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Abstract: This study deals with the numerical solution of the human immunodeficiency virus (HIV)
infection model, which is a significant problem for global public health. Acquired immunodeficiency
syndrome (AIDS) is a communicable disease, and HIV is the causative agent for AIDS, which damages
the ability of the body to fight against disease and easily usual innocuous infections attack the body.
On entering the body, HIV infects a large amount of CD4+ T-cells and disturbs the supply rate of
these cells from the thymus. Herein, we consider the model with variable source terms in which
the production of these cells is a monotonically decreasing function of viral load. Based on the
reproduction number, we describe the stability of free equilibrium. The continuous Galerkin–Petrov
method, in particular the cGP(2)-method, is implemented to determine the numerical solutions of
the model. The influence of different parameters on the population dynamics of healthy/infected
CD4+ T-cells and free HIV particles are examined, and the results are presented graphically. On
the other hand, the model is solved using the fourth-order Runge–Kutta method, and briefly, the
RK4-method, and the results of the proposed schemes are compared with those obtained from other
classical schemes such as the Bessel collocation method (BCM), Laplace Adomian decomposition
method (LADM), perturbation iteration algorithm (PIA), modified variational iteration method
(MVIM), differential transform method (DTM), and exponential Galerkin method (EGM), numerically.
Furthermore, absolute errors relative to the RK4 method are computed to describe the accuracy of the
proposed scheme. It is presented that the cGP(2)-method gains accurate results at larger time step
sizes in comparison with the results of the aforementioned methods. The numerical and graphical
comparison reveals that the proposed scheme yields more accurate results relative to other traditional
schemes from the literature.

Keywords: CD4+ T-cells; immune system; computational analysis

1. Introduction

Dynamical systems are well known for their various applications, such as in a popula-
tion growth model, biomedical, and engineering. For example, in the field of population
dynamics, one can study the changes in population with respect to time and make a long-
term prediction about population growth for the future. Ding and Ye [1] used a fractional
order model of HIV infection. They showed a non-negative solution of that model along
with stability analysis. They also expressed numerical simulation and displayed the result
of the HIV mathematical model. Burton and Mascola [2] analyzed that AIDS is a result of
HIV that minimizes the capability of body scraps beside the disorder and makes it more
suitable for natural inoffensive infection. HIV infects a huge quantity of T-cells and divides
rapidly while inflowing into the host. Throughout the earliest phases of the disease, blood
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consists of the soaring power of HIV harmful particles, which extend throughout the body
as the blood circulates. These microorganisms swell into liquid substances of the body, e.g.,
blood, tears, urine, etc. Most HIV-infected individuals will develop AIDS 10 to 15 years
after infection, while several people stay fit for more than this period without ailment.
Samanta [3] identified that HIV has a stretched evolution and transmissible phase. In the
nonexistence of antiretroviral treatment, the usual period of evolution from HIV to AIDS is
9 to 10 years. The average endurance duration following AIDS is 9 months and 20 days.

Furthermore, the ratio of medical infection evolution depends broadly on personalities,
from 14 days until 20 years. Several issues upset the ratio of development. These causes
embrace the host’s capacity to protect in opposition to HIV. Humble entrance to physical
care and the presence of associated infections may also inspire quicker illness development.
Krischner et al. [4] discussed treating HIV infection and certain chemotherapies have been
tested. The most commonly used drugs are AZT, DDI, DDC, and D4T. All these drugs
are inhibiters, which work like reverse transcriptase inhibitors. The reverse transcriptase
inhibitors reduce the growth of the virus and finally block the infection.

Many researchers have worked in this field to conduct studies and analyze research to
control this disease. Chum et al. [5] addressed the rule of sexually transferred infection in
HIV-1. Sun and Min [6] studied a modified HIV infection model simulation. Khalil et al. [7]
analyzed HIV infection with the drug therapy effect. They also discussed the general-
ized Euler method (GEM) and the numerical solution of the HIV fractional-order model.
Wang et al. [8] examined the HIV pathogenesis model along with its cure rate and logistic
growth of healthy and infected CD4+ T-cells. Osman and Abdurrahman [9] studied the
stability of the delayed HIV model and investigated its treatment and transmission. They
also computed the basic reproduction number R0 and discussed its stability based on
the reproduction number. Wan et al. [10] discussed the behavior of the viral dynamical
model and its solution. Wang et al. [11] addressed the global dynamics of HIV infection of
CD4+ T-cells and analyzed the mathematical model. Srivastava et al. [12] presented drug
therapy for HIV infection. Culshaw et al. [13] demonstrated the differential equation of
HIV infection and discussed the modeling and dynamics of CD4+ T-cells.

