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Abstract: In this paper, a chaotic system with surface equilibrium and a hidden attractor was studied,
and the dynamical behavior, synchronization scheme and circuit application of the system were
analyzed. Firstly, the stability analysis and dynamic behavior of the system were carried out (the
type of attractor, bifurcation, Poincaré section, Lyapunov exponents spectrum and complexity).
Secondly, the finite-time synchronization observer was designed according to the finite-time stability
theorem to achieve the synchronization of the finite-time master–slave systems, and the error system
asymptotically approached zero. Finally, the existence and practicability of the original system were
proven through the implementation of the circuit system, and through using an appropriate control
circuit to realize the synchronization of chaotic master–slave systems.

Keywords: surface equilibrium; hidden attractor; finite-time synchronization; circuit implementation

1. Introduction

Simple nonlinear differential equation systems can exhibit chaos, which is a universal
phenomenon in nonlinear systems, and there is a large amount of evidence that chaos
exists in reality [1]. In 1963, while designing a 3D model of atmospheric convection,
Lorenz constructed a 3D quadratic polynomial ODE system in which he discovered the
first chaotic attractor [2]. Later, many Lorenz-like systems, such as Sprott [3], Chen [4]
and Lü [5], were constructed and studied, and studies of these systems also inspire us
to think deeply about Lorenz-like systems. After Leonov put forward the mathematical
definition of a hidden attractor [6], the research theory and application of a hidden attractor
have been widely concerned [7], where the attraction domain does not intersect with
the neighborhood of any unstable equilibria, and the basis of attraction is small for such
systems [8,9]. Chaos cannot be excited by arbitrarily choosing the initial conditions near
the unstable equilibria. Hence, the occurrence of hidden attractors in the system is not
obvious and is difficult to be noticed [9]. Recently, chaotic systems with various equilibria
have also been considered under the category of hidden attractors [10]; this includes
systems with only one stable equilibrium [11,12], without an equilibrium [13,14] and with
infinite equilibria [15–17]. There is a significant correlation between hidden attractors and
multistability, which is a very important phenomenon in dynamic systems [18,19]. In fact, it
is difficult to discover hidden attractors in physical systems as the systems themselves have
specific physical properties that cannot be arbitrarily changed [20]. Meanwhile, hidden
attractors are potentially harmful to engineering. Therefore, finding hidden attractors and
identifying the dynamics of these system is challenging work. Moreover, chaotic systems
with hidden attractors may have richer complex behavior than the self-excited attractors,
so it is more helpful for the application of electronic circuits, artificial intelligence and
so on [21–23].
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The synchronization control of chaotic systems is also a classical and major topic of
discussion in the field of nonlinear control [24–26]. For the actual chaotic systems, there are
often some characteristics, such as various disturbances and uncertainties in the system,
and the chaotic phenomenon is extremely sensitive to the initial value and parameter varia-
tion. Hence, using control strategies to achieve the synchronization control of uncertain
chaotic systems with unknown parameters is still a challenge for some engineering appli-
cations, and this research is still an important and difficult problem to be urgently solved.
For the uncertain chaotic synchronization control problem with unknown parameters, the
dynamics and robustness of the master chaotic system following the slave chaotic system
are key to measuring the synchronization performance. Aiming at this goal, researchers
have proposed and verified many control methods: adaptive feedback synchronization
control [27–30], sliding mode variable structure control [31–33] and robust control [34].
With the deepening of theoretical research, the methods of control are tending to matu-
rity. Therefore, the research trend of chaotic synchronization will be how to realize the
synchronization of chaotic systems with a simple structure, small control amount and finite
time. Finite-time synchronization technology was first proposed by Haimo [35]. Yu [36]
and Amato [37] proposed the concept of global robust terminal sliding mode control for
a single input single output (SISO) of an uncertain nonlinear system and presented the
design method of the controller. Then, finite-time synchronization control was applied to
various engineering fields, including chaotic systems [38–40]. However, the parameters of
chaotic synchronization used in practical engineering are variable and unknown, so the
assumption of the above methods tend to be idealized. Meanwhile, there are few studies
on the finite-time synchronization of chaotic systems with hidden attractors. Only when
the synchronization error of the system converges in finite time and the control has strong
robustness can it have a more practical engineering value. Thus, for the unique mechanism
of chaotic systems with hidden attractors, the design of finite-time observers provide in-
spiration for solving the problems of sudden oscillations caused by hidden attractors. In
this paper, we further elaborate on a chaotic system with surface equilibrium and a hidden
attractor [41]: 

