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1. Introduction

The Luria-Delbrück fluctuation assay is widely used to estimate mutation rates of
micro organisms such as bacterial cells. In very broad outline, several test tubes containing
a liquid nutrient medium are seeded with the same number N0 of normal-type cells. These
cells multiply by binary fission attaining the number Nt by time t. At this time the contents
of the test tube are ‘plated’ onto a solid substrate which is (almost) immediately lethal
for the normal cells. Some cells may have mutated during the growing phase into a
resistant type. Under ideal conditions they will form visible colonies on the lethal substrate.
Counting these colony numbers provides data which is used to determine the rate of
mutation intrinsic to the organism of interest.

Exactly how the data are used for this determination depends on the mathematical
model chosen to describe the dynamics of the situation. Various choices are available
and we refer to [1,2] for reviews and references. The Lea and Coulson [3] model and
its subsequent tweaks is the most widely used of those available. In its simplest form it
assumes the following occurs within each test tube.

(i) Normal cell numbers increase exponentially fast: Nt = N0eνt.
(ii) Mutation occurs randomly at a rate proportional to Nt. Specifically, there is a mutation

rate r (per unit time per bacterial cell) such that a mutation event occurs in the interval
(t, t + dt) with probability rNtdt + o(dt), i.e., a normal cell converts to a resistant type.
There is no mutation with probability 1− rNtdt + o(dt).

(iii) Mutation events create mutant clones which grows independently of each other
according to a linear birth process with split rate µ, i.e., a binary splitting or Yule
process. The relative growth rates of normal to mutant cells is denoted by γ = ν/µ.

These assumptions give rise to probability distributions for the total number Mt
of mutants at time t. The model implies that these distributions are infinitely divisible
(abbreviated infdiv), i.e., compound Poisson distributions [4]. Our aim in this paper is to
investigate the presence of deeper infdiv properties of mutant number distributions. More
specifically, are they generalised negative-binomial convolutions (GNBC’s)? The answer is
interesting in its own right, but a positive answer gives structural insight, in particular that
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such a distribution is unimodal and it provides criteria which determine if the associated
probability mass function is non-increasing or it has a positive mode.

Definitions and basic properties of positive infdiv distributions are reviewed in
Section 2. Useful subclasses of infdiv distributions are characterised by analytical proper-
ties of the density `(x) (defined for x > 0) of the Lévy measure (c.f. (1)). The subclass of
self-decomposable (SD) distributions is defined by requiring that x`(x) is non-increasing.
This class is significant because its members have a unimodal density function. A cor-
responding discrete version is defined, and they are unimodal too. In addition, precise
criteria exist which separate the cases of a non-increasing mass function (i.e., a mode at
the origin), or the smallest mode is positive. These notions are applied to models where
mutant clones grow as deterministic integer-valued functions.

The Lea-Coulson model described above can be generalised to allow normal cell
growth to be an arbitrary positive-valued function of time. The resulting mutant number
distribution is a mixture of Poisson distributions where the mixing distribution is a con-
tinuous infdiv distribution with the special property that `(x) is completely monotone.
Distributions having this property comprise the so-called Bondesson (BO) class. This notion
is introduced in Section 3, along with its discrete version. Details are provided for the
balanced (γ = 1) generalised Lea-Coulson model in which normal cell lines grow according
to the logistic (Pearl-Reed) population model.

The generalised gamma convolution (GGC) class of infdiv distributions comprise
the subset of BO distributions for which the product x`(x) is completely monotone. This
implies the inclusion GGC⊂SD, and hence GGC’s are unimodal. Poisson mixtures in
which the mixing distribution is a GGC comprise the class of generalised negative-binomial
convolutions (GNBC’s), and they too are unimodal. Relevant definitions and properties are
introduced in Section 4 where it is shown that a mutant number distribution arising from a
generalised Lea-Coulson model in which normal cell growth is non-decreasing is a GNBC.
This of course applies to the standard Lea-Coulson model as described above, and details
are presented in Section 4 together with precise criteria concerning the modal behaviour
of the mutant number distribution; see Theorem 5(a). The section ends with a discussion
of shapes of mutant number distributions selected by different estimation methodologies
applied to experimental data and also the preservation of the GNBC property when plating
efficiency is an issue.

It is often observed that mutations occur during the time of division of a normal cell.
This contingency is addressed by branching process descriptions of the Luria-Delbrück
set-up. Some details are provided in Section 5 for the two most common models, those due
to Haldane and Bartlett. Mutant number distributions for the Haldane model are not infdiv,
whereas they are infdiv for the Bartlett model. However, rather less can be ascertained
about fine infdiv properties for this model.

Finally, in Section 6 we determine infdiv and modal properties of mutant number
distributions arising from alternative models discussed by Kepler and Oprea [5], Angerer [6]
and Stewart et al. [7].

Some notation may have different definitions in different sections, but no confusion
should arise.

2. Infdiv Distributions and Deterministic Mutant Growth

In this section, we shall review necessary basic ideas of infinite divisibility and self-
decomposability and explore their (limited) applicability to the Lea-Coulson and Armitage
models in which mutant numbers are assumed to increase deterministically.

Let X be a non-negative random variable with distribution function (DF) F(x) and
Laplace-Stieltjes transform (LST)

F̂(ζ) = E
(

e−ζX
)
=
∫ ∞

0
e−ζxdF(x).
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If F(x) has a probability density function (pdf) f (x), then F̂(ζ) =
∫ ∞

0 e−ζx f (x)dx. Denote
the left-extremity of F by a = inf{x : F(x) > 0} and observe that a ≥ 0. Thus, F(x) = 0 if
x < a and F(x) > 0 if x > a. This quantity can be computed from the LST according to
a = limζ→∞[F̂(ζ)]1/ζ .

Each of the quantities X, F and F̂ are called infdiv if, for each t > 0, the function(
F̂(ζ)

)t
is the LST of a probability distribution. This implies that, for any positive integer n,

X can be expressed as a sum of random variables, X = ∑n
j=1 Xj,n, where the summands are

independent and they have the distribution determined by
(

F̂(ζ)
)1/n

. This encapsulates
the idea of infinite divisibility. It is the case that the sum of independent infdiv random
variables is itself infdiv.

An infdiv LST has a special canonical form

F̂(ζ) = e−c(ζ) where c(ζ) = aζ +
∫ ∞

0

(
1− e−xζ

)
λ(dx), (1)

where c(ζ) is called the Laplace exponent and λ(·) is a measure, called the Lévy measure,
which satisfies the conditions

λ({0}) = 0 and
∫ ∞

0
(x ∧ 1)λ(dx) < ∞.

This means that λ assigns a zero mass to the origin, it may assign infinite mass to any small
interval (0, ε) but it integrates x at the origin, and it assigns a finite mass to infinite intervals
(ε, ∞); here ε is an arbitrary positive number. Functions having the form (1) are called
Bernstein functions—see [8], the standard reference. Differentiation of c(ζ) shows that

E(X) = a +
∫ ∞

0
xλ(dx).

Many common distributions are infdiv: gamma, Pareto and log-normal, to mention
a few. For us the most important is the gamma family. We say that the random vari-
able γ(σ) has the standard gamma distribution with shape parameter σ > 0 if its pdf
is gσ(x) = xσ−1e−x/Γ(σ) if x > 0 and gσ(x) = 0 if x < 0. Here Γ(σ) =

∫ ∞
0 xσ−1e−xdx

denotes the gamma function (due to Euler); see [9]. The gamma pdf is decreasing in (0, ∞)
if σ ≤ 1 and it has a single positive mode at x = σ− 1 if σ > 1. The corresponding LST is
(1 + ζ)−σ, equivalently, c(ζ) = σ log(1 + ζ). We stress that infdiv laws can be multi-modal.

Remark 1. In many instances a = 0 but we will need the additional generality for subsequent
key definitions.

Suppose that Λ = λ((0, ∞)) < ∞. Then G(x) := Λ−1λ((0, x]) is a distribution
function and the Laplace exponent (1) can be written as

c(ζ) = aζ + Λ
(

1−
∫ ∞

0
e−ζxdG(x)

)
(2)

with the interpretation that

X d
= a +

NΛ

∑
i=1

Ji (3)

where the Ji are independent with DF G and NΛ is independent of the summands and it
has the Poisson distribution with (rate) parameter Λ (and denoted by Poisson(Λ)). Thus, X
is represented as a (Poisson) random sum of independent jumps Ji and it is said to have a
compound Poisson distribution. Conversely, any positive infdiv distribution can be realised
as the limit of a sequence of compound Poisson distributions.



Axioms 2022, 11, 584 4 of 29

An important sub-class of infdiv distributions is the class of self-decomposable (SD) dis-
tributions. This notion can be given three equivalent definitions but we concern ourselves
with the two which fit with our theme. The definition which explains the terminology is
that X has a SD distribution if it has the autoregressive representation that, for any constant
c ∈ (0, 1), there is a random variable Xc independent of X such that

X d
= cX + Xc. (4)

This says that if X is scaled down to cX, then the distribution of X can be recovered
by adding an independent ‘error’ Xc. Thus, the right-hand side represents the ‘self-
decomposition’ of X. This definition can be expressed in terms of the LST F̂(ζ) of X
as the assertion that X has a SD distribution if, for each c ∈ (0, 1), the quotient F̂(ζ)/F̂(cζ)
is completely monotone, and hence is the LST of a random variable, Xc say.