HIV/AIDS is a universal health challenge; over 70 million people worldwide have
been infected with this disease, from which 35 million people have passed away, and
36.7 million patients are still living with this infection [14]. Nelson and Perelson [15]
worked on the model of HIV infection and its mathematical analysis based on kinetic
parameters. They analyzed intracellular delays, antiretroviral therapy, and dynamics of
infected and uninfected CD4+ T-cells. They also illustrated that when the drug effect is
less than the loss rate of productively infected cells, the approximated value is ideal and
depicts the results of the model. Perelson et al. [16] examined the interaction of HIV and
CD4+ T-cells. They discussed the infected, active infected, uninfected, and free virus T-cells.
They explained the characteristics of HIV infection in a straightforward manner. They
considered two types of HIV models. The first is with a constant source for the growth
of CD4+ T-cells, and the second is a decrease in the relative viral load of CD4+ T-cells.
Ronga et al. [17] discussed a mathematical model to examine the method of drug resistance
during therapy and its appearance. They indicated that drug-resistant viruses contributed
significantly to their stability. When antiretroviral treatments are available, both strain
and wild-type reproduction are close to each other. Duffin and Tullis [18] worked on
a mathematical model for HIV infection and AIDS to understand these diseases. They
suggested a mathematical model of targeted cells; for this purpose, they evaluated two
models and compared the results with actual observations. Song and Chang [19] described
the time between the infection of T-cells and the secretion of viral elements. In addition,
they demonstrated the condition under which the model is stable and the model’s existence
in that solution. Mechee and Haitha [20] investigated the application of Lie symmetry for
an HIV-infected model that deals with the initial value of a nonlinear differential equation.
Based on Lie symmetry approach, Mechee and Haitha [20] attempted to identify uninfected
T-cells in the host body. Zhou et al. [21] and Leenheer et al. [22] studied a model for HIV
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infection with its cure rate. They proved that when the basic reproduction number, R0 < 1,
there are no infections in the host cells, were as when R0 > 1, the host cell is infected by HIV
infection. They also found conditions for which the system is stable or unstable. Sarivastav
and Chandra [23] proposed the dynamics of HIV and CD4+ T-cells in primary infection,
also modeling for HIV infection. They analyzed stability during the infection state of the
host cells of the body. They further discussed the local stability of the model and showed
the results numerically. They determined the basic reproduction number R0 and discussed
that when R0, the host cells are free of disease; when R0 > 1, the host cells are infected with
the disease. Liu and Li [24] formulated an HIV infection model that depends on the age
of infection, elapsed age of disease, and antiretroviral treatment. The model is concerned
with two classes, infective (concentration of infection at birth) and AIDS (concentration of
disease without birth), whose results give an approximate interval of optimal pulse and
proportion of impulsivity. Ho et al. [25] discussed the rapid turnover of plasma virion and
HIV-1 infection. They also demonstrated the treatment of individuals infected with HIV-1
infection, which causes AIDS. Perelson et al. [26] discussed the decay characteristics of HIV-
1-infected compartments during combination therapy. Kuang [27,28] proposed the delay
differential equation with applications in population dynamics. Ongun [29] implemented
the Laplace Adomian decomposition method for solving a model for HIV infection of
CD4+ T-cells. Yuzbasi [30] employed the numerical approach to solve the model for HIV
infection of CD4+ T-cells. Khalid et al. [31] discussed the numerical solution of a model
for HIV infection of CD4+ T-Cells. Merdan et al. [32] described the numerical solution of
the model for HIV infection of CD4+ T-Cells. Attaullah et al. [33] studied the transmission
and dynamical behavior of an HIV/AIDS epidemic model with a cure rate based on
mathematical model. Ogunlaran and Noutchie [34] considered the HIV-infected model with
two variables, uninfected CD4+ T-cells and incident term of the free virion. Ogunlaran and
Noutchie [34] aimed to increase the concentration of uninfected CD4+ T-cells using minimal
drug therapies and to stop the reproduction of infected cells. Boukari et al. [35] analyzed a
discrete HIV infection model with a time delay and expressed the global stability of the
model numerically. They used the backward Euler method and proved that E0 is globally
asymptotically stable when R0 < 1. Li and Xiao [36] investigated the global dynamics of a
virus’ immune system in order to establish the HIV load and structured treatment outages.
They also addressed the global dynamics of the HIV elimination and infection cell growth
model. Espindola et al. [37] investigated macrophages and their role in HIV infection. They
also discussed how highly active antiretroviral therapy (HAART) affected HIV infection.
Kinner et al. [38] examined the incidence of HIV, hepatitis B, and hepatitis C in older and
younger adults and deduced that the incidence is lower in younger adults than in older
adults. Angulo et al. [39] demonstrated that the main path of HIV-1 infection is transmitted
from a mother to her child. They also found polymorphisms in human leukocyte antigen
class-B (HLA-B) concerned with HIV-1 infection. Theys et al. [40] studied HIV-1 impact
on host cells and their transmission. They also found a link between the evolution of the
host cell and the fitness of the host cell. Hallberge et al. [41] established a developed stage
of knowledge on the significance of HIV revelation between partners. They discussed
that most HIV infection is transferred from one infected person (female) to another person
(male) and the status of both are the main factor of this disease. Ransome et al. [42] analyzed
the spread, cure, and prevention of HIV infection in social relationships. They realized
that social capital is an important factor in HIV transmission from one person to another.
Naidoo et al. [43] studied the care of tuberculosis (TB) and their class in those people
that are already infected with HIV. Omondi et al. [44] considered a mathematical model
of HIV infection and investigated the transmission between two kinds of different ages.
They also showed that males are less infected than their female partners by this infection.
Duro et al. [45] illustrated the CD4+ T-cell monitoring in HIV-infected people with the help
of CD4+ T-cell counts. They also found the possibility of CD4+ T-cells being maintained
during viral suppression by using the Kaplan–Meier technique. Mbogo et al. [46] considered
the model of HIV infection with the help of the Stochastic approach and the probability
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of HIV when clear, which depends on drug cure rate and intracellular delay length, both
of which play a vital role in HIV progression. Ghoreishi et al. [47] utilized the homotopy
analysis method (HAM) to determine the solution of the HIV-infected model in the form of
an infinite series. They used auxiliary parameters to adjust and control the convergence
portion of the infinite series. Elaiw [48] presented the HIV model along with two categories
of targeted cells, T-cells and macrophages, with an infection rate. They used Lyapunov
and Lasalle principles to recognize the global stability of the infected and uninfected state.
They computed the basic reproduction number “R0” and analyzed that when “R0 < 1”
the uninfected state is globally asymptotically stable, and when “R0 > 1” the infected
state is globally asymptotically stable. Ali et al. [49] computed the solution of the HIV-
infected model by using the Adomian decomposition method (ADM) that illustrates the
solution of ODE’s in terms of infinite series components. Yuzbasi and Karacayir [50]
considered a model of HIV infection and determined the solution of the model by using
the exponential Galerkin method (EGM). They used a technique of residual correction. The
purpose of this technique is to reduce the error of the solution. They also showed his result
numerically and compared them with numerous existing methods. Kirschner [51] studied
HIV immunological dynamics employing mathematics. In the Chemotherapy of AIDS,
Webb et al. [52] described the mathematical model for HIV treatment approach. Attaullah
and Sohaib [53] implemented two numerical schemes, namely, continuous Galerkin–Petrov
(cGP(2)) and Legendre wavelet collocation method (LWCM), for the approximate solution
of the mathematical model which describes the behavior of CD4+ T-cells, infected CD4+
T-cells, and free HIV virus particles after HIV infection. They presented and analyzed the
effect of constant and different variable source terms (depending on the viral load) used
for the supply of new CD4+ T-cells from the thymus on the dynamics of CD4+ T-cells,
infected CD4+ T-cells, and free HIV virus. Furthermore, they also solved the model using
the fourth-order Runge–Kutta (RK4) method. They highlight the accuracy and efficiency of
the proposed schemes with the other traditional schemes.

