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Abstract: The problem of computing the Laplace transform of composed functions has not found
its way into the literature because it was customarily believed that there were no suitable formula
to solve it. Actually, it has been shown in previous work that by making use of Bell polynomials,
efficient approximations can be found. Moreover, using an extension of Bell’s polynomials to bivariate
functions, it is also possible to approximate the Laplace transform of composed functions of two
variables. This topic is solved in this paper and some numerical verifications, due to the first
author using the computer algebra system Mathematica©, are given proving the effectiveness of the
proposed method.
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1. Introduction

In the current literature, a large number of papers falsely claimed to have generalized
the classical Laplace transform and the s-multiplied (or the Laplace–Carson) transform by
making some obviously trivial changes in the parameter s and the argument t. Most (if not
all) of such trivialities and inconsequential variations of the classical Laplace transform and
the Laplace–Carson transform, which appeared and continue to appear in the literature, were
pointed out and documented by H. M. Srivastava (see [1], pp. 1508–1510, and [2], pp. 36–38).

In order not to create misunderstandings, we want to say right away that the purpose
of this article is not to provide generalizations of the Laplace transform (LT), but only to
extend the tables of LTs often used in applied mathematics. The well known tables of
Oberhettinger and Badii cited among the references [3] does not include the LT of functions
considered in this paper.

We want to underline the fact that in literature it is usually considered that there are
no formulas for the computation of the LT of composed functions. This belief has been
refuted in a previous article [4] and the possibility of obtaining approximations in this field
is shown in an even more general situation in this paper. As far as we know, there are no
other articles on this topic and our approach seems to be the first in this regard.

More precisely, we show how to approximate the Laplace transform of a 2-variable
composed analytic function f [ϕ(t), ψ(t)], where ϕ(t), y = ψ(t), 0 ≤ t < +∞ are analytic
functions, by using the bivariate Bell polynomials, a suitable set of Bell polynomials,
introduced in a preceding paper [5].

The classical Bell polynomials are exploited in very different frameworks, which range
from number theory [6–10] to operators theory [11,12], and from differential equations [13]
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to integral transforms [14,15]. Applications of the Laplace Transform (LT) in Analysis and
Mathematical Physics problems are well known [16].

We use the classical definition:

L( f ) :=
∫ ∞

0
exp(−s t) f (t) dt = F(s) .

The LT converts a function of a real variable t (representing the time) to a function of a
complex variable s (representing the complex frequency).

The LT can be applied to locally integrable functions on [0,+∞). It converges in each
half plane Re(s) > a, where a is a constant (called the convergence abscissa), depending on
the growth behavior of f (t).

Owing to the importance of this transformation in the solution of the most diverse
differential problems, a large number of LT, together with the respective anti-transforms,
are reported in literature (see, e.g., [3,17]).

Given a 2-variable composed function f [ϕ(t), ψ(t)] it is natural to define the relevant
LT by putting:

Lc( f ) :=
∫ ∞

0
exp(−s t) f [ϕ(t), ψ(t)] dt = Fc(s) .

In previous articles, we have shown how to compute the LT of higher-order nested
functions (see [4] and the references therein). In this article, we apply a similar method
to approximate the LT of a composed analytic function of 2 variables, taking advantage
of the bivariate Bell polynomials introduced in [5]. The results obtained demonstrate the
correctness of the method considered, as can be seen in the numerical verifications obtained
by the first author using the Mathematica© computer algebra system.

The first bivariate Bell polynomials are given in the Appendix A at the end of this arti-
cle.

2. Recalling the Bell’s Polynomials

The Bell’s polynomials [18] express the nth derivative of a composed function Φ(t) :=
f (g(t)) in terms of the successive derivatives of the (sufficiently smooth) component
functions x = g(t) and y = f (x). More precisely, if

Φm := Dm
t Φ(t), fh := Dh

x f (x)|x=g(t), gk := Dk
t g(t) ,

then the nth derivative of Φ(t) is represented by

Φn = Bn( f1, g1; f2, g2; . . . ; fn, gn), (1)

where Bn denotes the nth Bell polynomial.
The first few Bell polynomials are given by:

B1( f1, g1) = f1g1
B2( f1, g1; f2, g2) = f1g2 + f2g2

1
B3( f1, g1; f2, g2; f3, g3) = f1g3 + f2(3g2g1) + f3g3

1
. . .