It can be proved that a SD distribution is absolutely continuous and infdiv. (In addition,
the ‘error’ term Xc is infdiv.) The Lévy measure takes a special form which characterises
SD distributions and which sometimes is adopted as the definition of this concept. We shall
do likewise with the following formal definition refining (1).

Definition 1. An infdiv distribution is SD if its Lévy measure λ has a density,

λ(dx) = `(x)dx = x−1k(x)dx,

where k(x) is non-increasing in (0, ∞). The regularity properties of λ then require that∫ 1

0
k(x)dx < ∞ and

∫ ∞

1
x−1k(x)dx < ∞.

It follows that E(X) = a +
∫ ∞

0 k(x)dx.

Example 1. The integral representation

log(1 + ζ) =
∫ ∞

0

(
1− e−ζx

)
e−xdx/x, (5)

(just differentiate each side) implies that the gamma(σ) distribution is SD with k(x) = σe−x.

The following fact is important.

Fact 1. (a) Sums of independent SD random variables are SD.
(b) If F is the DF of a SD distribution, then it has a pdf f which solves the integral equation

x f (x) =
∫ x

0
f (x− y)k(y)dy, (x > 0). (6)

This pdf is unimodal, and if k(0+) ≤ 1, then it is non-increasing with a mode at zero. If k(0+) > 1,
then f is bounded. In addition, with b := sup{x > 0 : k(x) ≥ 1}, there is a mode in the interval
[b, E(X)].

See [10] (pp. 408, 409) for the modality assertions, and more.

Remark 2. The integral Equation (6) has a wider applicability than is indicated by Fact 1. Specifi-
cally, if f (x) is a pdf for which there exists a function k(x) such that (6) holds, then f is infdiv iff
k(x) ≥ 0. See [11] (p. 95) for an even more general account.

Since members of the class of SD distributions have an absolutely continuous DF, we
may wonder about discrete analogues of this concept. Suppose that X is infdiv and it can
take only non-negative integer values, i.e., it is discrete infdiv. Then it necessarily has a
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compound Poisson distribution with positive integer jumps. Ji. Denoting the PGF of the
jump distribution by h(s) = E(sJi ), the general form (2) becomes

M(s) =
∞

∑
j=0

pjsj := E(sX) = exp[−Λ(1− h(s))], (7)

where the notation on the left-hand side anticipates the application of these concepts
to mutant number distributions. Here we understand that h(0) = 0, i.e., there are no
zero-sized jumps.

Writing the jump PGF as h(s) = ∑∞
j=1 hjsj, then setting s = e−ζ in (7) and comparing

the result with (1) (with a = 0) makes it clear that the Lévy measure inherent in (7) assigns
mass λj = Λhj to integers j = 1, 2, . . . . Hence the total mass of the Lévy measure is
Λ = ∑j≥1 λj.

It is often convenient to express the PGF M in the form

M(s) = exp
(
−
∫ 1

s
R(u)du

)
(8)

noting then that logarithmic differentiation of (7)/(8) yields M′(s) = M(s)R(s) with

R(s) =
∞

∑
j=0

rjsj and rj := (j + 1)λj+1. (9)

We thus obtain the discrete analogue of (6),

(j + 1)pj+1 =
j

∑
i=0

pj−iri. (10)

Remark 3. The sequence (rj) is called the canonical sequence, or r-sequence, of the infdiv dis-
tribution (pj). In fact, for any discrete distribution there is a sequence (rj) such that (10) holds.
An essential fact here is a theorem of Katti [12] asserting that (pj) is infdiv iff its r-sequence is
non-negative. See [11] (p. 36). This result has subsequently been ‘re-discoverd’, e.g., [13] and [14]
(p. 174).

Many specific discrete distributions discussed in this paper arise as Poisson mixtures
where the mixing distribution is infdiv, i.e.,

M(s) = E
(

e−X(1−s)
)

, (11)

where X is infdiv with Laplace exponent (1). Hence

− log M(s) = a(1− s) +
∫ ∞

0

(
1− e−x(1−s)

)
λ(dx).

Thus the shift term aζ in (1) induces a Poisson(a) component in the discrete mixture.
Manipulation of the integral will show that M(s) has the compound Poisson form (7) with

Λ =
∫ ∞

0

(
1− e−x)λ(dx) and λj =

1
j!

∫ ∞

0
xje−xλ(dx), (j ≥ 1). (12)

A result of Holgate [15] asserts that if the mixing distribution is unimodal (infdiv, or not),
then the Poisson mixture is unimodal.

The next definition is suggested by Definition 1.

Definition 2. The discrete compound distribution (pj : j ≥ 0) is called discrete self-decomposable
(DSD) if its r-sequence (rj : j ≥ 0) is non-increasing.
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Thus, the Poisson(Λ) distribution is DSD because r0 = Λ and rj = 0 if j ≥ 1 and the
general mixture (12) is SDS if λ((1, ∞)) = 0.

The auto-regressive characterisation (4) of (continuous) SD distributions has the follow-
ing analogue. The characterisation (4) of SD distributions involves multiplying a random
variable by the constant c to give a product smaller than X. If X is discrete, then this cannot
be done in a way which gives an integer-valued product. Binomial thinning is an analogue
which addresses this issue: Define a ‘discrete product’ as follows. Let p ∈ [0, 1] and

p� X :=
X

∑
j=1

Ij,

where the summands are independent with the Bernoulli(p) distribution and they are
independent of X. Thus, E[p� X] = pE(X), and the PGF of the product is

E(sp�X) = M(1− p + ps).

This product concept is due to the authors of [11]; see p. 495 for the original reference.

Definition 3. The discrete random variable X has a DSD distribution if, for each p ∈ (0, 1), there
is a discrete random variable Xp such that

X d
= p� X + Xp,

where the summands on the right-hand side are independent. Equivalently, the quantity M(s)/
M(1− p + ps) is a PGF.

Fact 2. A DSD distribution is unimodal. Its mass function (pj) is non-increasing iff r0 = λ1 =
p1/p0 ≤ 1.

Remark 4. Fact 2 imparts useful qualitative information about the general shape of the mass
function of a DSD distribution. If p0 > p1, then p0 > pj ≥ pj+1 for all j ≥ 1; the mass function
is non-increasing. If p0 < p1, then the modal value is positive and it may not be unique. See
Discussion 1.

We now consider two models in which normal cells and mutation occur as in §1 and in
which mutant clones grow deterministically with sizes having integer values. The first such
model was introduced by Lea and Coulson [3] who derived some approximate results for
it. Armitage [16] gave it a more careful consideration. More detail is provided by Crump
and Hoel [17], who identify it as their D/D1 model. The survey [1] names it the discretised
Luria-Delbrück formulation and the treatment there probably is the most detailed.

Zheng’s term captures the central conception that at time t after its formation, the size
of a mutant clone is

K = K(t) =
[
eµt],

where [·] denotes the ‘integer part of’. He shows that the PGF of Mt is given by

− log M(s, t) = m− θ

[
K−1

∑
j=1

(
j−γ − (j + 1)−γ

)
sj +

(
K−γ − e−νt)sK

]
, (13)

where

m = m(t) = (rN0/ν)
(
eνt − 1

)
, θ = θ(t) = (rN0/ν)eνt and γ = ν/µ.

Theorem 1. The mutant number distribution is DSD, hence unimodal, if
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(a) K = 1 (equivalently, νt < γ log 2), in which case its mass function is non-increasing iff
m ≤ 1; i.e.,

νt ≤ log(1 + ν/rN0);

or if

(b) K ≥ 2 and γ ≥ γ∗ ≈ 0.3663, in which case its mass function is non-increasing iff
θ(1− 2−γ) ≤ 1, i.e.,

νt ≤
[

log
ν/rN0

1− 2−γ

]+
.

Proof. It follows from the definition of K that eµt = K + δ, where δ ∈ [0, 1) is the fractional
part of eµt. Hence e−νt = (K + δ)−γ.

Substituting into (13) and with reference to (8), a differentiation yields the evaluations

rj =


θ(j + 1)((j + 1)−γ − (j + 2)−γ) i f j = 0, . . . K− 2,
θK(K−γ − (K + δ)−γ) i f j = K− 1,
0 i f j ≥ K.

If K = 1, then the sum term in (13) vanishes and Mt has a Poisson distribution with
parameter m and Assertion (a) is known.

Suppose that K ≥ 2. The general form of the r-sequence is rj = θψγ(j + 1), where

ψγ(x) = x
(

x−γ − (x + 1)−γ
)
= x−(γ−1)

(
1−

(
x

x + 1

)γ)
(14)

which clearly is decreasing in (0, ∞) if γ ≥ 1.
If 0 < γ < 1, then this representation of ψγ is not informative because now the first

factor is increasing. Instead, computation of −ψ′γ(x) and letting u = x−1 ∈ (0, 1] will show
that the sign of −ψ′γ coincides with that of

σ(u) = σ+(u)− σ−(u) :=
(

1− γ

1 + u

)
− (1− γ)(1 + u)γ.

Clearly σ±(0) = 1− γ and σ′+(0) = γ > σ′−(0) = (1− γ)γ. Hence σ(u) > 0 in a small
interval (0, ε). Both of σ± are concave-increasing and hence they can achieve equality in
(0, 1] for at most one value of u.

Numerical calculation shows that σ+(1) = σ−(1) if γ = γ∗ specified in the assertion,
and that σ+(1) > σ−(1) if γ > γ∗. It follows that ψγ(x) is decreasing in [1, ∞) iff γ ≥ γ∗.
Consequently, rj > rj+1 if j = 0, . . . , K− 2. In addition

rK−1 < θK
(
K−γ − (K + 1)−γ

)
= rK−2.