2. Main Objectives

The main contribution of this paper is to present the implementation and analysis of
the cGP(2)-method [53] on the HIV-infection model proposed by Yuzbasi and Karacayir [50]
and compare the results with those obtained from other conventional methods existing
in the literature. Comparisons verify that the new findings align well with the existing
solutions. Since the method mentioned earlier is based on the finite element method, the
present scheme can be utilized as an adaptive scheme. Moreover, this variational type of
discretization has several advantages over the standard schemes. In the existing literature,
the majority of the researchers presumed that the supply rate of new CD4+ T cells from
the thymus is constant when assessing the dynamics of HIV. However, HIV is capable
of infecting these cells in the thymus, and variable phenomena have been observed as
contrasted to constant versions. Therefore, we extended the model considered in [50]
by introducing a variable source term, a monotonically decreasing function depending
on the concentration of viral load. To understand the stability, we determined the basic
reproduction number of the model. The model is essential for mathematically simulating
HIV infection of CD4+ T cells. This will be employed to study CD4+ T-cell population
dynamics in the involvement and complete lack of HIV, which will assist in the perception
of diagnostic and therapeutic AIDS symptoms as well as diminishing the disease. This
will be a helpful addition to the current literature on biomathematics. In the remainder of
the present study, healthy cells, infected cells, and the virus will be used to mean healthy,
infected CD4+ T-cells, and free HIV particles, respectively.

3. Mathematical Formulation of HIV Model

This section is concerned with the HIV infection model described by Yuzbasi and
Karacayir [50], in which the total population is divided into three compartments, i.e., con-
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centration of healthy T-cells T(t), concentration of infected T-cells I(t), and concentration
of free HIV V(t) at time t. The description of the model is as follows:

dT(t)
dt = η − αTT(t) + βTT(t)

(
1− T(t)+I(t)

Tmax

)
− ψV(t)T(t),

dI(t)
dt = ψV(t)T(t)− φI(t),

dV(t)
dt = rIφI(t)− αVV(t).

(1)

Initial conditions for this system are T (0) = T0, I(0) = I0, and V(0) = V0, such that
T(t) indicates the concentration of healthy T-cells, I(t) indicates the population of infected
T-cells, and V(t) indicates the dynamics of free HIV at time t.

4. Modified Formulation of HIV Model

This section is concerned with the extension of the model (Yuzbasi and Karacayir [50])
by introducing a variable source term depending on the viral load instead of using a
constant source for the supply of new cells from the thymus, i.e., “0.5η + 5η

1+V(t)” [51,52]
where “η” is the supply rate of healthy cells. The modified model is as follows:

dT(t)
dt

= 0.5η +
5η

1 + V(t)
− αTT(t) + βTT(t)

(
1− T(t) + I(t)

Tmax

)
− ψV(t)T(t), (2)

dI(t)
dt

= ψV(t)T(t)− φI(t), (3)

dV(t)
dt

= rIφI(t)− αVV(t). (4)

The initial conditions and parameters involved in the model are explained in Table 1.

Table 1. The explanation of parameters with their values (Yuzbasi and Karacayir [50]).

Variables Description Values

T0 Concentration of healthy cells 0.1 mm−3

I0 Population of infected cells 0.0 mm−3

V0 Dynamics of free viruses 0.1 day−1mm−3

η Supply rate of healthy cells 0.1 day−1mm−3

αT Natural death rate for healthy cells 0.02 day−1

Tmax Maximum density of healthy cells population 1500 day−1mm−3

ψ Infection rate of healthy cells 0.0027 day−1

φ Virus particles released by infected cells 0.3 day−1

αV Virus death rate 2.4 day−1

rI Death rate of infected cells 10 mm−3

βT Growth rate of healthy cells 3 day−1

4.1. Uninfected Steady State

In this condition, viruses are not present in the human cells and in other living things.
In this situation, “E0” is stable and “E” is unstable in the uninfected steady state. In the
uninfected steady condition, we consider that T = T0, I = 0, and V = 0. Then, we discover
“T0” from the uninfected condition from System (1), which after some simplification, is as
follows: (

βT
Tmax

)
T0(t)2 + (βT − αT)T0(t)− 5.5η = 0,

then, using the quadratic formula to find the value of “T0” we have:

T0 =
−B±

√
B2 − 4AC

2A
,
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where A = βT
Tmax

, B = (βT − αT), and C = −5.5η.
Using the above we get:

T0 =
Tmax

2βT

[
(αT − βT)±

√
(βT − αT)

2 − 22βTη

Tmax

]
.

4.2. Infected Steady State

In an infected state, viruses are in human cells and in other living things. In an infected
steady state, we consider that T = T, I = I, and V = V in System (1). To obtain the value
of T, I, and V, we get the following after simplification:

T(t) =
αV
ψrI

I(t) =
TmaxψrI

(
η − αTT(t)− αTT(t)V(t)

)
(βT + V(t))

(
αV − T(t)αV − ψrIφTmax

)
V(t) =

φrI
αV

I(t)

4.3. Reproduction Number

In the cure rate of infection, the virus can easily be controlled when the value of the
reproduction number is smaller because the viral infection speed is less. However, the
disease cannot be controlled easily without a cure rate because the viral infection speed
is larger, which shows a faster speed of the virus. We determined that the reproduction
number R0, and observe that the local and global dynamics are absolutely resolute by
the significance of R0. When R0 ≤ 1, then the disease-free equilibrium “E0” is locally
and globally asymptotically stable, while R0 > 1, then the disease-free equilibrium “E0”
becomes locally and globally asymptotically unstable. The reproduction number is R0 = T0

T
,

where T(t) = αV
ψrI

.

4.4. Jacobian Matrix

The Jacobian matrix corresponding to System (7) about E(T, I, V) is provided by:

J(E) =

−αT + βT − ψV − 2βT T+βT I
Tmax

− βT T
Tmax

− 5η

(1+V(t))2 − ψT

ψV −φ ψT
0 rIφ −αV


4.5. Stability Analysis

The variational matrix of System (1) about E0(M, 0, 0) is provided as follows:

J (E0) =

−αT + βT − 2βT M
Tmax

− βT M
Tmax

−5η − ψM
0 −φ ψM
0 rIφ −αV

.