ẋ1 = x1x2
2 + ax2

1x2
ẋ2 = −x1x3
ẋ3 = bx1 + x2

1x2

(1)

where x1, x2 and x3 are state variables of the system and a and b are parameters of the system.
In this paper, the structure is as follows: in Section 2, the dynamical behavior of a chaotic
system is analyzed, such as equilibria analysis, periodic orbit, Poincaré map, Lyapunov
exponents spectrum (LEs), largest Lyapunov exponent (LLE), bifurcation diagram and
complexity. In Section 3, the design method of the controller and law is presented to realize
the finite-time robust feedback control of system (1). In Section 4, the circuit schematic
diagram of the system (1) is given, and, by using an appropriate control circuit to realize
the synchronization of master–slave systems, the reliability and existence of system (1)
is verified by numerical simulation. The last section summarizes the dynamic analysis,
control and circuit implementation, and gives prospects of future work.

2. Dynamical Properties
2.1. Equilibria and Stability

Let ẋ1 = 0, ẋ2 = 0, ẋ3 = 0, its equilibria be S1

(√
b
a ,−
√

ab, 0
)

, S2

(
−
√

b
a ,
√

ab, 0
)

,

S3(0, x2, x3) and its Jacobian matrix be

J =

 x2
2 + 2ax1x2 2x1x2 + ax2

1 0
−x3 0 −x1

b + 2x1x2 x2
1 0

 (2)
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Let |λE− J| = 0, and obtain its characteristic equation as

f (λ) = λ3 + A2λ2 + A1λ + A0 (3)

From Equation (3),
A2 = −x2

2 − 2ax1x2

A1 = x2
1 + ax2

1x3 + 2x1x2x3

A0 = −x2
1x2

2 − 2ax3
1x2 + 2bx2

1x2 + abx3
1 + 4x3

1x2
2 + 2ax4

1x2

According to Routh–Hurwitz criterion, when A2 > 0, A0 > 0 and A2 A1 − A0 > 0, the
equilibrium is stable and is a stable point or stable point intersection; when A2 > 0, A0 > 0
and A2 A1 − A0 < 0, the equilibrium point is a saddle.

2.2. Dynamical Behaviors Analysis

In system (1), x1, x2 and x3 are state variables, and a and b are parameters. The dynamic
characteristics of the system (1) depend on the variation in parameters a and b. When the
parameters are set as a = 1.92 and b = 1, and the initial state (x1, x2, x3) = (0.87, 0.4, 0), the
system (1) shows chaos, and the phase orbit diagram is shown in Figure 1.

Figure 1. Chaos of system (1) with a = 1.92, b = 1.

In order to study the dynamics of system (1), a numerical simulation is used and
Table 1 shows the various phase diagrams of system (1) under different parameters.

Table 1. Dynamic behavior of the system (1) with different parameters (PVs, parameter values; PPs,
phase portraits; Ps, Poincaré section).

PVs Dynamics LES PPs Ps

a = 0.35 Periodic-1 [0, −0.1728, −0.1786] Figure 2a,d,g Figure 3a

a = 0.95 Periodic-2 [0, −0.0217, −0.1945] Figure 2b,e,h Figure 3b

a = 1.92 Chaotic [0.0661, 0, −1.664] Figure 2c,f,i Figure 3c

2.2.1. Phase Orbits

The phase diagrams with periodic-1, periodic-2 and chaos can be obtained when the
parameter b = 1 is fixed and the parameter a is taken as 0.35, 0.95 and 1.92, respectively, as
shown in Figure 2.
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Figure 2. Periodic-1 and 2 and chaotic orbit of the system (1) with different a. (a) a = 0.35, b = 1.
(b) a = 0.95, b = 1. (c) a = 1.92, b = 1. (d) a = 0.35, b = 1. (e) a = 0.95, b = 1. (f) a = 1.92, b = 1.
(g) a = 0.35, b = 1. (h) a = 0.95, b = 1. (i) a = 1.92, b = 1.