Hence the r-sequence is non-increasing if γ ≥ γ∗, and Assertion (b) follows from Fact 2.

The case γ ≥ 1 covers the biologically more likely situation in which mutant clones
grow no more quickly than normal clones. Theorem 1 fails if γ is sufficiently close to zero.
Numerical calculation shows that there is a critical value γ0 ≈ 0.284 such that r0 < r1
(resp. >) if γ < γ0 (resp. >). In other words, the modal value of the r-sequence jumps from
zero to unity at γ = γ0. There is a similar jump from 1 to 2 at a critical value γ = γ1 ≈ 0.179.
These outcomes suggest the existence of a sequence of critical values γi ↓ 0 as i ↑ ∞ at
which the modal value of the r-sequence jumps from i to i + 1. In addition, it suggests that
Assertion (b) is valid if γ > γ0.

The second model we consider derives its deterministic growth character from assum-
ing that mutant cells have a fixed lifetime of duration L at the end of which they divide.
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Thus, a clone has size 2j during the interval [jL, (j + 1)L) since its inception. In order that
mutant clones achieve splitting rate µ, we choose L such that Lµ = log 2, i.e., Lν = γ log 2.

This model with γ = 1 was introduced in [17] where it is designated as the D/D2
model. The expression (11) in this reference for the mutant number PGF is valid for γ > 0
and, with our notation, it is

− log M(s, t) = −m + θ
K−1

∑
j=0

2−j−1s2j
+ s2K

(
2−K − e−νt

)
, (15)

where m and θ are the above time-dependent parameters and now K = [t/L]. We have the
following result.

Theorem 2. The mutant number distribution specified by (15) is DSD, and hence unimodal if

(a) t < L, in which case the mass function is non-increasing iff m ≤ 1, i.e.,

γt ≤ log(1 + ν/rN0)

log 2
,

or if
(b) t ≤ L < 2t and γt ≤ 2L, in which case its mass function is non-increasing iff θ ≤ 2, i.e.,

γt ≤ L log(ν/rN0).

(c) The mutant number distribution is not SD otherwise.

Proof. If t < L, then K = 0 and no mutant has reproduced. Thus, Mt equals the number of
mutations during (0, t] and hence it has a Poisson(m) distribution. Assertion (a) follows.

If L ≤ t < 2L, then K = 1 and it follows from (15) that∫ 1

s
R(u)du = −m + θ

(
1
2 s + s2( 1

2 − e−νt)
)

,

i.e., r0 = θ/2, r1 = θ
(
1− 2e−νt), and rj = 0 if j ≥ 2.

Now
e−νt = e−(γt/L) log 2 = 2−γt/L.

Hence r1 = θ
(

1− 21−γt/L
)

, and Assertion (b) follows.
If K ≥ 2, then 0 = r3 < r2, r4, and hence Mt is not SD.

3. Bondesson Classes and the Generalised Lea-Coulson Model

In this section, we introduce the first of two special classes of infdiv distributions. The
history of these notions is that the Swedish actuary/mathematician Olaf Thorin introduced
in 1977/78 distributions now called Generalised Gamma Convolutions (GGC’s) with the
specific purpose of proving that Pareto and lognormal distributions are infdiv. Subsequently
many other distributions conjectured to be infdiv have been proved to be so by showing
they are GGC’s. A nett benefit of this is that GGC’s are SD and hence unimodal. It follows
then from Holgate’s theorem that Poisson mixtures of GGC’s are unimodal too. Lennart
Bondesson introduced in 1981 the larger class of infdiv distributions which we review in this
section. Detailed accounts of these topics are [18], ([11], Chapter VI) and [8] (Chapters 6–9).

We begin as follows. Let G be a DF on [0, ∞) and define a mixture of exponential
distributions by

f (x) =
∫ ∞

0
le−lxdG(l).
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Clearly f is a pdf and the corresponding LST is

F̂(ζ) =
∫ ∞

0

l
l + ζ

dG(l).

Definition 4. A function F is the DF of a mixture of exponential distributions (written F ∈ ME) if

F̂(ζ) = α + (1− α)
∫ ∞

0

l
l + ζ

dG(l),

where α ∈ [0, 1] and G is a DF on (0, ∞).

Fact 3. (a) If X has the DF F ∈ ME, then X d
= εY, where ε has an exponential distribution and

Y ≥ 0 is independent of ε.
(b) If F ∈ ME, then it is infdiv.
(c) The DF F ∈ ME iff

− log F̂(ζ) =
∫ ∞

0

ζ

y(y + ζ)
b(y)dy, (16)

where b(y) is a (measurable) function on (0, ∞) satisfying

0 ≤ b(y) ≤ 1 and
∫ 1

0
y−1b(y)dy < ∞. (17)

It follows from Example 1 that the Lévy density of the gamma(σ) distribution is
`(x) = (σ/x)e−x and, in particular, that it is completely monotone. This motivates the
following definition of the class BO of distributions named after Lennart Bondesson.

Definition 5. An infdiv DF F belongs to the Bondesson class (written F ∈ BO) if its Lévy measure
has a completely monotone density,

`(x) =
∫ ∞

0
e−xyB(dy), (18)

where B is a measure (the Bondesson measure) satisfying
∫ ∞

0

(
y−1 ∧ y−2)B(dy) < ∞.

Fact 4. (a) If F ∈ BO, then its Laplace exponent has the form

c(ζ) = aζ +
∫ ∞

0

ζ

y(y + ζ)
B(dy), (19)

where B is a Bondesson measure.
(b) The class BO is the smallest set of distributions containing ME and which is closed under

convolution and weak limits.

There is a clear similarity of the cumulant functions (16) and (19) with a = 0. This is
not mere coincidence.

Fact 5. If F ∈ BO, then F ∈ ME iff a = 0 and B(dy) = b(y)dy, where b satsfies (17).

Definition 6. The discrete random variable X has a geometric mixture distribution if its PGF has
the form

M(s) = E
[

1−Π
1−Πs

]
,

where Π is a random variable satisfying P(0 < Π < 1) = 1.
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If C = Π/(1 − Π) is independent of the random variable ε which has a unit ex-
ponential distribution, then it follows from the mixture representation of the geometric
distribution that

1−Π
1−Πs

= E
(

e−εC(1−s)|C
)

.

The product εC is infdiv, hence any geometric mixture is compound-Poisson.

We now introduce a discrete version of BO; the class BOP of Poisson mixtures with
mixing distribution in BO. We will see that mutant number distributions arising from a
generalisation of the Lea-Coulson model (below) and from the Bartlett model (Section 5)
live in BOP.

Definition 7. The discrete distribution (pj) belongs to BOP if its PGF M(s) = exp(−c(1− s)),
where c(ζ) is the Laplace exponent of F ∈ BO.

The following fact arises fairly readily from (19) and Definition 7.

Fact 6. (a) The discrete infdiv distribution (pj) ∈ BOP iff (λj+1 : j = 0, 1, . . . ) is a Hausdorff
moment sequence; specifically,

Λ = a +
∫ ∞

0
[y(1 + y)]−1B(dy) and λj = aδj,1 +

∫ ∞

0
(1 + y)−j−1B(dy).

(b) A distribution in BOP is a mixture of geometric distributions if B(dy) = b(y)dy and
0 ≤ b(y) ≤ 1.

Remark 5. The substitution u = (1 + y)−1 will make clear that (λj+1) really is a Hausdorff
moment sequence. For example, if B has a density b(y), then

λj+1 =
∫ 1

0
uj[aδ0(du) + b

(
u−1 − 1

)
]du, (20)

where, in general, δρ denotes the measure which assigns unit mass to the real number ρ and zero
mass to any interval not containing ρ. The representation asserted in Fact 6 often is more convenient
for our purposes.

Remark 6. In the most general situation, the fact that jump probabilities hj of a compound Poisson
distribution comprise a non-increasing sequence implies little about the modal properties of (pj).
For example, if X has the Poisson(h1) and Y/2 the Poisson(h2) distributions, respectively, and X
and Y are independent, then X + Y has at least two modes, one at j = 0 and the other at j ≥ 2, if
0 < h2 < h1 < 1 and 1

2 h1 + h2 > 1. For example, if h1 = 0.9 and h2 ∈ [0.6, 0.9).

By definition a generalised Lea-Coulson model admits any (measurable) deterministic
growth function N(t) of normal type cells. Replacing the exponential form Nt with N(t)
in the specification of §1 yields a compound Poisson distribution for mutant numbers Mt
whose Lévy masses are

λj = r
∫ t

0

(
1− e−µv)j−1e−µvN(t− v)dv, (j ≥ 1) (21)

and

Λ =
∞

∑
j=1

λj = r
∫ t

0
N(v)dv.

These outcomes are well-known and they follow from the order statistics property of
Poisson processes. See [19] for what seems the earliest and most general formulation. A
later independent account specifically for the Luria-Delbrück context is in [17], and the
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model is reviewed in [1]. This generalised Lea-Coulson model can also be regarded as a
branching process with inhomogeneous immigration. The branching component comprises
the independently growing mutant clone birth processes and immigrants comprise the
inhomogeneous Poisson process of mutations. See [20] for a review of this topic.

We have the following general result.

Theorem 3. Let t > 0. The mutant number distribution of the generalised Lea-Coulson model is a
BOP distribution whose Bondesson measure has the density

b(y, t) = (r/µ)N
(

t + µ−1 log
y

1 + y

)
H(y− (φ−1 − 1)),

where φ = 1− e−µt and H(x) = x+ is the Heaviside unit step function.