Theorem 1. If R0 ≤ 1, the disease-free equilibrium E0(M, 0, 0) is locally and globally asymptoti-
cally stable.

Proof. The Jacobian matrix for the given System (1) about E0(M, 0, 0) is as follows:

J (E0) =

−αT + βT − 2βT M
Tmax

− βT M
Tmax

−5η − ψM
0 −φ ψM
0 rIφ −αV

,
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the characteristic equation of the above matrix is det(λI − J(E0)) = 0, where “I” is the unit
matrix. Then, to expand this matrix with respect to the 1st column we obtained(

λ + αT − βT +
2βT M
Tmax

)(
λ2 + αVλ + φλ + φαV − φψrI M

)
= 0,

(
λ + αT − βT +

2βT M
Tmax

)(
λ2 + (αV + φ)λ + φαV − φψrI M

)
= 0,

(λ + b)
(

λ2 + a1λ + a0

)
= 0,

where a1 = αV + φ,
a0 = φαV − φψrI M,

and
b = αT − βT +

2βT M
Tmax

.

It is clear from the above equation that one root of this equation is λ = −b. Then, to
determine the other roots, we consider the equation as:

λ2 + a1λ + a0 = 0,

when R0< 1, a1 >0, a0 > 0, and b > 0.
Hence, by Hurwitz Criterion [28] all roots of the given equation have a negative real

part. �

Theorem 2. The disease-free equilibrium E0(M, 0, 0) is locally and globally asymptotically
unstable when R0 > 1.

Proof. E0(M, 0, 0), given from the Jacobian matrix of System (7), is presented below:

J (E0) =

−αT + βT − 2βT M
Tmax

− βT M
Tmax

−5η − ψM
0 −φ ψM
0 rIφ −αV

,

the characteristic equation of the above matrix as det(λI − J(E0)) = 0, and “I” is the unit
matrix. Then, we expand this matrix with respect to the 1st column and obtained:(

λ + αT − βT +
2βT M
Tmax

)(
λ2 + αVλ + φλ + φαV − φψrI M

)
= 0,

(
λ + αT − βT +

2βT M
Tmax

)(
λ2 + (αV + φ)λ + φαV − φψrI M

)
= 0,

(λ + b)
(

λ2 + a1λ + a0

)
= 0,

where a1 = αV + φ,
a0 = φαV − φψrI M,

and b = αT − βT + 2βT M
Tmax

.
It is clear from the above equation that one root of this equation is λ = −b. Then, to

determine the other roots, we consider the equation:

λ2 + a1λ + a0 = 0,

when R0 > 1, a1 > 0, a0 > 0, and b > 0.
Hence by Hurwitz-Criterion [28] all roots of this scheme have a positive real part. �
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Theorem 3. For any positive solution (T(t), I(t), V(t)) of System (1), there is N > 0, such that
T(t) ≤ N, I(t) ≤ N, and V(t) ≤ N, ∀ large t.

Proof. Let
L(t) = T(t) + I(t), (5)

taking the derivative of Equation (5), with the solution of System (1), to obtain:

L′(t) = T′(t) + I′(t),

L′(t) = 0.5η +
5η

1 + V(t)
− αTT(t) + βTT(t)

(
1− T(t) + I(t)

Tmax

)
− ψV(t)T(t) + ψV(t)T(t)− φI(t),

L′(t) = 0.5η +
5η

1 + V(t)
− αTT(t) + βTT(t)

(
1− T(t) + I(t)

Tmax

)
− φI(t),

L′(t) = 0.5η +
5η

1 + V(t)
− αTT(t) + βTT(t) +

−βTT(t)2 + βTT(t)I(t)
Tmax

− φI(t),≤ −hL(t) + N0,

where N0 = (TmaxβT
2 + 4βTη)/4βT , h = min(αT , φ).

Then, N1 > 0 exists, depending on the parameter of the given system. Therefore,
L(t) < N1, for all t. Then, T(t) and I(t) are both bounded above. Then, we also have V(t)

bounded above from the 3rd equation of System (1), and the maximum of this is N. The
proof is complete. �

Theorem 4. Suppose that

(a) R0 > 1,

(b)

(
αV + φ− u + 2βT T(t)

Tmax

)(
φαV − φrIψ

−
T(t)− uαV − uφ + 2βT T(t)αV

Tmax
+

2βT
−
T(t)φ

Tmax
+ ψ

−
V(t)βT

−
T(t)

Tmax

)(
−uφαV + urIφψ

−
T(t) + 2βT

−
T(t)φαV
Tmax

−

2βT
−
T(t)2rI φψ
Tmax

+ ψ
−
V(t)αV βT

−
T(t)

Tmax
+ ψ2rIφ

−
T(t)

−
V(t) + 5ηψrI φ

−
V(t)

(1+
−
V(t))2

)
> 0

Then, the equilibrium E
(
T, I, V

)
is locally asymptotically stable.

Proof. For equilibrium E
(
T, I, V

)
, the given system after simplification reduces to

λ3 + a2λ2 + a1λ + a0 = 0,

where,

a2 = αV + φ− u +
2βTT(t)

Tmax
> 0,

a1 = φαV − φrIψ
−
T(t)− uαV − uφ +

2βT
−
T(t)αV

Tmax
+

2βT
−
T(t)φ

Tmax
+

ψβT
−
V(t)

−
T(t)

Tmax
> 0

a0 = −uφαV + urIφψT(t) +
2βTT(t)φαV

Tmax
− 2βTT(t)2rIφψ

Tmax
+

ψV(t)αV βTT(t)
Tmax

+ ψ2rIφT(t)V(t) +
5ηψrIφV(t)(

1 + V(t)
)2 > 0,

and u = −αT + βT − ψV(t)− βT I(t)
Tmax

.
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To find the second part of this Theorem 4, we have

a2a1 − a0 = µ

[(
φαV − φrIψ

−
T(t)− uαV − uφ + 2βT

−
T(t)αV

Tmax
+ 2βT

−
T(t)φ

Tmax

+ψ
−
V(t)βT

−
T(t)

Tmax

)(
−uφαV + urIφψ

−
T(t) + 2βT

−
T(t)φαV
Tmax

− 2βT
−
T(t)2rI φψ
Tmax

+ψV(t)αV βT
−
T(t)

Tmax
+ ψ2rIφ

−
T(t)

−
V(t) + 5ηψrI φ

−
V(t)

(1+
−
V(t))2

)]
> 0,

where µ =
(

αV + φ− u + 2βT T(t)
Tmax

)
.

