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Abstract: This study deals with the numerical solution of the human immunodeficiency virus (HIV) 

infection model, which is a significant problem for global public health. Acquired 

immunodeficiency syndrome (AIDS) is a communicable disease, and HIV is the causative agent for 

AIDS, which damages the ability of the body to fight against disease and easily usual innocuous 

infections attack the body. On entering the body, HIV infects a large amount of CD4+ T-cells and 

disturbs the supply rate of these cells from the thymus. Herein, we consider the model with variable 

source terms in which the production of these cells is a monotonically decreasing function of viral 

load. Based on the reproduction number, we describe the stability of free equilibrium. The 

continuous Galerkin–Petrov method, in particular the cGP(2)-method, is implemented to determine 

the numerical solutions of the model. The influence of different parameters on the population 

dynamics of healthy/infected CD4+ T-cells and free HIV particles are examined, and the results are 

presented graphically. On the other hand, the model is solved using the fourth-order Runge–Kutta 

method, and briefly, the RK4-method, and the results of the proposed schemes are compared with 

those obtained from other classical schemes such as the Bessel collocation method (BCM), Laplace 

Adomian decomposition method (LADM), perturbation iteration algorithm (PIA), modified 

variational iteration method (MVIM), differential transform method (DTM), and exponential 

Galerkin method (EGM), numerically. Furthermore, absolute errors relative to the RK4 method are 

computed to describe the accuracy of the proposed scheme. It is presented that the cGP(2)-method 

gains accurate results at larger time step sizes in comparison with the results of the aforementioned 

methods. The numerical and graphical comparison reveals that the proposed scheme yields more 

accurate results relative to other traditional schemes from the literature. 
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1. Introduction  

Dynamical systems are well known for their various applications, such as in a 

population growth model, biomedical, and engineering. For example, in the field of 

population dynamics, one can study the changes in population with respect to time and 

make a long-term prediction about population growth for the future. Ding and Ye [1] used 

a fractional order model of HIV infection. They showed a non-negative solution of that 

model along with stability analysis. They also expressed numerical simulation and 

displayed the result of the HIV mathematical model. Burton and Mascola [2] analyzed 

that AIDS is a result of HIV that minimizes the capability of body scraps beside the 

disorder and makes it more suitable for natural inoffensive infection. HIV infects a huge 
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quantity of T-cells and divides rapidly while inflowing into the host. Throughout the 

earliest phases of the disease, blood consists of the soaring power of HIV harmful 

particles, which extend throughout the body as the blood circulates. These 

microorganisms swell into liquid substances of the body, e.g., blood, tears, urine, etc. Most 

HIV-infected individuals will develop AIDS 10 to 15 years after infection, while several 

people stay fit for more than this period without ailment. Samanta [3] identified that HIV 

has a stretched evolution and transmissible phase. In the nonexistence of antiretroviral 

treatment, the usual period of evolution from HIV to AIDS is 9 to 10 years. The average 

endurance duration following AIDS is 9 months and 20 days. 

Furthermore, the ratio of medical infection evolution depends broadly on 

personalities, from 14 days until 20 years. Several issues upset the ratio of development. 

These causes embrace the host’s capacity to protect in opposition to HIV. Humble 

entrance to physical care and the presence of associated infections may also inspire 

quicker illness development. Krischner et al. [4] discussed treating HIV infection and 

certain chemotherapies have been tested. The most commonly used drugs are AZT, DDI, 

DDC, and D4T. All these drugs are inhibiters, which work like reverse transcriptase 

inhibitors. The reverse transcriptase inhibitors reduce the growth of the virus and finally 

block the infection. 

Many researchers have worked in this field to conduct studies and analyze research 

to control this disease. Chum et al. [5] addressed the rule of sexually transferred infection 

in HIV-1. Sun and Min [6] studied a modified HIV infection model simulation. Khalil et 

al. [7] analyzed HIV infection with the drug therapy effect. They also discussed the 

generalized Euler method (GEM) and the numerical solution of the HIV fractional-order 

model. Wang et al. [8] examined the HIV pathogenesis model along with its cure rate and 

logistic growth of healthy and infected CD4+ T-cells. Osman and Abdurrahman [9] 

studied the stability of the delayed HIV model and investigated its treatment and 

transmission. They also computed the basic reproduction number R0 and discussed its 

stability based on the reproduction number. Wan et al. [10] discussed the behavior of the 

viral dynamical model and its solution. Wang et al. [11] addressed the global dynamics of 

HIV infection of CD4 + T-cells and analyzed the mathematical model. Srivastava et al. 