Proof. Just make the substitution 1 + y = 1/(1− e−µv) in (21) and refer to Fact 6 to obtain
the desired moment representation, λj+1 =

∫ ∞
0 (1 + y)−j−2b(y, t)dy. The resulting infinite

integral does converge because it equals the integral (21). Alternatively, observe that
b(∞−, t) = (r/µ)N(t) and limy→φ−1−1 b(y, t) = (r/µ)N(0), implying that the regularity
conditions in Definition 5 always are satisfied.

For computational purposes it is more convenient to shift the integration variable in
Fact 6 to obtain

λj = (r/µ)
∫ ∞

φ−1
y−j−1β(y, t)dy (22)

and the corresponding Lévy density

`(x) = (r/µ)ex
∫ ∞

φ−1
e−xyβ(y, t)dy, (23)

where
β(y, t) = N

(
t + µ−1 log(1− y−1

)
, (φ−1 ≤ y < ∞). (24)

Remark 7. Substituting, again, u = y−1 in (22) and (24) gives the ‘explicit’ moment representation

λj+1 = (r/µ)
∫ φ

0
ujN(t + µ−1 log(1− u))du.

Hence the representing measure for any mutation number distribution derived from a generalised
Lea-Coulson model has the time-dependent support [0, φ] ⊂ [0, 1].

This moment relation yields the fundamental relations

Λ(s) =
rs
µ

∫ φ

0

N(t + µ−1 log(1− u)
1− us

du, (25)

and hence

− log M(s, t) = Λ−Λ(s) =
r(1− s)

µ

∫ φ

0

N(t + µ−1 log(1− u)
(1− u)(1− us)

du, (26)

and
`(x) =

r
µ

ex
∫ ∞

φ−1
e−xyN

(
t + µ−1 log(1− y−1)

)
dy. (27)

Example 2. Suppose that normal cells increase in number as a logistic growth model with carrying
capacity K > 0. Thus,

N′(t) = νN(t)(1− N(t)/K) (28)
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whose well known solution is

N(t) =
N0eνt

1 + (N0/K)(eνt − 1)
. (29)

Hence, for the balanced case, µ = ν, some manipulation yields

N(t + µ−1 log(1− u)) =
BK(1− u)

1− Bu
,

where

B =
eνt

(K/N0)− 1 + eνt .

We assume that N0 < K, implying that N(t) < K, B < 1 and limK→∞ BK = N0eνt.
Substitution into (27) leads to the explicit form

`(x) = (r/ν)BKex
[

x−1e−x/φ − (1− B)eBxE1

(
(φ−1 − B)x

)]
, (30)

where E1(x) =
∫ ∞

x y−1e−ydy is the exponential integral; see [9] (# 6.2.1).
Define θK = (r/µ)BK. The integrand of (26) resolves into partial fractions:

− log M(s, t) = θK
1− s
B− s

∫ φ

0

(
−s

1− us
+

B
1− uB

)
du

= θK
1− s
B− s

[log(1− φs)− log(1− φB)].

It follows that
Λ = (θK/B)(− log(1− φB))

and
Λ(s) =

θK
B− s

[−(1− s) log(1− φs)− (1− B)(s/B) log(1− φB)].

We obtain expressions for the Poisson rates as follows.
Writing

−(1− s/B)−1 log(1− φs) =
∞

∑
j=1

τjsj,

leads to

τj = B−j
j

∑
i=1

(Bφ)i

i
, (j ≥ 0)

where, as usual, ∑0
i=1(·) = 0. It follows that

λj = (θK/B)
[
τj − τj−1 + (1− B)B−j log(1− φB

]
. (31)

The power series expansion of the logarithm term yields the form

λj = θK

[
φj

j
− (1− B)

φj+1

j + 1
− Rj(K)

]
,

where

Rj(K) = (1− B)B−j
∞

∑
i=j+2

(φB)i

i
= O(B2).

Letting K → ∞, recalling that B → 0 and noting that θK → (r/ν)N0eνt recovers the balanced
Lea-Coulson model which we will consider in more detail in the next section.
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4. Thorin Classes and the Lea-Coulson Model

We now introduce the above mentioned GGC class of infdiv distributions which are
pertinent to a significant subclass of generalised Lea-Coulson models. We motivate the
general definition by observing that, given independent gamma random variables γ(σi)
(i = 1, . . . , n) and constants ci > 0, it follows from (5) that the Laplace exponent of the sum
X = ∑n

i=1 c−1
i γ(σi) can be expressed as

cn(ζ) = aζ +
n

∑
i=1

σi(log(ζ + ci)− log ci) = aζ +
∫ ∞

0
(log(ζ + y)− log y)Un(dy), (32)

where Un is a measure which assigns mass σi to the point ci. It follows from Fact 1(a) that
X is SD.

The SD class is closed under limits in distribution so, taking the informal limit n→ ∞
in (32) yields a putative limiting Laplace exponent

c(ζ) = aζ +
∫ ∞

0
(log(ζ + y)− log y)U(dy). (33)

This does specify a SD distribution for any measure U on (0, ∞) satisfying∫ 1

0+
(log y−1)U(dy) < ∞ and

∫ ∞

1+
y−1U(dy) < ∞. (34)

Definition 8. A distribution whose Laplace exponent has the form (33) where a ≥ 0 and U is a
measure on (0, ∞) subject to (34) is called a generalised gamma convolution (GGC). A function of
the form (33) is called a Thorin Bernstein function. An equivalent specification is that the class of
GGC’s is the smallest which contains scaled gamma distributions and is closed under convolution
and weak limits.

The representing measure U in (33) is often called the Thorin measure and we define
the Thorin distribution function T(y) = U((0, y]).

Fact 7. (a) A GGC is a SD distribution for which the function k is completely monotone, x`(x) =
k(x) =

∫ ∞
0 e−xyU(dy).

(b) Any GGC has a unimodal pdf f .
(c) A GGC belongs to BO and its Bondesson measure is absolutely continuous with density

b(y) = T(y).

We motivate a discrete version of GGC′s by observing that the best known case of a
Poisson mixture (12) is where X = γ(σ)/c, c a positive scaling constant, giving

M(s) =
(

1 + c−1(1− s)
)−σ

=

(
1− p
1− ps

)σ

,

where p = (1+ c)−1 ∈ (0, 1). Hence this gamma-mixed Poisson distribution is the negative
binomial distribution with parameters p and σ, denoted NB(p, σ). The case σ = 1 of course
is a geometric distribution whose mixing distribution is an exponential one. The following
definition extends this idea.

Definition 9. A Poisson mixture distribution is a generalised negative-binomial convolution
(GNBC) if the distribution of the mixing random variable X is a GGC as defined above.

A calculation using Fact 7 gives



Axioms 2022, 11, 584 14 of 29

Fact 8. (a) the PGF of a GNBC has the canonical form

M(s) = exp
(
−a(1− s)−

∫ 1−

0+
log

1− u
1− us

dV(u)
)

, (35)

where V is a right-continuous function on (0, 1) such that V(1−) = 0,∫
(0, 1

2 )
udV(u) < ∞ and

∫
( 1

2 ,1)
log
(
(1− u)−1

)
dV(u) < ∞.

(b) The r-sequence (c.f. (9)) is a Hausdorff moment sequence,

rj = aδj0 +
∫ 1

0
uj+1dV(u).

Conversely, if the r-sequence of a DID distribution has this moment representation, then it is
a GNBC.

(c) The GNBC class is the smallest class of discrete distributions which contains negative-binomial
distributions and is closed under convolution and weak limits.

(d) A GNBC is discrete unimodal and its mass function is non-decreasing iff λ1 = a+
∫ 1

0 udV(u) ≤ 1.

Remark 8. Since the shift constant a in (33) induces a Poisson(a) component in (35), the left-
extremity of a GNBC always is zero. Assertion (d) follows from Fact 7(b) and Holgate’s theorem [15],
and then Fact 2 observing that r0 = λ1.

The following fact gives a canonical representation for a mixture of geometric distribu-
tions and a condition that it be a GNBC; [11] (pp. 381, 390).

Fact 9. (a) A function M defined on [0, 1] is the PGF of a geometric mixture distribution iff it
has the form

M(s) = exp
[
−
∫ 1

0

(
1

1− u
− 1

1− us

)
w(u)du/u

]
(36)

where w is a (measurable) function on (0, 1) such that

0 ≤ w(u) ≤ 1 and
∫ 1

1
2

(1− u)−1w(u)du < ∞.

(b) A GNBC PGF (35) is the PGF of a geometric-mixture distribution iff a = 0 and its represent-
ing function V satisfies −V(0+) ≤ 1, in which case w(u) = −V(u).

Referring to (35), we will later need a general relation between the function V and the
Thorin measure U of the mixing GGC distribution. The following result achieves this in
terms of the Thorin distribution function T(x).

Theorem 4. The function T(x) is the right-continuous version of −V
(
(1 + x)−1).

Proof. The integral in (33) can be written as the Stieltjes integral

c(ζ) =
∫ ∞

0
log(1 + ζ/x)dT(x). (37)

It follows from the first member of (34) that for any x, ε ∈ (0, 1) we can choose δ ∈ (0, 1)
such that

(1 + δ)(log x−1)T(x) <
∫ x

x1+δ
log y−1dT(y) < ε.