By Routh–Hurwitz criterion [28], i.e.,

a0 > 0, a1 > 0, a2 > 0,

we also have a2a1 − a0 > 0.
Then, E

(
T, I, V

)
is locally asymptotically stable (LAS) �.

Theorem 5. System (1) is a competitive system.

Proof. Consider a matrix “R” and Jacobian matrix of System (1), such that

R =

1 0 0
0 −1 0
0 0 1

,

System (1) is competitive in “D”, where D = (T, I, V) ∈ R3 : 0 < T ≤ M,
0 < I ≤ M, 0 < V ≤ M. For some partial order defined as K = (T, I, V) ∈ R3 : T ≤ 0,
I ≥ 0, V ≥ 0. After simplification, we obtained:

R ∂ f
∂x R =

1 0 0
0 −1 0
0 0 1


−αT + βT − ψV − 2βT T+βT I

Tmax
− βT T

Tmax
− 5η

1+V(t) − ψT
ψV −φ ψT
0 rIφ −αV


1 0 0

0 −1 0
0 0 1

,

R ∂ f
∂x R =

−αT + βT − ψV − 2βT T+βT I
Tmax

βT T
Tmax

− 5η
1+V(t) − ψT

−ψV −φ −ψT
0 −rIφ −αV

.

This proof is complete. �

5. The Numerical Methods
5.1. The Continuous Galerkin–Petrov Method

Numerical methods are widely used to simulate complex real-world problems. Ji-
wari [54–56] proposed the local radial basis function-finite difference based algorithms for
the singularly perturbed Burgers’ model. Mittal et al. [57] suggested a cubic B-spline quasi-
interpolation algorithm to capture the pattern formation of coupled reaction–diffusion
models. Pandit [58] discussed the local radial basis functions and scale-3 Haar wavelet op-
erational matrices based on numerical algorithms for a generalized regularized long wave
model. Mittal et al. [59] considered a new scale-3 haar wavelet algorithm for numerical
simulation of second-order ordinary differential equations. Nowadays, the cGP-method
has been successfully employed to solve many types of non-linear problems in science and
engineering, for example [27,33–39]. In this paper, we applied this approach to the HIV
infection model. The system of ODEs for HIV Model (1) can be considered as:
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Find u : [0, T]→ V = Rd such that

u′(t) = F(t, u(t)) ∀ t ∈ (0, T),

u(0) = uo, (6)

where u(t) = [T (t), I(t), V(t)] and F is the nonlinear right-hand side vector-valued
function. At t = 0, u1 = T(0), u2 = I(0), u3 = V(0) where T(0), I(0) and V(0) are the
initial conditions given in Table 1.

In order to find the approximate solution of System (1), we partitioned the time
interval I = [0, T] into a number of small pieces Im = (tm−1, tm], where m = 1, . . . , N and
0= to < t1 . . . < tN−1 < tN = T.

The symbol τ = tm − tm−1 is used to represent the maximum time step size. For the
derivation of the cGP-method, the system of equations in System (1) is multiplied with
suitable test functions (see [33–35,39] for more details) and integrated over Im. The discrete
solution u1/Im can be represented by the polynomial ansatz

uτ(t)/sm(t) =
k

∑
j=o

Um
j ϕm, j(t), (7)

where Um
j are the members of the function space V and the basis functions ϕm, j ∈ Pk(Im)

are chosen as Lagrange basis functions w. r. t. the k + 1 points tm, j ∈ Im with the following
assumption

ϕm, j(tm, i) = δi, j, i, j = 0, . . . , k, (8)

where δi, j the usual Kronecker delta. We choose the points as tm, 0 = tm−1 and tm, 1 = tm
the (k + 1)-quadrature points of the Gauß–Lobatto formula on each time interval. In this
way, the initial condition can be written as

Um
0 = uτ/sm−1(tm−1), if m ≥ 2 or Um

0 = u0, if m = 1. (9)

The basic functions ϕm, j ∈ Pk(sm) of (7) are defined using the reference transforma-
tions (see [33–35,39] for more details). Similarly, the test basis functions ψ̂i ∈ Pk−1(ŝ) are
defined with the appropriate choice in order to compute the coefficients (see [33–35,39] for
details). Finally, the cGP(k)-method reads:

k

∑
j=0

α i, jUm
j =

τm

2

{
F
(

tm, i, Um
i
)
+ β iF

(
tm, 0, Um

0
)}

, ∀ i = 1, . . . , k. (10)

where Um
0 = Um−1

k for m > 1 and U1
0 = u0 for n = 1 are the initial values α i, j and β i

and are defined as:

α i, j = ϕ̂′j
(
t̂i
)
+ β i ϕ̂′ j

(
t̂0
)

and β i = Ê0ψ̂i
(
t̂0
)
, (11)

Once the above system is solved, the initial condition for the next time interval I−m+1
is set to Um+1

0 = Um
k. For k = 2, the coefficients α i, j and β i, j of the cGP(2)-method are

computed as follows:

The cGP(2) Method

We used the three-point Gauß–Lobatto formula (Simpson rule) to define the quadratic
basis functions with weights Ê0 = Ê2 = 1/3, Ê1 = 4/3, and t̂0 = −1, t̂2 = 0, t̂0 = 1. Then,

we get
(
α i, j

)
=

(
− 5

4 1 1
4

2 −4 2

)
, (β i) =

( 1
2
−1

)
, i = 1, 2 and j = 0, 1, 2.



Axioms 2022, 11, 578 11 of 24

Thus, the system to be solved for Um
1, Um

2 ∈ V from the known Um
0 = Um−1

2

becomes:

α 1, 1Um
1 + α 1, 2Um

2 = −α 1, 0Um
0 +

τm

2

{
F
(

tm, 1, Um
1
)
+ β 1F

(
tm, 0, Um

0
)}

, (12)

α 2, 1Um
1 + α 2, 2Um

2 = −α 2, 0Um
0 +

τm

2

{
F
(

tm, 2, Um
2
)
+ β 2F

(
tm, 0, Um

0
)}

, (13)

where Um
0 represent the initial condition at the current time interval.