(2)

More general results can be found in [19], p. 49.
The Bell polynomials [6] are given by the equation

Bn( f1, g1; f2, g2; . . . ; fn, gn) =
n

∑
k=1

Bn,k(g1, g2, . . . , gn−k+1) fk , (3)
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where the Bn,k satisfy the recursion [6]

Bn,k(g1, g2, . . . , gn−k+1) =
n−k

∑
h=0

(
n− 1

h

)
Bn−h−1,k−1(g1, g2, . . . , gn−h−k+1) gh+1 . (4)

The Bn,k functions for any k = 1, 2, . . . , n are polynomials in the g1, g2, . . . , gn variables
homogeneous of degree k and isobaric of weight n (i.e., they are linear combinations of
monomials gk1

1 gk2
2 · · · g

kn
n whose weight is constantly given by k1 + 2k2 + . . . + nkn = n).

Therefore, we have the equations

Bn,k(αβ g1, αβ2g2, . . . , αβn−k+1gn−k+1) = αkβnBn,k(g1, g2, . . . , gn−k+1) , (5)

and

Bn( f1, β g1; f2, β2g2; . . . ; fn, βngn) = βn Bn( f1, g1; f2, g2; . . . ; fn, gn) . (6)

3. Bivariate Bell’s Polynomials

Consider the composed function f (ϕ(t), ψ(t)), under the standard assumptions on
the domains of definition and differentiability. Compute the the partial derivative of
the function f , h-times with respect to x and k-times with respect to y and then put
x = ϕ(t), y = ψ(t). Indicate the result with fxhyk := d(h+k)

dxhyk f (x, y)|(x=ϕ(t),y=ψ(t)), and also set

Dm
t ϕ(t) =: ϕm, Dm

t ψ(t) =: ψm.
Hence, the bivariate Bell polynomials are defined as follows:

B(2)n ( f ; ϕ; ψ) := Dn
t f (ϕ(t), ψ(t)). (7)

Note that

Dt f (ϕ(t), ψ(t)) = fx ϕ1 + fyψ1 = B1( fx, ϕ1) + B1( fy, ψ1) , (8)

where Bn denotes the nth ordinary Bell polynomial defined in (1).
Putting

B2
1( fx; ϕ1) := B2( fx, fx2 ; ϕ1, ϕ2), B2

1( fy; ψ1) := B2( fy, fy2 ; ψ1, ψ2),

B1( fx; ϕ1) ◦ B1( fy; ψ1) = fx ϕ1 ◦ fyψ1 := fxy ϕ1ψ1,
(9)

we find

D2
t f (ϕ(t), ψ(t)) = fx2(ϕ1)

2 + fx ϕ2 + fy2(ψ1)
2 + fyψ2 + 2 fxy ϕ1ψ1 =

= B2( fx, fx2 ; ϕ1, ϕ2) + 2B1( fx; ϕ1) ◦ B1( fy; ψ1) + B2( fy, fy2 ; ψ1, ψ2) =

= B2
1( fx; ϕ1) + 2B1( fx; ϕ1) ◦ B1( fy; ψ1) + B2

1( fy; ψ1) =

= [B1( fx; ϕ1) + B1( fy; ψ1)]
2.

(10)

In the above formula, for the formal multiplication symbol ◦, we assume the definition
below

fxh ◦ fyk := fxhyk ; Bm
1 ( fx; ϕ1) = Bm( fx, . . . , fxm ; ϕ1, . . . , ϕm)

(and Bm
1 ( fy; ψ1) = Bm( fy, . . . , fym ; ψ1, . . . , ψm)) .