Hence limx→0(log x−1)T(x) = 0.
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Next, it follows from the second member of (34) that there exists x′ > 1 such that if
x > x′, then

(2x)−1T(x) ≤
∫ 2x

x
y−1dT(y) < 1

2 ε,

implying that limx→∞ x−1T(x) = 0.
Observing that the integrand in (37) is asymptotically proportional to log x−1 as x → 0,

and to x−1 as x → ∞, it follows from an integration by parts that

c(ζ) =
∫ ∞

0

ζ

(x + ζ)x
T(x)dx.

In a similar manner, it follows from (35) with a = 0 that the PGF of the corresponding
GNBC is

− log M(s) = −
∫ 1

0

1− s
(1− u)(1− us)

V(u)du.

The left-hand side equals c(1− s) and a computation shows that − log M(1− ζ) reduces to
a Stieltjes integral as above with T as asserted.

Recall the expression (22) for the Lévy masses λj pertaining to the generalised Lea-
Coulson model. A very natural condition on the growth function N(t) of normal cells
implies that mutation number distributions are GNBC’s.

Theorem 5. Assume that the normal cell growth function N(t) is non-decreasing. Fix t > 0. Then:

(a) The distribution of Mt is a GNBC and hence unimodal. Its mass function is non-increasing iff

λ1 = e−µt
∫ t

0
eµvN(v)dv ≤ 1.

(b) The Lévy density `(x, t) of the mixing GGC is given by

x`(x, t) =
∫ ∞

0
e−xydyT(y, t) (38)

where the Thorin distribution function is

T(y, t) = (r/µ)N
(

t + µ−1 log
y

1 + y

)
H(y− (φ−1 − 1)). (39)

(c) The canonical form of the PGF of Mt is

M(s) = exp
[
−
∫ 1

0
log

1− u
1− us

dV(u, t)
]

,

where

−V(u, t) =

{
(r/µ)N(t + µ−1 log(1− u)) i f 0 ≤ u < φ,
0 i f φ ≤ u ≤ 1.

(d) The mutant number distribution is a geometric mixture iff rN(t) ≤ µ.

Proof.

(a) Observe that β(y, t) is non-decreasing in y and that, since β(∞−, t) < ∞, it follows
from (22) that

rj = (j + 1)λj+1 = −(r/µ)
∫ ∞

0
β(y, t)dyy−(j+1) = (r/µ)

∫ ∞

0
y−(j+1)dβ(y, t),
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a Hausdorff moment. The GNBC assertion follows from Fact 8(b). The unimodality
assertions follow from Fact 8(d).

(b) With T(y, t) defined as above, observe that the representation (23) yields

x`(x) = x
∫ ∞

0
e−xyT(y, t)dy = −

∫ ∞

0
T(y, t)dye−xy,

whence (38).
(c) Observe that a = 0 in (35) and the form of V(u, t) follows from Theorem 4 expressed

as −V(u, t) = T(u−1 − 1) and (39). Assertion (d) follows from Fact 9(b) and noting
that V(0+, t) = (r/µ)N(t).

Remark 9. It follows from (20) and the hypothesis of Theorem 5 that λ1 is an increasing function
of t. Clearly λ ≤ 1 if t is sufficiently small in which case the mutant number mass function will be
non-increasing. It attains a positive maximum value if λ1 eventually exceeds unity.

The logistic differential Equation (28) implies that if N0 < K, then its solution is
strictly increasing. It follows that the corresponding mutant number distribution is a GNBC.
However, except for the balanced case γ = 1 it does not seem that the integrals (26) and (27)
can be evaluated in any insightful way. In the balanced case we now know that the Lévy
density (30) is such that x`(x) is completely monotone. The following direct demonstration
of this fact yields its Thorin function T(y, t).

Integration by parts shows that E1(x) = x−1(e−x −ω(x)), where ω(x) =
∫ ∞

1 v−2e−xvdv
is completely monotone. Substitution into (30) leads to

x`(x) = θK

[
1− φ

1− φB
e−x(φ−1−1) +

1− B
φ−1 − B

ex(1−B)
∫ ∞

1
v−2e−(φ

−1−B)xvdv
]

.

The substitution y = (φ−1 − B)v− (1− B) exhibits x`(x) as the sum of two completely
monotone functions:

x`(x) = θK

[
1− φ

1− φB
e−x(φ−1−1) + (1− B)

∫ ∞

φ−1−1

e−xy

(y + 1− B)2 dy
]

.

Comparing this with (38) we see that

dyT(y, t) = θK

[
1− φ

1− φB
δφ−1−1(dy) +

1− B
(y + 1− B)2 H

(
y− (φ−1 − 1)

)
dy
]

.

Thus the Thorin measure has a discrete component - a point mass at y = φ−1 − 1 and its
support is independent of K.

In the remainder of this section we restrict consideration to the Lea-Coulson [3] model
described in §1 and give a self-contained treatment starting from (26). Taking N(t) = N0eνt

we thus obtain

− log M(s, t) = θ(1− s)
∫ φ

0

(1− u)γ−1

1− us
du, (40)

where
γ = ν/µ, θ = θ(t) = (r/µ)N0eνt and φ = φ(t) = 1− e−µt. (41)

In the sequel we usually suppress the time dependence, thus regarding the distributions
determined by (40) as a parametric family determined by (θ, φ, γ) where φ ∈ (0, 1) and
θ, γ > 0.

Expressions equivalent to (40) appear first in [21]. Sometimes [22] is coupled with
this reference because, independently, a system of differential equations for the mass
function of Mt is derived, generalising the system in [3] for the case γ = 1, and deducing a
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numerical solution scheme. The integral in (40) has no simple evaluation except perhaps
for γ = 1, 2, . . . .

In fact, if γ = 1, then evaluation gives the familiar outcome

MLD(s) = (1− φs)θ(1−s)/s. (42)

This PGF appears for the first time in [16] (p. 10) as a result of solving the linear first-
order partial differential equation derived in [3]. Zheng [1] denotes the corresponding
distribution by LD(θ, φ) where the LD letter designation is chosen to honour the pioneering
contribution of Salvador Luria and Max Delbrück.

Frequently in laboratory situations the product µt is so large that φ ≈ 1 and it is
argued that the form (42) is approximated by

MLC(s) = (1− s)θ(1−s)/s. (43)

This is a PGF as can be deduced from the explicit time-dependent LD(θ(t), φ(t)) distribu-
tions by allowing µt → ∞ (implying φ(t) → 1) and r → 0 such that θ(t) → θ ∈ (0, ∞); a
kind of Poisson approximation. Zheng [1] (and others before him) name the distribution
corresponding to (43) after Lea and Coulson because they derive (43) by using a clever
manipulation to solve their partial differential equation. It is denoted by LC(θ) and thus
coincides with LD(θ, 1). The solution (42) satisfies M(s, 0) = 1, reflecting the assumption
(and laboratory situation) that M0 = 0. The LC solution does not satisfy this initial condi-
tion, but it has an interesting form-invariant character which bears the interpretation that
mutant numbers evolve as a non-homogeneous Poisson process.

In view of this historical progression, we will designate the full family of distributions
corresponding to (40) by LDM(θ, φ, γ).

It is well known that the LC(θ) distribution is qualitatively very different to LD(θ, φ)
distributions when φ < 1. The moments of the former are infinite, reflecting the very slow
decrease of its right-hand tail. If φ < 1, then all moments are finite and the right-hand tail
decays exponentially fast [4]. The following result shows that each LDM distributions is a
GNBC and that the just-mentioned differences are reflected in the representing measures
of the mixing GGC. Here, and below, recall that H(x) denotes the Heaviside unit-step
function, i.e., the DF of the degenerate distribution allocating unit mass to the origin. Just
below, and later, we will encounter the second confluent hyper-geometric function,

U(a, b, ξ) =
1

Γ(a)

∫ ∞

0
ya−1(1 + y)b−a−1e−ξydy,

where a > 0 and b is real. Observe that this function is completely monotone; [9] (Chapter 13).

Theorem 6. If γ, θ > 0 and φ ∈ (0, 1], then the LDM(θ, φ, γ) distribution has the following
properties.

(a) It is a GNBC, hence unimodal. Its mass function is non-increasing iff

θ
(

1− (1− φ)γ+1
)
≤ γ + 1. (44)

(b) The function V in the representation (35) is

V(u) = −θ(1− u)γ(1− H(u− φ)). (45)

In particular, the LDM(θ, φ, γ) distribution is a geometric mixture iff θ ≤ 1.
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(c) The GGC mixing distribution has the Thorin distribution function

T(x) =

{
θ
( x

1+x
)γ i f x ≥ φ−1 − 1,

0 otherwise.
(46)

(d) The Lévy measure of the GGC mixing distribution has a density which has the following
explicit forms:
If φ = 1, then

`(x) = (θ/γ)Γ(γ + 1)U(γ, 0, x). (47)

If γ = 1, then
`(x) = θex

[
x−1e−x/φ − E1(x/φ)

]
. (48)

Remark 10. The above-mentioned difference between the cases φ = 1 and φ < 1 are manifested in
the fact that the representing functions V and T are continuous with supports coinciding with their
domains iff φ = 1. Indeed, if φ < 1, then −V(u) decreases from θ at u = 0 to θ(1− φ)γ at φ−
and it jumps to zero at u = φ. Note that (48) results by letting K → ∞ in (30).

Proof. (a) Comparing (6) with (40), a differentiation gives

R(s) = θ
∫ φ

0

(1− u)γ

(1− us)2 du.

Hence

rj = θ(j + 1)
∫ φ

0
(1− u)γujdu = θ

[
(1− φ)γφj+1 + γ

∫ φ

0
(1− u)γ−1uj+1du

]
= θ

[∫ 1

0
(1− u)γuj+1δφ(du) + γ

∫ 1

0
(1− u)γ−1uj+1(1− H(u− φ))du

]
.