2.2.2. Poincaré Section

The Poincaré section is used to take fixed values for the conjugate variables and
intercept a plane in multiple dimensions. As shown in Figure 3, when the parameter a is
chosen to be 0.35, 0.95 and 1.92, respectively, and the fixed parameter b = 1, the Poincaré
section is in periodic-1, periodic-2 and chaos states in turn.

2 2.5 3 3.5

−0.5

0

0.5

1

(a)

0.6 0.8 1 1.2 1.4 1.6

0.25

0.3

0.35

0.4

0.45

0.5

(b)

0 0.5 1 1.5 2

−3

−2

−1

0

1

(c)

Figure 3. Periodic-1 and 2 and chaotic Poincaré surface of section of the system (1) with different a.
(a) a = 0.35, b = 1. (b) a = 0.95, b = 1. (c) a = 1.92, b = 1.

From Figure 3, when parameter a is set to 0.35 or 0.95, the Poincaré region will only
have one or two discrete points, indicating periodic behavior of the system (1), and, as the
parameter a is set to 1.92, the Poincaré section is continuous with dense points, indicating
that the system (1) exhibits chaos.
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2.2.3. Lyapunov Exponent

For system (1), the Lyapunov dimension can be used to characterize the geometric
properties of chaotic attractors. Its defining equation is:

Dλ = j +
1∣∣λj+1
∣∣ j

∑
i=1

λi (4)

The above equation has a system dimension of Dλ = 2.040 for a = 1.92 and b = 1,
and the system (1) has a fractal Lyapunov dimension, which shows the chaotic state. In
order to confirm it, we need to fix the parameter b, change the parameter a and calculate
the Lyapunov exponents spectrum of the system (1). The Lyapunov exponent spectrum of
system (1) shown in Figure 4 fluctuates in the interval [0.5, 2.5], whereas Figure 5 shows the
largest Lyapunov exponent.

0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

Figure 4. Lyapunov exponents spectrum (LEs) of the system (1) for b = 1.

0.5 1 1.5 2 2.5

0

0.02

0.04

0.06

0.08

Figure 5. Largest Lyapunov exponent (LLE) of the system (1) for b = 1.

From Figure 5, the largest Lyapunov exponent λ1 > 0 is observed. This observation is
also confirmed in Table 1.
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2.2.4. Bifurcation

A bifurcation diagram can also describe the chaotic states of system (1). Through
the bifurcation state in Figure 6, the state of system (1) clearly changes from periodic to
chaotic; then, combined with observing the Lyapunov exponents spectrum, it is found that
system (1) changes its state when the parameter a changes, indicating that system (1) can
only generate chaotic behavior within a certain parameter range.

Figure 6. Bifurcation of system (1) for b = 1.

According to the diagram above, parameter a can determine whether system (1) is
in a chaotic state or periodic state. The complex dynamic behavior of system (1) can be
controlled more easily by changing the value of a.

2.2.5. Complexity Resolution

The complexity of system (1) is a measure of how similar a chaotic sequence is to
a random sequence. The larger the complexity, the closer the sequence is to a random
sequence. The spectral entropy complexity SE and complexity C0 with parameter a for
b = 1 are described in Figure 7 and Figure 8, respectively.

0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 7. Complexity SE of system (1).
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Figure 8. Complexity C0 of system (1).

The analysis of the complexity SE and the complexity C0 show that they are consistent
with the Lyapunov exponents spectrum and the bifurcation diagram.

