− 1) + (q + β)(3 cos α− 1)]ψ2
1

. (36)

Proof. From (30), we have

a3 − µa2
2 = (1− µ)a2

2 +
l1(s2 − t2)

4[2]q[q + β(q2 + 1)]ψ2
. (37)

Using (28) and (37), we get

a3 − µa2
2 =

(cos α− 1)(s2 − t2)

4[2]q[q + β(q2 + 1)]ψ2

+
(1− µ)(cos α− 1)2(s2 + t2)

2{2[2]q[q + β(q2 + 1)](cos α− 1)ψ2 − (q + β)[2(1 + βq)(cos α− 1) + (q + β)(3 cos α− 1)]ψ2
1}

=

(
h(µ) +

cos α− 1
4[2]q[q + β(q2 + 1)]ψ2

)
s2 +

(
h(µ)− cos α− 1

4[2]q[q + β(q2 + 1)]ψ2

)
t2, (38)

where h(µ) is given by (36).
Taking the modulus of each side in (38), we get

|a3 − µa2
2| 5


| cos α− 1|

[2]q[q + β(q2 + 1)]ψ2

(
0 5 |h(µ)| 5 | cos α−1|

4[2]q [q+β(q2+1)]ψ2

)
4|h(µ)|

(
|h(µ)| = | cos α−1|

4[2]q [q+β(q2+1)]ψ2

)
.

This proves Theorem 4.

3. Conclusions

In our present investigation, we have used the q-derivative (or the q-difference) op-
erator Dq, as well as the Legendre polynomials Pn(x) to introduce and study two new
subclasses of the class of q-starlike functions and the class of analytic and bi-univalent
functions. For each of these subclasses, we have derived a number of coefficient estimates
and Fekete–Szegö-type inequalities. The results derived in this article are also shown to
extend and generalize those in some earlier works. For motivation and incentive for further
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research, the reader’s attention is drawn toward some of the related recent developments
in [16–19] dealing with the coefficient inequalities and coefficient estimates of various
subclasses of analytic, univalent, and bi-univalent functions involving the second, third,
and fourth Hankel determinants, and the Fekete–Szegö functional.

In concluding this article, we choose to discourage the current trend of some amateurish-
type publications in which there are falsely-claimed “generalizations" of known q-theory
and known q-results by forcing-in an obviously superfluous (or redundant) parameter
p. In this connection, the reader should refer to [32] (p. 340) and [33] (pp. 1511–1512)
for a detailed exposition and demonstration, where it is stated clearly that the current
trend of trivially and inconsequentially translating known q-results into the corresponding
(p, q)-results leads to no more than a straightforward and shallow publication involving an
additional forced-in parameter p that is obviously redundant (or superfluous).
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