This exhibits the desired Hausdorff moment form with the measure

V(du) = θ(1− u)γ−1[(1− φ)δφ(du) + γ(1− H(u− φ))du
]
. (49)

This implies the first assertion, and the second follows by evaluating r0 = R(0) and
appealing to Fact 2. Observe that the measure V has a discrete component which vanishes
when φ = 1.

(b) Integrating (49) and simplifying the result leads to

V(u) = C + θ[1− (1− u)γ(1− H(u− φ))],

where C is the constant of integration. The condition V(1−) = 0 implies that C = −θ,
whence (45).

(c) The evaluation (46) comes directly from Theorem 1 and (45).
(d) Recall that the Lévy density `(x) = x−1k(x) exists and, with no parameter restriction,

k(x) =
∫ ∞

0
e−xydT(y) = θ(1− φ)γe−x(φ−1−1) + θγ

∫ ∞

φ−1−1
yγ−1(1 + y)−γ−1e−xydy.

The right-hand side integral is an ‘incomplete’ confluent hypergeometric type of integral.
If φ = 1, then the first term vanishes and (47) follows.

If γ = 1, but φ ≤ 1, then the substitution v = 1 + y produces the evaluation

k(x) = θex
[
(1− φ)e−x/φ +

∫ ∞

φ−1
y−2e−xydy

]
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and (48) follows after integrating by parts.

Remark 11. Reverting to the time-dependent form of parameters, it follows from Theorem 4 that
being a geometric mixture and the nature of modality are time-dependent properties, whereas, e.g., the
SD property of the LDM distributions is a time-independent property. See [10] for this dichotomy.

Discussion 1. The LDM(θ, φ, γ) family of distributions is most commonly used to fit empirical
mutant number distributions. It follows from the criterion (44) that as θ increases from small to
large values, the mutant number mass function transitions from decreasing to having a positive
mode. If equality folds in (44), then zero and unity are modes.

It usually is the case that the estimate of φ is so close to unity that it is chosen to equal unity.
In this case the criterion (44) simplifies to

θ ≤ γ + 1.

In the case of equal fitness of normal and mutant cells, γ = 1 (the LC(θ) model), then the transition
from a zero to positive mode can be seen in the first three columns of Table 2 in [3] where, if θ = 2
(denoted by m in this reference), then p0 = p1 = 0.1353 > p2 = 0.1128. The LC(θ) model is fitted
to three sets of laboratory data in [22] where θ is estimated as 0.3783, 3.84 and 3.03, respectively.
Figures 3–5 in [22] graph the mass functions corresponding to these values.

Cases of differential fitness are illustrated in [1] (where (ν, µ) is denoted by (β1, β2)). Figure 1
therein shows the mass function of the LDM(17.871, 1.2) distribution with a modal value roughly
40. These numerical values are computed from those in the caption of Figure 1: θ = (r/ν)eνt =
(10−7/3)e3×6.7 and γ = 3/2.5. In addition, the parameter values yield 1− φ ≈ 10−7, justifying
the choice φ = 1. Figure 2 in [1] illustrates what can occur if θ is held constant and γ varies.
This figure shows two graphs, the upper one for (θ, γ) = (17.871, 1.010) and the lower one for
(θ, γ) = (17.871, 1.071). Comparing these with Figure 1 in [1] suggests that increasing γ above
unity yields more sharply peaked mass functions. The LDM(θ, 1, γ) distribution has a finite mean
iff γ > 1, and a finite variance iff γ > 2. Hence these example distributions have a finite mean and
infinite variance.

Finally, to see that real estimated mutant number distributions can exhibit a zero or a positive
mode we recall estimates determined in [23] from several experimental data sets for the LDM(θ, 1, γ)
distribution. A main objective in [23] is to introduce parameter estimation based on the empirical
PGF and compare its performance with maximum likelihood estimation (MLE). Table 1 in [23]
presents 95% confidence intervals for θ (denoted there by α) and γ (denoted there by ρ). Assuming
that point estimates are the mid-point values of the confidence intervals, Table 1 here exhibits these
estimates and it indicates the shapes of the estimated mass functions.

Table 1. Estimated θ and γ by MLE (upper rows) and empirical PGF (lower rows).

Data Source θ γ Mode

[24] A 6.99 1.085 >0
7.055 1.085 >0

[24] B 0.68 0.535 0
0.695 0.495 0

[25] 0.71 0.84 0
0.71 0.82 0

[26] 1.40 3.635 0
1.505 6.06 0

[27] 9.85 0.89 >0
9.71 0.885 >0

There now are several methods of estimating mutation model parameters and a question of
interest is that if several methods are applied to a given set of data, will they be consistent as to the
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shape of the mutation number distributions they select? Published studies indicate that different
methods can give quite different estimates, but they usually are, but not always, consistent in regard
to the selected distribution shape. We mention two comparative studies for the LC(θ) model.

Five estimation methods are compared using four data sets in [28] (where m is used for θ).
Table 2 in [28] shows broad consistency in shape selection for Experiments A-C, with the first two
indicating a zero mode and the third a positive mode. The p0-method was not applied/applicable to
the Experiment D data. Two of the four estimated values resulted in a mode at zero, and the other
two a positive mode.

Table 5 in [26] compares seven estimation methods using seven sets of experimental data.
Estimates of θ (m in [26]) are quite variable across estimation methods, but selected shapes are
broadly consistent. In fact, after adjusting the Luria-Delbrück mean method by eliminating large
jackpots, all methods were consistent in five of the seven data sets. In the two other cases all methods
except the Drake median method gave estimated θ < 2, and the Drake estimate was a little over
two; 2.07 for Experiment 2 and 2.08 for Experiment 6. In these cases the modal value is unity;
p0 = 0.126, p1 = 0.131 and p2 = 0.111 if θ = 2.07, and p0 = 0.125, p1 = 0.130 and p2 = 0.111
if θ = 2.08. Finally, a zero mode was found for five of the seven data sets.

These investigations do provide confidence that, although different methodologies can show
rather different parameter estimates, they in fact are broadly consistent with respect to shape selection.

We end this section with some remarks about plating efficiency. This term refers to the
possibility that, upon plating, a mutant cell fails to establish a colony. This aspect frequently
is modelled by assuming that plated mutants independently establish colonies each with a
probability p ∈ (0, 1]. In other words, successful establishment is modelled by binomial
thinning – if M(s) is the PGF of the number of plated mutants, then the PGF of the number
of established colonies is Me(s) = M(1− p + ps). A very convenient result asserts that
binomial thinning preserves the GNBC property. Specifically, if q = 1− p, then we obtain
from (35) that

Me(s) = exp
(
−ap(1− s)−

∫ 1−

0+
log

1− w
1− ws

dVp(w)

)
,

where
dVp(w) = dV(u) and u =

w
p + qw

.

In particular, if these measures have densities vp(·) and v(·), respectively, then

vp(w) =
p

(p + qw)2 v
(

w
p + qw

)
.

5. Branching Process Models

The normal population is depleted by one cell each time a mutation occurs. The
Lea-Coulson model does not directly account for this. One argument is that in real sit-
uations Nt � Mt so, this contingency can be neglected. Another response is to replace
the parameter ν with ν− r, thus adjusting for a diminished average normal population
growth rate.

Branching process models do take direct account of the normal population diminution
due to mutation. A discrete-time model was propounded (no later than 1946) by J.B.S.
Haldane. See Zheng [29] for an account and references. Haldane’s model counts population
sizes generation by generation. Cell numbers increase by binary division and hence the
total size (normals plus mutants) of the nth generation cannot exceed N02n. Consequently
the distribution of Mn, the size of the nth mutant generation, cannot be infdiv. There is a
Poisson type of limit theorem [30] resulting in a limiting compound Poisson distribution
(and hence infdiv) and whose jump distribution has the PGF h(s) = ∑j≥0 2−j−1s2j

, a gap
series, and hence this limiting distribution is not DSD.
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Instead, we shall consider the continuous-time version of Haldane’s model. This model
is a two-type linear birth process apparently formulated by M.S. Bartlett around 1951/2.
It is mentioned for the first time in [16] (p. 37) with details appearing in the first edition
of [31] (p. 132) published in 1955. See [32] for a detailed account and earlier references.

The balanced version of the model assumes that normal and mutant types divide
into two cells during the interval (t, t + dt) with probability µdt + o(dt), independently
of previous history. Mutants breed true, but a dividing normal cell has probability p
of producing one mutant and one normal cell and probability 1− p of producing two
normal cells.

The PGF of Mt is

M(s) =
[

(1− φ)s
1− φs− (1− s)(1− φs)p

]N0

, (50)

where φ = 1− e−µt (as above), but again we suppress the dependence on time t in our notation.
Zheng [32] (with more detail in [33]) notes a Poisson type of limit in which φ → 1

(i.e., t→ ∞) and p→ 0 such that

p
1− φ

→ A ∈ (0, ∞)

resulting in the limiting PGF

Z(s) =
(

s
s− A(1− s) log(1− s)

)N0

. (51)

The following result gathers infdiv properties of the Bartlett distributions, however, it
is deficient in NOT concluding that they are GNBC’s. Referring to (50), the term in square
brackets can be written as [1 + α(1− h(s))]−1, where α = pφ/(1− φ) and

h(s) = 1− 1− s
pφs

(1− (1− φs)p)

= 1− 1− s
φs

∞

∑
j=1

Γ(j− p)
Γ(1− p)j!