3. Design of Feedback Controller
3.1. Implementation of Robust Controller

The master system of system (1) can be expressed as follows:
ẋ1 = x1x2

2 + (a + ∆1)x2
1x2

ẋ2 = −x1x3
ẋ3 = (b + ∆2)x1 + x2

1x2

(5)

where x = (x1, x2, x3)
T is the state variable of the master system, and the slave system can

be defined as 
ẏ1 = y1y2

2 + (a + ∆3)y2
1y2 + u1(t)

ẏ2 = −y1y3 + u2(t)
ẏ3 = (b + ∆4)y1 + y2

1y2 + u3(t)
(6)

where y = (y1, y2, y3)
T is the state variable of the slave system; ∆i (i = 1, 2, 3, 4) is the pa-

rameter uncertainty of the master–slave chaotic system; ui(t) = (i = 1, 2, 3) is the external
input controller.

Define the master–slave error as ei = yi − xi(i = 1, 2, 3); through calculation, the error
system is 

ė1 = e1y2
2(1 + a(y1 + x1)) + x1e2((y2 + x2) + ax1)

+∆3e1y2
1 + ∆1e1x2

1 + u1(t)
ė2 = −e1y3 − x1e3 + u2(t)
ė3 = (b− x2(y1 + x1))e1 + y2

2e2 + ∆4e3 + ∆2e3 + u3(t)

(7)

Then, the robust feedback controller can be designed as

u1(t) = −e1y2
2(1 + a(y1 + x1))− x1e2((y2 + x2) + ax1)

−δ3e1y2
1 − δ1e1x2

1 − k
(
|e1|ξ1

)
sign(e1)

u2(t) = e1y3 + x1e3 − k
(
|e2|ξ2

)
sign(e2)

u3(t) = −(b− x2(y1 − x1))e1 − y2
2e2 − δ4e3 − δ2e3

−k
(
|e3|ξ3

)
sign(e3)

(8)
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where 0 < ξi < 1 (i = 1, 2, 3) and k > 0. To facilitate the computational discussion, the
following lemmas and assumption are required.

Lemma 1 ([42]). When α, β and ξ are all positive and 0 < ξ < 1, then we have the inequality
(α + β)ξ ≤ αξ + βξ .

Lemma 2 ([42]). (Finite time stability) If continuous, positive definite V(t) satisfies

V̇(t) ≤ −εVa(t), ∀t ≥ t0, V(t0) ≥ 0 (9)

Among them, ε > 0 and 0 < a < 1; then, for any given t0, V(t) satisfies the following
differential inequality:

V1−a(t) ≤ V1−a(t0)− ε(1− a)(t− t0), t0 ≤ t ≤ t f in (10)

and, when ∀t ≥ t f in, there are V(t) = 0; among them, t f in = t0 +
V1−a(t0)
ε(1−a) .

Suppose that there exists a positive number δi(i = 1, 2, 3 . . .); make the parameter
perturbation |∆i| ≤ δi(i = 1, 2, 3 . . .).

3.2. Performance of Robust Feedback Controller

After constructing systems (5) and (6) using the robust feedback controller (8), we
have the following theorem:

Theorem 1. For system (5) and system (6), the controller (8) is used, and 0 < ξi < 1 (i = 1, 2, 3).

Through Lemma 2, the finite-time T = t0 +
2σ−1Vσ(t0)

σ , and then master–slave systems tend to be
synchronized, where σ = 1−ξ

2 .

Proof. Construct the Lyapunov function V(t) = 1
2

3
∑

i=1
e2

i
, on the derivation of time t; V̇(t) =

3
∑

i=1
ei.ėi is available.

Substituting the three error systems (7) into the above equation, we can obtain

V̇(t) = e1 ė1 + e2 ė2 + e3 ė3

= e1

(
e1y2

2(1 + a(y1 + x1)) + x1e2((y2 + x2) + ax1)
)

+ e1

(
∆3e1y2

1 + ∆1e1x2
1 + u1(t)

)
+ e2(−e1y3 − x1e3 + u2(t)) + e3((b− x2(y1 + x1))e1)

+ e3

(
y2

2e2 + ∆4e3 + ∆2e3 + u3(t)
)

(11)

The robust feedback controller (8) is substituted into the above Equation (11), and
terms are cancelled, to obtain