[12] presented drug therapy for HIV infection. Culshaw et al. [13] demonstrated the 

differential equation of HIV infection and discussed the modeling and dynamics of CD4+ 

T-cells.  

HIV/AIDS is a universal health challenge; over 70 million people worldwide have 

been infected with this disease, from which 35 million people have passed away, and 36.7 

million patients are still living with this infection [14]. Nelson and Perelson [15] worked 

on the model of HIV infection and its mathematical analysis based on kinetic parameters. 

They analyzed intracellular delays, antiretroviral therapy, and dynamics of infected and 

uninfected CD4+ T-cells. They also illustrated that when the drug effect is less than the 

loss rate of productively infected cells, the approximated value is ideal and depicts the 

results of the model. Perelson et al. [16] examined the interaction of HIV and CD4+ T-cells. 

They discussed the infected, active infected, uninfected, and free virus T-cells. They 

explained the characteristics of HIV infection in a straightforward manner. They 

considered two types of HIV models. The first is with a constant source for the growth of 

CD4+ T-cells, and the second is a decrease in the relative viral load of CD4+ T-cells. Ronga 

et al. [17] discussed a mathematical model to examine the method of drug resistance 

during therapy and its appearance. They indicated that drug-resistant viruses contributed 

significantly to their stability. When antiretroviral treatments are available, both strain 

and wild-type reproduction are close to each other. Duffin and Tullis [18] worked on a 

mathematical model for HIV infection and AIDS to understand these diseases. They 

suggested a mathematical model of targeted cells; for this purpose, they evaluated two 

models and compared the results with actual observations. Song and Chang [19] 

described the time between the infection of T-cells and the secretion of viral elements. In 

addition, they demonstrated the condition under which the model is stable and the 
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model’s existence in that solution. Mechee and Haitha [20] investigated the application of 

Lie symmetry for an HIV-infected model that deals with the initial value of a nonlinear 

differential equation. Based on Lie symmetry approach, Mechee and Haitha [20] 

attempted to identify uninfected T-cells in the host body. Zhou et al. [21] and Leenheer et 

al. [22] studied a model for HIV infection with its cure rate. They proved that when the 

basic reproduction number, �� < 1, there are no infections in the host cells, were as when 

R0 > 1, the host cell is infected by HIV infection. They also found conditions for which the 

system is stable or unstable. Sarivastav and Chandra [23] proposed the dynamics of HIV 

and CD4+ T-cells in primary infection, also modeling for HIV infection. They analyzed 

stability during the infection state of the host cells of the body. They further discussed the 

local stability of the model and showed the results numerically. They determined the basic 

reproduction number R0 and discussed that when ��, the host cells are free of disease; 

when �� > 1, the host cells are infected with the disease. Liu and Li [24] formulated an 

HIV infection model that depends on the age of infection, elapsed age of disease, and 

antiretroviral treatment. The model is concerned with two classes, infective (concentration 

of infection at birth) and AIDS (concentration of disease without birth), whose results give 

an approximate interval of optimal pulse and proportion of impulsivity. Ho et al. [25] 

discussed the rapid turnover of plasma virion and HIV-1 infection. They also 

demonstrated the treatment of individuals infected with HIV-1 infection, which causes 

AIDS. Perelson et al. [26] discussed the decay characteristics of HIV-1-infected 

compartments during combination therapy. Kuang [27,28] proposed the delay differential 

equation with applications in population dynamics. Ongun [29] implemented the Laplace 

Adomian decomposition method for solving a model for HIV infection of CD4+ T-cells. 

Yuzbasi [30] employed the numerical approach to solve the model for HIV infection of 

CD4+ T-cells. Khalid et al. [31] discussed the numerical solution of a model for HIV 

infection of CD4+ T-Cells. Merdan et al. [32] described the numerical solution of the model 

for HIV infection of CD4+ T-Cells. Attaullah et al. [33] studied the transmission and 

dynamical behavior of an HIV/AIDS epidemic model with a cure rate based on 

mathematical model. Ogunlaran and Noutchie [34] considered the HIV-infected model 

with two variables, uninfected CD4+ T-cells and incident term of the free virion. 