5.2. The Classical Explicit Runge–Kutta Method

This the fourth order Runge–Kutta method is very well known and was developed by
Kutta [54] (see [55] for more details).

Numerical Results and Discussions

In this section, we investigate the numerical solutions of the extended HIV Model (1)
by using the cGP(2) method. Initial values of the variables, different parameters, and their
detailed descriptions are provided in Table 1. Various parameters present in the model
are investigated with the help of graphs to understand their behavior. Figures 1–3 depict
the healthy cells, infected cells, and virus particles for different values of the growth rate
of healthy cells “βT”, respectively. It is concluded that the concentration of healthy cells
decreases, whereas the distribution of infected cells and the virus increases. Furthermore,
it could be seen clearly from the previously mentioned figures that all the distributions
display decaying oscillatory behavior.
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Figure 1. The influence of βT on the population dynamics of uninfected cells.
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Figure 2. The influence of βT on the population dynamics of infected cells.
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Figure 3. The influence of βT on the population dynamics of the HIV virus.

Figures 4–6 show the variation of the death rate of the virus “αV” on the distribution
of T(t), I(t), and V(t), respectively. From analysis of the graphs, it is observed that healthy
cells and infected cells increased and the virus decreased by increasing the value of “αV”.
Moreover, notice that the amplitude of oscillations decreases for all cases.
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Figure 4. The effect of αV on the density of uninfected cells.
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Figure 5. The effect of αV on the density of infected cells.
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Figure 6. The effect of αV on the density of the HIV virus.

Figures 7–9 represent the influence of “φ” (virus particles released by infected cells)
on the population dynamics of healthy cells, infected cells, and the virus. The density of
healthy/infected cells and the virus increases by increasing the value of “φ”. From the
graphs, it is noticed that the healthy cells grow up which improves the resistance against the
virus, maintaining the life of the infected patients for some time, but eventually the number
of these cells decreases and the disease grows to AIDS which is the crucial condition of
the disease.
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Figure 7. Concentration of healthy cells while increasing the value of φ.
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Figure 8. Concentration of infected cells while increasing the value of φ.
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Figure 9. The effect of φ on the density of virus particles.

Figures 10–12 demonstrate the impact of the death rate of infected cells on the dynamic
behavior of healthy/infected cells and the virus, respectively. From the figures, it is
concluded that when the value of parameter “rI” increases, the strength of healthy/infected
cells and the virus increases. Due to an increase in the production of infected cells, the
number of healthy cells increases and reaches the highest stage with the passage of time,
minimizing the ability of healthy cells to resist against the virus attack, which leaves the
body open for disease.
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Figure 10. The effect of r1 on the density of healthy cells.

Figures 13–15 indicate that when the death rate of healthy cells “αT” increases, the
concentration of healthy/infected cells and virus decreases. From the graph, we obtained
that the number of healthy cells increases initially, but after some days these cells decrease
due to the continuous death of healthy cells and eventually reaches the minimum stage,
which shows that the virus attacks the healthy cells. From the aforementioned discussion,
all the distributions show decaying oscillatory behaviors that demonstrate the fight among
the immune system of the body and the HIV virus. The amplitude of the oscillations
gradually decreasing shows that the immunity of the body decreases with the passage of
time during infection to fight against the infectious virus. The phase diagram of I(t)—T(t),
V(t)—T(t), V(t)—I(t) and V(t)—I(t)—T(t) are depicted in Figures 16–19, respectively.
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Figure 11. The effect of r1 on the density of infected cells.
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Figure 12. The effect of r1 on the density of virus particles.
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Figure 13. The effect of αT on the density of healthy cells.
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Figure 14. The effect of αT on the density of infected cells.
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Figure 15. The effect of αT on the density of virus particles.
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Figure 16. The phase diagram I(t) and T(t).
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Figure 18. The phase diagram of V(t) and I(t).
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6. Comparison between the Results of Proposed Method and other Classical Methods

In this section, we describe the comparison of the solutions of the proposed scheme
with those solutions already obtained in the literature. In Tables 2–4, the approximate
solutions obtained from the proposed scheme are compared with those obtained from the
Laplace Adomian decomposition method with Pade approximation [29], the Bessel Collo-
cation method [31], modified variational iteration method [33], an exponential Galerkin
method (EGM) [50], and classical Runge–Kutta method of the fourth order. In order to
illustrate the solutions, the graphs of the RK4-method solutions and the proposed method
solutions are depicted in Figures 20–22, for T(t), I(t), and V(t), respectively. Lastly, for the
purpose of having an idea about the accuracy among the approximate solutions obtained
from the aforesaid methods relative to the RK4-method, estimations of the absolute errors
are demonstrated in Tables 5–7. A close inspection of the results is displayed in Tables 2–7
and Figures 20–22. The results suggest that our approximate solutions are closer to so-
lutions of the RK4-method compared with the solutions of the aforementioned schemes.
It is observed that the proposed scheme is reliable for finding approximate solutions to
real-world problems.

Table 2. Comparison between the results of the cGP(2)-method with other classical methods for T(t).

t Runge–Kutta LADM-Pade [29] Bessel Coll. N = 8 [30] PIA(1,1) [31] MVIM [32]

0.2 0.2088006789 0.2088072731 0.2038616561 0.2087295073 0.2088080868
0.4 0.4062136749 0.4061052625 0.3803309335 0.4059404993 0.4062407949
0.6 0.7643508145 0.7611467713 0.6954623767 0.7635790156 0.7644287245
0.8 1.4138702489 1.3773198590 1.2759624442 1.4119543417 1.4140941730
1.0 2.5911951903 2.3291697610 2.3832277428 2.5867690583 2.5919210760

t DTM N = 6 [33] EGM N = 3 [50] EGM N = 4 [50] EGM N = 5 [50] cGP(2)-Method

0.2 0.2116480000 0.2722229510 0.2345157340 0.1982953765 0.2088064964
0.4 0.4226850000 0.3065308713 0.4201803666 0.4183153468 0.4062347843
0.6 0.8179400000 0.7075440591 0.7255920466 0.7603331972 0.7644082444
0.8 1.5462110000 1.5297610198 1.4170402360 1.4077147917 1.4140090611
1.0 2.8540530000 2.6678673734 2.5916251711 2.5915947135 2.5915094589