V̇(t) = e1

(
∆3e1y2

1 + ∆1e1x2
1

)
+ e1

(
−δ3e1y2

1 − δ1e1x2
1 − k

(
|e1|ξ1

)
sign(e1)

)
+ e2

(
−k
(
|e2|ξ2

)
sign(e2)

)
+ e3

(
−δ4e3 − δ2e3 − k

(
|e3|ξ3

)
sign(e3)

)
+ e3(∆4e3 + ∆2e3)

(12)
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and, then, one can further obtain:

V̇(t) = ∆3e2
1y2

1 − δ3e2
1y2

1 + ∆1e2
1x2

1 − δ1e2
1x2

1 + ∆4e2
3 − δ4e2

3 + ∆2e2
3 − δ2e2

3

− k
(
|e1|ξ1

)
|e1| − k

(
|e2|ξ2

)
|e2| − k

(
|e3|ξ3

)
|e3|

= e2
1y2

1(∆3 − δ3) + e2
1x2

1(∆1 − δ1) + e2
3(∆4 − δ4) + e2

3(∆2 − δ2)

− k
(
|e1|ξ1

)
|e1| − k

(
|e2|ξ2

)
|e2| − k

(
|e3|ξ3

)
|e3|

(13)

From Assumption 1, from the existence of positive numbers δi(i = 1, 2, 3 . . .), |∆i| ≤ δi
(i = 1, 2, 3...),

e2
1y2

1(∆3 − δ3) + e2
1x2

1(∆1 − δ1) + e2
3(∆4 − δ4) + e2

3(∆2 − δ2) ≤ 0 (14)

According to ξ, we have V̇(t) ≤ −k
(
|e1|ξ+1

)
− k
(
|e2|ξ+1

)
− k
(
|e3|ξ+1

)
.

Combined with Lemma 1, we have

−k
(
|e1|ξ+1

)
− k
(
|e2|ξ+1

)
− k
(
|e3|ξ+1

)
= −2

ξ+1
2 k

( (|e1|)2

2

) ξ+1
2

+

( (|e2|)2

2

) ξ+1
2

+

( (|e3|)2

2

) ξ+1
2


≤ −2

ξ+1
2 k
(

(|e1|)2

2 + (|e2|)2

2 + (|e3|)2

2

) ξ+1
2

(15)

It is clear that V̇(t) ≤ −2
ξ+1

2 kV
ξ+1

2 (t).
From Lemma 2, it is known that there exists

T = t0 +
V1− ξ+1

2 (t0)

2
ξ+1

2 K
(

1− ξ+1
2

) = t0 +
2

1−ξ
2 kV

1−ξ
2 (t0)

1− ξ
(16)

and let σ = (1− ξ)/2; at finite time T = t0 +
2σ−1V(t0)

σ , the system containing parameter
uncertainty achieves finite-time synchronization, where ei → 0(i = 1, 2, 3) at t ≥ T. This
completes the proof.

3.3. Numerical Simulation

For a master–slave system with parameters a = 1.92, b = 1 and ∆i = 0(i = 1, 2, 3, 4),
the system is in a chaotic state. The master–slave system applies a system controller with pa-
rameters taken as ∆1 = 0.08 sin(t), ∆2 = 0.08 sin(t), ∆3 = 0.08 sin(t) and ∆4 = 0.08 sin(t);
then, it is known that δ1 = 1, δ2 = 1 and δ3 = 1, δ4 = 1. The control parameters are taken as
ξ1 = 0.5, ξ2 = 0.5 and ξ3 = 0.5, and the orbits of the states of the master and slave systems
are shown in Figure 9.

0 1 2 3 4 5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

s

(a)

0 1 2 3 4 5

−1.5

−1

−0.5

0

0.5

1

s

(b)

0 1 2 3 4 5

0

0.5

1

1.5

2

s

(c)

Figure 9. Synchronization of master-slave system. (a) x1, y1. (b) x2, y2. (c) x3, y3.
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From Figure 9, the states of the master–slave system tend to converge, and synchro-
nization errors are demonstrated in Figure 10.