(φs)j. (52)

= 1− 1− s
s

c(s), (53)

say. We show below that h(s) is a PGF.
It follows that in (50), the integer N0 can be replaced with a positive-valued parameter,

σ say. Thus
M(s) = [1 + α(1− h(s))]−σ = E

[
e−αγ(σ)(1−h(s))

]
,

i.e., M(s) is the PGF of a gamma mixture of discrete infdiv distributions. We shall denote
members of the resulting Bartlett family of distributions by B(φ, p, σ).

The next result shows that a Bartlett distribution is a gamma mixture of GNBC’s.

Theorem 7. Let Λ > 0 and h(s) be as defined in (53). The distribution whose PGF is P(s) =
exp[−Λ(1− h(s))] is a GNBC whose mixing GGC has the Lévy density

`(x) =
Λφp−1

Γ(1− p)
x−p−1e−(φ

−1−1)x[1− φ + (1 + p)φU(1,−p, x/φ)]. (54)

The corresponding Thorin distribution function is

T(y) = Λφp−1 sin(πp)
πp

· y
1 + y

·
(

y− (φ−1 − 1)
)p

H
(

y− (φ−1 − 1)
)

. (55)
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Proof. We begin by showing h(s) is a PGF. Writing c(s) = ∑j≥0 cjsj and referring to (53)
we see that c0 = 1 and

h(s) = 1−
(

∞

∑
j=1

cjsj−1 −
∞

∑
j=1

cjsj

)
.

Hence h0 = 0 and hj = cj − cj+1 if j ≥ 1.
Next, observe that

Γ(j− p)
j!

=
B(j− p, 1 + p)

Γ(1 + p)
,

where B(·, ·) is the beta function. We thus have the explicit representation

cj = K−1B(j− p, 1 + p)φj−1,

where K = Γ(1− p)Γ(1+ p) = (πp) cosec(πp), by virtue of a reflection formula for gamma
functions.

It thus follows from the usual integral representation for beta functions that

hj+1 = K−1φp−1
∫ φ

0
uj−p(1− u)(1− u/φ)pdu > 0.

Hence h is a PGF, as asserted above.
Making the substitution u = (1 + y)−1 and comparing the outcome with (20) we see

that the Poisson intensity sequence (λj+1 : j ≥ 0) is a Hausdorff moment sequence and
that the Bondesson measure has support [φ−1 − 1, ∞) and density

b(y) = (Λ/K)φp−1(1 + y)p · y
1 + y

(
1− 1

φ(1 + y)

)p
=

Λφp−1

K
η(y),

where
η(y) =

y
1 + y

(
y− (φ−1 − 1)

)p
H(y− (φ−1 − 1)).

This and Fact 7(c) imply (55).
Referring to (18), we have `(x) = (Λφp−1/K)η̂(x) where

η̂(x) =
∫ ∞

0
η(y)e−xydy = e−x(φ−1−1)

∫ ∞

0

z + φ−1 − 1
z + φ−1 zpe−xzdz

= e−x(φ−1−1)
∫ ∞

0

(
1− 1

z + φ−1

)
zpe−xzdz

= e−x(φ−1−1)Γ(1 + p)
[

x−p−1 − φ−pU(1 + p, 1 + p, x/φ)
]
.

The second equality above follows from the substitution y = z + φ−1 − 1 and the final
form follows from evaluating the subtracted integral term in the penultimate line using the
substitution z = y/φ to obtain

φ
∫ ∞

0
zp(1 + φz)−1e−xz/φdz = φ−pΓ(1 + p)U(1 + p, 1 + p, x/φ).

We thus have obtain a final outcome

`(x) =
Λ

φΓ(1− p)
e−x(φ−1−1)

[
φpx−p−1 −U(1 + p, 1 + p, x/φ)

]
(56)

and it follows from its construction that ` is completely monotone. Hence P(s) is the
PGF of a BOP distribution. Furthermore, this exhibits `(x) as the difference of completely
monotone functions and we need to find a different representation to be able to conclude
that x`(x) is completely monotone.
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The Kummer transformation ξb−1U(a, b, ξ) = U(a− b+ 1, 2− b, ξ) implies the identity
ξ pU(1 + p, 1 + p, ξ) = U(1, 1− p, ξ). Integration by parts of the right-hand side integral
leads to

U(1 + p, 1 + p, ξ) = ξ−p−1[1− (1 + p)U(1,−p, ξ)].

Substitution into (56) yields (54), as asserted. It is clear now that x`(x) is completely
monotone, and hence that P(s) is the PGF of a GNBC.

Remark 12. An alternative, but not shorter, proof leading directly to (54) involves constructing
the Bernstein representation of c(ζ) := h(1− ζ) using the identity listed as Entry 2 in [8] (p. 304).

Recalling (50) with the integer N0 replaced by σ > 0 and the definition α = pφ/(1− φ),
then choosing Λ = α yields the representation for the Bartlett PGF,

M(s) = exp[−σ log(1 + ac(1− s))].

It follows from Theorem 7 that this involves the composition of two Thorin Bernstein
functions. However, the class of such functions is not closed under composition and
hence we cannot conclude that a Bartlett distribution is a GNBC. On the other hand, the
components of this composition are complete Bernstein functions and this class is closed
under composition. See [8] (pp. 112 and 94), respectively. Hence we can conclude that
Bartlett distributions of mutant numbers belong to BOP.

Similarly, the Zheng PGF (51) is that of a gamma mixture of Lea-Coulson distributions.
Hence a corresponding analogue of Theorem 7 in essence is Theorem 6(d).

6. Some Other Mutant Number Distributions

The total population size nt = Nt + Mt for the above (balanced) Bartlett model
comprises a linear birth process with splitting rate µ. Thus, the embedded jump chain
is the deterministic process which jumps by unity at each cell division. Angerer [6] and
Kepler and Oprea [5] independently and almost simultaneously proposed a discrete-time
model for mutant numbers Mn immediately following successive divisions at which nt
takes values n = N0, N0 + 1, · · · . Thus, M0 = k if n = N0 + k, and clearly Mn ≤ n− N0.
Their precise specifications differ in some details but, as in Section 5, a dividing normal
cell produces one normal and one mutant with probability p. Angerer mentions back
mutation but does not pursue that issue, instead he allows for mutation rates to depend
on n and he provides a very careful and exact treatment of their models. Kepler and
Oprea include the possibility of back mutation. Taking account of these differences, their
fundamental difference equations relating the distributions of Mn and Mn+1, Equation (1)
in both references, are the same.

In a more detail, Kepler and Oprea [5] assume a dividing mutant produces two
mutants with probability 1− q and one cell of each type with probability q� 1. With no
detail given, after they ‘pass to a continuum representation form’, they assert that the PGF
M(s, n) of Mn is given by

− log M(s, n) = pn(1− s)
∫ 1

1−N0/n

dv
1 + (v1−p−q − 1)s

. (57)

Let δ = 1− p− q ∈ (−1.1), although the biological context implies that 0 < δ � 1.
Note that taking δ = 0 yields the Poisson distribution with parameter p(n− N0).

So, assuming that δ ∈ (0, 1), the substitution u = 1− vδ and then comparing the
outcome with (40) shows that Mn has the LDM(θ, φ, a) distribution with

θ = pn/δ, φ = 1− (N0/n)δ and a = δ−1 > 1,

and hence Theorem 6 above applies.
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Angerer [6] proves several limit theorems for Mn as n→ ∞ and other constraints hold.
For example, the limiting PGF displayed as (29) in [6] shows that the limiting distribution
is that of a sum NB + M, where NB has a negative binomial distribution and M a LD
distribution and they are independent. Hence the sum is a GNBC. Similarly the limit
(32) in [6] is the PGF of a similar sum with NB replaced by a Poisson distributed random
variable, again a GNBC.

More interesting is the PGF

A(s) =
(

1− s
1− ps

)ϑ(1−s)/s
(58)

displayed near the end of the proof of Theorem 5.2 in [6]. The relation to the explicit form
there is that p = θ/(1 + θ) and ϑ = (ϕ + 2φ)(1 + θ), where θ, φ and ϕ are certain constants
specified in [6].

Theorem 8. (a) If p ∈ (0, 1) and ϑ > 0, then (58) specifies a distribution which belongs to BOP,
but is not a GNBC.
(b) This distribution is DSD iff 0 < p ≤ 1/4. In this case the mass function is non-increasing iff
ϑ(1− p)2 ≤ 2.

Proof. (a) We have

ϑ−1
∞

∑
j≥1

λj(1− sj) = −ϑ−1 log A(s) = −
(

s−1 − 1
)

log
1− s

1− ps
.

Expanding the logarithm term and collecting coefficients of sj, we find that Λ = ϕ(1− p) and

λj = ϑ

(
1− pj

j
− 1− pj+1

j + 1

)
= ϑ

∫ 1

p
uj−1(1− u)du, (j = 1, 2, . . . ).

Thus the sequence (λj+1 : j = 0, 1, . . . ) is a Hausdorff moment sequence, implying mem-
bership of BOP.

Recalling that rj = (j + 1)λj+1, we have

ϑ−1rj = 1− pj+1 − j + 1
j + 2

(
1− pj+2

)
=

1− pj+2

j + 2
− (1− p)pj+1. (59)

Hence we obtain a moment representation rj = ϑ
∫ 1

0 ujdṼ(u), where

Ṽ(u) =
[

1
2 (u

2 − p2)− (1− p)
]

H(u− p).