Table 3. Comparison between the results of the cGP(2)-method with other classical methods for I(t).

t Runge–Kutta LADM-Pade [29] Bessel coll. N=8 [30] PIA(1,1) [31] MVIM [32]

0.2 0.0000060318 0.0000060327 0.0000062478 0.0000060315 0.0000060327
0.4 0.0000131564 0.0000131591 0.0000129355 0.0000131530 0.0000131583
0.6 0.0000212206 0.0000212683 0.0000203526 0.0000212101 0.0000212233
0.8 0.0000301728 0.0000300691 0.0000283730 0.0000301480 0.0000301745
1.0 0.0000400314 0.0000398736 0.0000369084 0.0000399785 0.0000400254

t DTM N = 6 [33] EGM N = 3 [50] EGM N = 4 [50] EGM N = 5 [50] cGP(2)-Method

0.2 0.0000063666 0.0000091673 0.0000058251 0.0000059641 0.0000060325
0.4 0.0000139924 0.0000155229 0.0000134051 0.0000131340 0.0000131579
0.6 0.0000226514 0.0000228459 0.0000213405 0.0000212682 0.0000212231
0.8 0.0000332836 0.0000318486 0.0000301313 0.0000301754 0.0000301764
1.0 0.0000485399 0.0000421057 0.0000400369 0.0000400377 0.0000400364
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Table 4. Comparison between the results of the cGP(2)-method with other classical methods for V(t).

t Runge–Kutta LADM-Pade [29] Bessel Coll. N = 8 [30] PIA(1,1) [31] MVIM [32]

0.2 0.0618808474 0.0618799602 0.0618799185 0.0618796999 0.0618799087
0.4 0.0382961304 0.0383132488 0.0382949349 0.0382939096 0.0382959576
0.6 0.0237057031 0.0243917434 0.0237043186 0.0237016917 0.0237102948
0.8 0.0146813143 0.0099672189 0.0146795698 0.0146744145 0.0147004190
1.0 0.0091015791 0.0033050764 0.0090993030 0.0090905052 0.0091572387

t DTM N = 6 [33] EGM N = 3 [50] EGM N = 4 [50] EGM N = 5 [50] cGP(2)-Method

0.2 0.0618800000 0.0618823466 0.0618790041 0.0618799035 0.0618799805
0.4 0.0383090000 0.0383077329 0.0382950148 0.0382947890 0.0382950575
0.6 0.0239200000 0.0237055266 0.0237053683 0.0237046061 0.0237047074
0.8 0.0162120000 0.0146708169 0.0146798882 0.0146803810 0.0146804932
1.0 0.0160500000 0.0091056907 0.0091009339 0.0091008486 0.0091009447

Axioms 2022, 11, x FOR PEER REVIEW 19 of 25 
 

Figure 18. The phase diagram of 𝑉(𝑡) and 𝐼(𝑡). 

 
Figure 19. The phase diagram of 𝑉(𝑡), 𝐼(𝑡), and 𝑇(𝑡). 
6. Comparison between the Results of Proposed Method and other Classical Methods 

In this section, we describe the comparison of the solutions of the proposed scheme 
with those solutions already obtained in the literature. In Tables 2–4, the approximate 
solutions obtained from the proposed scheme are compared with those obtained from the 
Laplace Adomian decomposition method with Pade approximation [29], the Bessel 
Collocation method [31], modified variational iteration method [33], an exponential 
Galerkin method (EGM) [50], and classical Runge–Kutta method of the fourth order. In 
order to illustrate the solutions, the graphs of the RK4-method solutions and the proposed 
method solutions are depicted in Figures 20–22, for T(t), I(t), and V(t), respectively. Lastly, 
for the purpose of having an idea about the accuracy among the approximate solutions 
obtained from the aforesaid methods relative to the RK4-method, estimations of the 
absolute errors are demonstrated in Tables 5–7. A close inspection of the results is 
displayed in Tables 2–7 and Figures 20–22. The results suggest that our approximate 
solutions are closer to solutions of the RK4-method compared with the solutions of the 
aforementioned schemes. It is observed that the proposed scheme is reliable for finding 
approximate solutions to real-world problems. 

 
Figure 20. Comparative analysis of Galerkin and RK4 schemes from 𝑇(𝑡). 

0
500

1000
1500

0

500

1000

1500
0

200

400

600

800

1000

1200

T(t)I(t)

V
(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

time in days

T(
t)=

co
nc

en
tra

tio
n 

of
 h

ea
lth

y 
C

D
4+

 T
-c

el
ls

 a
t t

im
e 

"t
"

 

 

cGP(2)

RK4

Figure 20. Comparative analysis of Galerkin and RK4 schemes from T(t).
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Figure 21. Comparative analysis of Galerkin and RK4 schemes from I(t).
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Figure 22. Comparative analysis of Galerkin and RK4 schemes for V(t).

Table 5. Comparison of absolute errors for T(t) of the cGP(2) and classical methods relative to the
RK4-method.

t LADM-Pade [29] Bessel Coll. N = 8 [30] PIA(1,1) [31] MVIM [32] DTM N = 6 [33]

0.2 0.000006594223280 0.004939022776720 0.000071171576720 7.40792327999 × 10−6 0.002847321123280
0.4 0.000108412464641 0.025882741464641 0.000273175664641 2.71199353589 × 10−5 0.016471325035359
0.6 0.003204043237096 0.068888437837096 0.000771798937096 7.79099629040 × 10−5 0.053589185462904
0.8 0.036550389916353 0.137907804716353 0.001915907216353 2.23924083647 × 10−3 0.132340751083647
1.0 0.262025429366243 0.207967447566243 0.004426132066243 7.25885633757 × 10−3 0.262857809633757

t EGM N = 3 [50] EGM N = 4 [50] EGM N = 5 [50] cGP(2)-Method

0.2 0.063422272123280 0.025715055123280 0.010505302376720 5.81760745974 × 10−6

0.4 0.099682803664641 0.013966691635359 0.012101671835359 2.11093478030 × 10−5

0.6 0.056806755437096 0.038758767937096 0.004017617337096 5.74299020841 × 10−5

0.8 0.115890770883647 0.003169987083647 0.006155457216353 1.38812210279 × 10−4

1.0 0.076672183033757 0.000429980733757 0.000399523133757 3.14268571135 × 10−4

Table 6. Comparison of absolute errors for I(t) of the cGP(2) and classical methods relative to the
RK4-method.