From the simulation result in Figure 10, it can be seen that the trajectory of the synchro-
nization error system converges asymptotically to the origin. In addition, Figures 9 and 10
illustrate the control effect of the designed controller.

0 1 2 3 4 5

−1

−0.5

0

0.5

1

s

Figure 10. Time responses of the synchronization errors.

4. Circuit Implementation and Numerical Simulation
4.1. Circuit Implementation

We used the operational amplifier LM741, analog multiplier AD633, resistors and
capacitors to design the analog circuit. The power voltage of the operational amplifier
LM741 is±15 V, and its output saturation voltage is Vsat ≈ ±13.5 V. According to system (5),
a chaotic circuit was designed, as shown in Figure 11.

10k

10

10

10

Figure 11. Analog circuit of the system (1).

From Figure 11, applying Kirchhoff’s law, the corresponding circuit equations can be
listed as 

dx1
dt = R3

R1
1

c1R4
(−x1)x2

2 +
R3
R2

1
c1R4

(−x2)x2
1

dx2
dt = R6

R5
1

c2R7
(−x1)x3

dx3
dt = R14

R15

R10
R8

1
c3R12

(−x1) +
R14
R15

R10
R9

1
c3R12

(−x2)x2
1

(17)

where x1, x2 and x3 are related to the voltage on the capacitors, respectively.
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4.2. Circuit Simulation

For circuit system (17), capacitor C1 = C2 = C3 = 33 nf, resistance R2 = 5 kΩ,
R1 = R5 = R8 = R9 = R12 = R13 = 10 kΩ, R3 = R4 = R6 = R7 = R10 = R11 = 100 kΩ
can be obtained. The gain in the AD633 multiplier A1 = A4 = A6 = 0.1 and A2 = A3 =
A5 = A7 = 1. According to the above circuit parameters, the phase diagram shown in
Figure 12 can be obtained on a digital oscilloscope.
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Figure 12. Analog circuit simulation phase results of system (1). (a) x1 − x2. (b) x2 − x3. (c) x3 − x1.

These results are consistent with the results of the numerical simulation and analog
circuit simulation, which proves that the digital circuit can verify the chaotic behavior
of this system. These numerical simulations are performed to verify the correctness of
the system (1).

After realizing the above circuit simulation, in order to further achieve a synchronous
circuit, the master system selects the chaotic system proposed in this paper, and system (1)
can be rewritten as follows:

ẋm1 = x1x2
2 + ax2

1x2 − k1(xm1 − x1)
ẋm2 = −x1x3 − k2(xm2 − x2)
ẋm3 = bx1 + x2

1x2 − k3(xm3 − x3)
(18)

where the parameters of the drive system are a = 1.92, b = 1, k1 = 1, k2 = 22 and k3 = 22.
The state vector is x = [xm1, xm2, xm3]

T. The schematic diagram of the synchronization
circuit and synchronization phase diagram are shown in Figures 13 and 14. In addition,
from Figure 14, it can be seen from the three phase planes that the master–slave system can
achieve synchronization.
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Figure 13. Schematic diagram of synchronization analog circuit of system (1).
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Figure 14. Analog circuit simulation results of system (1). (a) x1, xm1. (b) x2, xm2. (c) x3, xm3.

5. Conclusions

In this paper, we analyzedthe dynamical behavior of a surface equilibrium system with
a hidden attractor (including phase analysis, Lyapunov exponent, bifurcation, Poincaré
section, complexity, etc.). Moreover, a finite-time robust feedback controller was proposed
for the synchronization and control problem of the surface equilibrium system with a
hidden attractor, and the synchronization of master–slave systems in finite time was
realized. Furthermore, a simulation circuit was designed to implement the system model,
and the circuit synchronization simulation of the master–slave system was realized. The
experimental results of the circuit are consistent with the simulation results of the theoretical
model. Finally, in future work, we will find a better controller and implement its circuit,
and a more comprehensive dynamic analysis of the system can also be carried out. By
studying the latest results, the control method can also be further improved.
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