(11)

Therefore, we find the result [5].
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Theorem 1. Let f (x, y), ϕ(t), ψ(t) be analytical functions. The nth polynomial of the system
{B(2)n ( f ; ϕ; ψ)}n∈N, can be computed with the following rule

B(2)n ( f ; ϕ; ψ) = [B1( fx; ϕ1) + B1( fy; ψ1)]
n. (12)

By the Leibniz rule, we can write

Dn+1
t f (ϕ(t), ψ(t)) = Dn

t Dt f (ϕ(t), ψ(t)) =

= Dn
t [ fx ϕ1 + fy, ψ1] =

n

∑
k=0

(
n
k

)
Dn−k

t fx ϕk+1 +
n

∑
k=0

(
n
k

)
Dn−k

t fyψk+1.
(13)

Then, for the bivariate Bell polynomials, the recurrence relation holds

Theorem 2.

B(2)0 ( fx; ϕ; ψ) := fx; B(2)0 ( fy; ϕ; ψ) := fy;

B(2)n+1( f ; ϕ; ψ) =
n

∑
k=0

(
n
k

)[
B(2)n−k( fx; ϕ; ψ)ϕk+1 + B

(2)
n−k( fy; ϕ; ψ)ψk+1

]
.

(14)

4. LT of a 2-Variable Composed Function

Let f (ϕ(t), ψ(t)) be a composed function, analytic in a neighborhood of the origin, so
that it is expressed by the Taylor’s expansion:

f (ϕ(t), ψ(t))) =
∞

∑
n=0

an
tn

n!
, an = Dn

t [ f (ϕ(t), ψ(t)))]t=0 . (15)

According to the preceding equations, it results

a0 = f (
◦
ϕ0,

◦
ψ0) =

◦
f 0 ,

an = Dn
t [ f (ϕ(t), ψ(t)))]t=0 = B(2)n (

◦
f ;
◦
ϕ;
◦
ψ) , (n ≥ 1) ,

(16)

where

◦
f k := Dk

t f (x, y)|[x=ϕ(0),y=ψ(0)],
◦
ϕh= Dh

t ϕ(t)|t=0,
◦
ψh= Dh

t ψ(t)|t=0 , (17)

where fk denotes the kth derivative of the function f (x(t), y(t)) with respect to t.
Using the previous formulas we are able to approximate the calculation of the LT of

the function f (ϕ(t), ψ(t))) with that of a series of elementary LT of powers. In fact, we
have the following Theorem.

Theorem 3. Considering a composed function f (ϕ(t), ψ(t)), expressed by the Taylor’s expansion
in Equation (15), for its LT the following equation holds

∫ +∞

0
f (ϕ(t), ψ(t)) e−tsdt =

◦
f 0
s
+

∞

∑
n=1

[B1(
◦
f x;
◦
ϕ1) + B1(

◦
f y;
◦
ψ1)]

n 1
sn+1 . (18)

where the symbolic power in the above equation must be computed using the definitions in (11).
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Proof. Representing the coefficients of the Taylor expansion in (15) in terms of bivariate
Bell polynomials, and using the uniform convergence of series, we find

∫ +∞

0
f (ϕ(t), ψ(t)) e−tsdt =

◦
f 0
s
+
∫ +∞

0

∞

∑
n=1
B(2)n (

◦
f ;
◦
ϕ;
◦
ψ)

tn

n!
e−tsdt =

=

◦
f 0
s
+

∞

∑
n=1

[B1(
◦
f x;
◦
ϕ1) + B1(

◦
f y;
◦
ψ1)]

n
∫ +∞

0

tn

n!
e−tsdt .

Then, the result follows from elementary calculation of the LT of powers.

5. Examples
5.1. The Particular Case of Exponential Functions

We start considering the case of the nested exponential function

Example 1

• Let f (x, y) = ex+y and ϕ(t) = sin t; ψ(t) = −t.

Then, f (ϕ(t), ψ(t)) = exp(sin t− t), and for the relevant LT, using the above described
method, we find∫ +∞

0
esin t−t−tsdt =

1
s
− 1

s4 +
1
s6 +

10
s7 −

1
s8 −

56
s9 −

279
s10 +

246
s11 + O

(
1

s12

)
. (19)

The graphical display of our approximation is shown in Figures 1–3.

Figure 1. Distribution of l(t) = esin t−t and the relevant approximant l̃(t).