t LADM-Pade [29] Bessel Coll. N = 8 [30] PIA(1,1) [31] MVIM [32] DTM N= 6 [33]

0.2 8.21028439 × 10−10 2.15921028439 × 10−7 3.7897156100 × 10−10 8.2102843899 × 10−10 3.3472103 × 10−7

0.4 2.61393801 × 10−9 2.20986061988 × 10−7 3.4860619888 × 10−9 1.8139380112 × 10−9 8.3591393 × 10−7

0.6 4.76223967 × 10−8 8.68077603328 × 10−7 1.0577603329 × 10−8 2.6223966711 × 10−9 1.4307224 × 10−6

0.8 1.03710297 × 10−7 1.79981029736 × 10−6 2.4810297362 × 10−8 1.6897026384 × 10−9 3.1107898 × 10−6

1.0 1.57815845 × 10−7 3.12301584505 × 10−6 5.2915845057 × 10−8 6.0158450573 × 10−9 8.5084842 × 10−6

t EGM N = 3 [50] EGM N = 4 [50] EGM N = 5 [50] cGP(2)-Method

0.2 3.1354210284 × 10−6 2.0677897156 × 10−7 6.77789715609 × 10−8 6.6752196826462 × 10−10

0.4 2.3664139380 × 10−6 2.4861393801 × 10−7 2.24860619888 × 10−8 1.4924805624754 × 10−9

0.6 1.6252223967 × 10−6 1.1982239667 × 10−7 4.75223966710 × 10−8 2.4821350652576 × 10−9

0.8 0.1.67578970 × 10−6 4.1510297361 × 10−8 2.58970263849 × 10−9 3.6558718785258 × 10−9

1.0 2.0742841549 × 10−6 5.4841549427 × 10−9 6.28415494269 × 10−9 5.0422736406875 × 10−9
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Table 7. Comparison of absolute errors for V(t) of the cGP(2) and classical methods relative to the
RK4-method.

t LADM-Pade [29] Bessel Coll. N = 8 [30] PIA(1,1) [31] MVIM [32] DTM N = 6 [33]

0.2 8.87201671 × 10−7 9.28901670999 × 10−7 1.14750167099 × 10−6 9.3870167099 × 10−7 8.47401671 × 10−7

0.4 1.71183628 × 10−5 1.19553719699 × 10−6 2.22083719699 × 10−6 1.7283719699 × 10−7 1.28695628 × 10−5

0.6 6.86040272 × 10−4 1.38452847400 × 10−6 4.01142847400 × 10−6 4.5916715259 × 10−6 2.14296871 × 10−4

0.8 4.71409543 × 10−3 1.74452298399 × 10−6 6.89982298399 × 10−6 1.9104677016 × 10−5 1.53068567 × 10−3

1.0 5.79650268 × 10−3 2.27607680900 × 10−6 1.10738768090 × 10−5 5.5659623191 × 10−5 6.94842092 × 10−3

t EGM N = 3 [50] EGM N = 4 [50] EGM N = 5 [50] cGP(2)-Method

0.2 1.499198329 × 10−6 1.8433016709 × 10−6 9.43901670998 × 10−7 8.6688500106069 × 10−7

0.4 1.160246280 × 10−5 1.1156371969 × 10−6 1.34143719699 × 10−6 1.0728542867849 × 10−7

0.6 1.765284740 × 10−7 3.3482847399 × 10−7 1.09702847399 × 10−6 9.9566078337957 × 10−7

0.8 1.049742298 × 10−5 1.4261229840 × 10−6 9.33322984000 × 10−7 8.2106806348695 × 10−7

1.0 4.111623191 × 10−6 6.4517680900 × 10−7 7.30476809001 × 10−7 6.3432370331871 × 10−7

7. Conclusions

The aim of the present study was to modify the HIV model and introduce a variable
source term for the generation of healthy cells dependent on the virus and numerically
approximate the density of healthy cells, infected cells, and free HIV virus after infection.
We implemented a new numerical technique, namely, the continuous Galerkin–Petrov
scheme for efficient and accurate solutions with the aforementioned model In addition,
the impact of various physical parameters was analyzed, and all the observations were
presented graphically. The main findings of the current study are summarized as follows:

i. Increasing growth rate of healthy cells, (βT), shows a decreasing effect in the popula-
tion dynamics of healthy cells, while showing an increasing effect in the population
dynamics of infected cells and HIV particles. All the profiles showed a decaying
oscillatory behavior.

ii. The healthy cells and infected cells show an increasing effect, while free virus
distribution shows a decreasing behavior with an increase in the values of the virus
death rate (αV).

iii. It is noticed that the virus particles released by infected cells (φ) show significant
variations in the population distributions of healthy cells, infected cells, and the
virus. By increasing the value of “φ”, the healthy cells, infected cells, and the virus
increases.

iv. The graphical trends illustrate increased decay in distributions of all dependent
variables with an increase in the death rate of infected cells (rI).

v. The decrease in the density of healthy cells, infected cells, and free HIV particles is
observed by increasing “αT”.

Moreover, we performed an analysis for the reproduction of number “R0” and con-
cluded that when “R0 ≤ 1” the disease-free equilibrium state “E0” is locally as well as
globally stable, while when “R0 > 1”, then “E0” is locally and globally unstable.

Furthermore, the well-known classical method for the initial value problem, namely,
the RK-method, is utilized for the model and all the outcomes were compared with those
from the proposed scheme and other schemes available in the open literature. It was
observed that the suggested scheme is efficient and accurate in comparison with the
other schemes. The proposed scheme could be applicable for solving complex real-world
problems. In the future, the presented work is extendable in different directions. For
instance, the authors are interested to determine the most proper and effective method of
vaccination and treatment using the model.
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