This function increases in (p, 1) but it has a negative jump at u = p. Hence it is not
monotone, implying the second assertion of (a).

(b) The second equality of (59) can be expanded as

ϑ−1rj =
(1− p)2

j + 2

j

∑
i=0

(i + 1)pi, (j = 0, 1, . . . ).

Hence r0 ≥ r1 iff p ≤ 1/4, a necessary condition for the SD property. In addition, rj−1 ≤ rj iff

j−1

∑
i=0

(i + 1)pi ≥ (j + 1)2 pj, (j = 1, 2, . . . ). (60)
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The left-hand side of (60) is bounded below by

pj−1
j−1

∑
i=0

(i + 1) = 1
2 j(j + 1)pj−1.

Hence (60) certainly holds if p ≤ j/2(j + 1). The right-hand side is increasing in j and the
case j = 1 requires that p ≤ 1/4. So, this condition is sufficient for the SD property.

The final model we shall examine is based on the discretised Luria-Delbrück model as
reformulated in [7]. There are three model assumptions:

1. The probability of a mutation during (t, t + dt) is φ(t)dt, where φ(t) = rNt, but
otherwise is arbitrary;

2. A mutation occurring at time t induces a growing clone of size Ct at the time of
plating/observation. Define p(j, t) = P(Ct = j); and

3. Mutations are classifies as type j if Ct = j. The number of type j mutations in a single
culture is denoted by Mj, a random variable having a Poisson(λj) distribution where

λj =
∫ T

0
p(j, t)φ(t)dt,

and “T is the time after which no observable mutations will occur”. Presumably, this
could be the time of plating.

In relation to the second assumption, there is an enigmatic assertion that p(j, t) “de-
pends on when the mutation occurs”. However, this is the absolute time t according to
their direct specification. So, perhaps what is meant that t here means the current lifetime
of the clone. We shall adopt this interpretation because it seems best aligned with the third
assumption. Thus, Mj is the number of type j mutations existing at time T.

Consequently, the number of mutants at time T is M = ∑j≥1 jMj and, assuming that
the Mj are independent, which is unstated but implicit in [7], the PGF of the mutant number
distribution is

M(s) = E(sM) =
∞

∏
j=1

E
(

sjMj
)
=

∞

∏
j=1

e−λj(1−s) = e−Λ+Λ(s)

where, as above, Λ(s) = ∑j≥1 λjsj and Λ = Λ(1). Thus, the computation of M(s) reduces
to a determination of φ(t) and p(j, t).

A Luria-Delbrück model with a time and state-dependent mutation rate is specified
in [7] (p. 181). Normal cell numbers grow according to Nt = N0eνt and mutant numbers as
[eµt]. Hence a mutation at time t results in a clone size CT equal to

[eµ(T−t)] = [(NT/Nt)
µ/ν] = [(NT/Nt)

1/γ].

Denote a generic value of the right-hand side by j. Hence

p(j, t) =

{
1 i f [(NT/Nt)1/γ]− 1 ≤ j < [(NT/Nt)1/γ],
0 otherwise.

So, if γ = 1, then

λj =

{∫ NT/j
n=NT/(j+1) φ(t)dt i f j ≤ (NT/N0)− 1,

0 otherwise,

where, in the integral, we regard t as a function of n = Nt.
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Thus, the problem reduces to deciding the form of φ(t). A standing assumption is that
φ(t) = rn and dn = νndt and, more specifically, that

φ(t)dt = rdn + αndt,

where dn and dt are related by

dn =
P(NT − n)

Q + (NT − n)
ndt, (61)

and α, P and Q are positive constants. Here, rdn represents a constant mutation rate per
cell per generation and αndt a rate per cell per time.

These specifications yield

φ(t)dt =
[

r + α
Q + NT − n
P(NT − n)

]
dn =

[
A +

B
NT − n

]
dn,

and hence
λj =

ANt

j(j + 1)
− B log

(
1− j−2

)
, (j ≥ 2).

Observe that the integral for λ1 diverges for j = 1. This is handled by computing the rate
λ1 required to achieve a specified value of Λ, although this tactic does represent a deviation
from the model formulation in [7]. The above log-term equals log(j + 1) + log(j− 1)−
2 log j, and hence partial summation yields

λ1 = Λ− 1
2 ANT − B log 2.

Note that an approximation has been adopted in [7] whereby the zero-valued λj are
replaced by the algebraic values obtained from the integration.

It follows that a necessary condition for DSD is r0 = λ1 ≥ r1 = 2λ2, i.e.,

Λ ≥ ANT/6 + B log(32/9) = ANT/6 + 1.2685B. (62)

Theorem 9. The mutant number distribution for the above specification is DSD iff (62) holds, in
which case the mass function is non-increasing iff λ1 ≤ 1.

Proof. If j ≥ 1, then

rj−1 = jλj =
ANT
j + 1

− Bj log
(

1− j−2
)

.

The coefficient of B equals

j
∫ 1/j

1/(j+1)

du
1− u

=
∫ 1

j/(j+1)

dv
1− v/j

, (j ≥ 2).

For any v ∈ (0, 1), the integrand decreases as j increases from (1− 1
2 v)−1 to (1− v)−1 and

the length of the interval of integration decreses too. Hence rj > rj+1 if j ≥ 2.

We know that the sequence of Poisson rates whose terms equal (j(j+ 1))−1 correspond
to a GNBC. So a question is whether the sequence of rates − log(1− j−2) (j ≥ 2) together
with an admissible value for λ1 similarly can be associated? We shall see below rhat the
answer is No!

Referring to (61), if P, Q → ∞ such that Q/P → 1, then the result is the differential
equation for logistic growth. Hence (61) itself represents a generalised form of logistic
growth. More generally, (61) is a particular case of the relation

dn = nL(n)dt,
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where L(n) is decreasing in n. We choose the following specific form.
Let ε ∈ (0, 1) and

L(n) =
(

1− 1− ε

NT
n
)(

1− ε

NT
n
)

.

Thus ε = 0 gives logistic growth, and if 0 < ε � 1, then L(n) has a quadratic profile
approximating the linear logistic profile. We compute

λj = α
∫ NT/j

NT/(j+1)

dn
L(n)

= −α log
(

1− (j + ε)−2
)

, (j ≥ 1).) (63)

Evaluation of the integral follows from the substitution v = n/NT and resolving the
integrand into partial fraction form. Note that the cases ε = 0 and j ≥ 2 yield the sequence
in [7] and that our restriction ε < 1 is required by the context because L(n) is increasing if
ε ≥ 1.

Proceeding further, let c > 1 and define

mj(c) = − log
(

1− (j + c)−2
)

, (j = 0, 1, . . . ).

Lemma 1. (a) If c > 1, then the sequence (mj(c) : j ≥ 0) is a Hausdorff moment sequence:

mj(c) =
∫ 1

0
ujω(u)du where ω(u) =

uc−2(1− u)2

− log u
. (64)

(b) If c ∈ (1, 2], then the sequence ((j + 1)mj(c) : j ≥ 0) is a Hausdorff moment sequence:

(j + 1)mj(c) =
∫ 1

0
ujω(u)du,

where

ω(u) = −uω′(u) =
[

2
1− u

− c− 1
log u

]
ω(u). (65)

(c) The Poisson rate (63) is λj+1 = αmj(1+ ε) and the r-sequence is given by rj = α(j+ 1)mj(1+ ε).

Proof. (a) Begin with the following easily checked identity

− log(1− c−2) =
∫ 1

0

(
1

c−√y
− 1

c +
√

y

)
dy

2
√

y
.

The integrand term in brackets equals∫ 1

0
uc−1

(
u−
√

y − u
√

y
)

du.

Thus we obtain a double integral and the integral with respect to y is

∫ 1

0

(
u−
√

y − u
√

y
) dy

2
√

y
=
∫ 1

0

(
e−
√

y log u − e
√

y log u
)

dy
√

y =
(1− u)2

−u log u
.

Hence we have the evaluation

− log(1− c−2) =
∫ 1

0
uc−2 (1− u)2

− log u
du.

Now replace c with j + c to obtain Assertion (a).
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For (b), observe that

(j + 1)mj(c) =
∫ 1

0
ω(u)duj+1 = lim

u′↓0,u′′↑1

[
−uj+1ω(u)

∣∣∣u′′
u′
−
∫ u′′

u′
uj+1ω′(u)du

]
.

It follows from c − 1 > 0 that limu→0 uc−1/ log u = 0 and in addition, limu→1(1 −
u)2/ log u = 0. The first equality in (65) follows, and a log-differentiation yields the
second equality.

It follows from Lemma 1 that if 0 < ε < 1, then the distribution determined by (63)
is a GNBC and hence that it is unimodal. The mass function is non-increasing iff λ ≤ 1,

i.e., (1− exp(−1/α))−
1
2 − 1 ≤ ε < 1. If ε = 0, then λ1 = ∞ and the distribution is

degenerate at infinity. Observe that, since ε < 1, b(∞) = ∞ and hence Fact 5 shows that the
mixing continuous distribution is not in ME.

Comparing the first member of (64) and (20) with a = 0 shows that the Bondesson
measure of the mixing GGC has the density

b(y) = αω
(
(1 + y)−1

)
=

αy2

(1 + y)1+ε log(1 + y)
, (y > 0).

Writing
1

log(1 + y)
=
∫ ∞

0

dv
(1 + y)v ,

it follows that the integral expression for the Lévy density of the mixing GGC is

`(x) =
∫ ∞

0
e−xyb(y)dy = 2α

∫ ∞

0
U(3, 3− ε− v, x)dv.
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