(a) (b)

Figure 2. Magnitude (a) and argument (b) of the Laplace transform of l(t) = esin t−t as evaluated
through the approximant L̃(s) and the rigorous analytical expression L(s).
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(a) (b)

Figure 3. Magnitude (a) and argument (b) of the Laplace transform of l(t) = esin t−t as evaluated
through the approximant L̃(s) and the rigorous analytical expression L(s) for s = 5 + i ω.

5.2. The General Case

Examples of the above method for approximating the LT of general nested functions
are reported in what follows.

5.2.1. Example 2

• Assuming f (x, y) = log(xy), ϕ(t) = (cosh t)10, ψ(t) =
1

1 + t
10

, we have f (ϕ(t), ψ(t)) =

log
[
(cosh t)10/(1 + t/10)

]
. By using the above described method, for the relevant

LT we find the approximation:

∫ +∞

0
log

[
(cosh t)10

1 + t
10

]
e−tsdt = − 1

10 s2 +
1001

100 s3 −
1

500 s4 −
99997

5000 s5 −
3

12500 s6 +

+
4000003
25000 s7 −

9
125000 s8 −

3399999937
1250000 s9 −

63
1562500 s10 + O

(
1

s11

)
.

(20)

The graphical display of our approximation is shown in Figures 4–6.

Figure 4. Distribution of l(t) = log

[
(cosh t)10

1 + t
10

]
and the relevant approximant l̃(t).
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(a) (b)

Figure 5. Magnitude (a) and argument (b) of the Laplace transform of l(t) = log

[
(cosh t)10

1 + t
10

]
as

evaluated through the approximant L̃(s) and the rigorous analytical expression L(s).

(a) (b)

Figure 6. Magnitude (a) and argument (b) of the Laplace transform of l(t) = log

[
(cosh t)10

1 + t
10

]
as

evaluated through the approximant L̃(s) and the rigorous analytical expression L(s) for s = 5 + i ω.

5.2.2. Example 3

• Assuming f (x, y) = cos
(

x + y
5

)
, ϕ(t) = sin t, ψ(t) = arctan t, we have f (ϕ(t), ψ(t)) =

cos([sin t + arctan t]/5). By using the above described method, for the relevant LT
we find the approximation:

∫ +∞

0
cos
(

sin t + arctan t
5

)
e−tsdt =

1
s
− 4

25 s3 +
616

625 s6 −
255814

15625 s7 +

+
259309656
390625 s9 −

472466309274
9765625 s11 + O

(
1

s13

)
.

(21)

The graphical display of our approximation is shown in Figures 7–9.
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Figure 7. Distribution of l(t) = l(t) = cos([sin t + arctan t]/5) and the relevant approximant l̃(t).

(a) (b)

Figure 8. Magnitude (a) and argument (b) of the Laplace transform of l(t) = cos([sin t + arctan t]/5)
as evaluated through the approximant L̃(s) and the rigorous analytical expression L(s).

(a) (b)

Figure 9. Magnitude (a) and argument (b) of the Laplace transform of l(t) = cos([sin t + arctan t]/5)
as evaluated through the approximant L̃(s) and the rigorous analytical expression L(s) for s = 5+ i ω.

6. Conclusions

We have shown a method for approximating the LT of a 2-variable composed function
f [ϕ(t), ψ(t)], where ϕ(t), ψ(t), 0 ≤ t < +∞, are analytic functions, by using the bivariate
Bell polynomials. Starting from the Taylor expansion in a neighborhood of the origin of the
function f [ϕ(t), ψ(t)], since the coefficients can be expressed in terms of the bivariate Bell
polynomials, the integral is reduced to the computation of an approximating series, which
obviously converges if the integral is convergent.

We, thus, showed that just as it was possible to approximate the LT of composed
functions using Bell polynomials [4], so it can be done for the LT of composed functions in
two variables, using the bivariate Bell polynomials, introduced in [5].
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In the last section, the proposed technique is checked in some particular cases, when
the transform and the anti-transform are known, proving the correctness of our results.

Extension could be made to higher nested functions by using the results in [4].
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