Ogunlaran and Noutchie [34] aimed to increase the concentration of uninfected CD4+ T-

cells using minimal drug therapies and to stop the reproduction of infected cells. Boukari 

et al. [35] analyzed a discrete HIV infection model with a time delay and expressed the 

global stability of the model numerically. They used the backward Euler method and 

proved that �� is globally asymptotically stable when �� < 1 . Li and Xiao [36] 

investigated the global dynamics of a virus’ immune system in order to establish the HIV 

load and structured treatment outages. They also addressed the global dynamics of the 

HIV elimination and infection cell growth model. Espindola et al. [37] investigated 

macrophages and their role in HIV infection. They also discussed how highly active 

antiretroviral therapy (HAART) affected HIV infection. Kinner et al. [38] examined the 

incidence of HIV, hepatitis B, and hepatitis C in older and younger adults and deduced 

that the incidence is lower in younger adults than in older adults. Angulo et al. [39] 

demonstrated that the main path of HIV-1 infection is transmitted from a mother to her 

child. They also found polymorphisms in human leukocyte antigen class-B (HLA-B) 

concerned with HIV-1 infection. Theys et al. [40] studied HIV-1 impact on host cells and 

their transmission. They also found a link between the evolution of the host cell and the 

fitness of the host cell. Hallberge et al. [41] established a developed stage of knowledge on 

the significance of HIV revelation between partners. They discussed that most HIV 

infection is transferred from one infected person (female) to another person (male) and 

the status of both are the main factor of this disease. Ransome et al. [42] analyzed the 

spread, cure, and prevention of HIV infection in social relationships. They realized that 

social capital is an important factor in HIV transmission from one person to another. 

Naidoo et al. [43] studied the care of tuberculosis (TB) and their class in those people that 

are already infected with HIV. Omondi et al. [44] considered a mathematical model of 
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HIV infection and investigated the transmission between two kinds of different ages. They 

also showed that males are less infected than their female partners by this infection. Duro 

et al. [45] illustrated the CD4+ T-cell monitoring in HIV-infected people with the help of 

CD4+ T-cell counts. They also found the possibility of CD4+ T-cells being maintained 

during viral suppression by using the Kaplan–Meier technique. Mbogo et al. [46] 

considered the model of HIV infection with the help of the Stochastic approach and the 

probability of HIV when clear, which depends on drug cure rate and intracellular delay 

length, both of which play a vital role in HIV progression. Ghoreishi et al. [47] utilized the 

homotopy analysis method (HAM) to determine the solution of the HIV-infected model 

in the form of an infinite series. They used auxiliary parameters to adjust and control the 

convergence portion of the infinite series. Elaiw [48] presented the HIV model along with 

two categories of targeted cells, T-cells and macrophages, with an infection rate. They 

used Lyapunov and Lasalle principles to recognize the global stability of the infected and 

uninfected state. They computed the basic reproduction number “��” and analyzed that 

when “�� < 1” the uninfected state is globally asymptotically stable, and when “�� > 1” 

the infected state is globally asymptotically stable. Ali et al. [49] computed the solution of 

the HIV-infected model by using the Adomian decomposition method (ADM) that 

illustrates the solution of ODE’s in terms of infinite series components. Yuzbasi and 

Karacayir [50] considered a model of HIV infection and determined the solution of the 

model by using the exponential Galerkin method (EGM). They used a technique of 

residual correction. The purpose of this technique is to reduce the error of the solution. 

They also showed his result numerically and compared them with numerous existing 

methods. Kirschner [51] studied HIV immunological dynamics employing mathematics. 

In the Chemotherapy of AIDS, Webb et al. [52] described the mathematical model for HIV 

treatment approach. Attaullah and Sohaib [53] implemented two numerical schemes, 

namely, continuous Galerkin–Petrov (cGP(2)) and Legendre wavelet collocation method 

(LWCM), for the approximate solution of the mathematical model which describes the 

behavior of CD4+ T-cells, infected CD4+ T-cells, and free HIV virus particles after HIV 

infection. They presented and analyzed the effect of constant and different variable source 

terms (depending on the viral load) used for the supply of new CD4+ T-cells from the 

thymus on the dynamics of CD4+ T-cells, infected CD4+ T-cells, and free HIV virus. 

Furthermore, they also solved the model using the fourth-order Runge–Kutta (RK4) 

method. They highlight the accuracy and efficiency of the proposed schemes with the 

other traditional schemes. 

2. Main Objectives 

The main contribution of this paper is to present the implementation and analysis of 

the cGP(2)-method [53] on the HIV-infection model proposed by Yuzbasi and Karacayir 

[50] and compare the results with those obtained from other conventional methods 

existing in the literature. Comparisons verify that the new findings align well with the 

existing solutions. Since the method mentioned earlier is based on the finite element 

method, the present scheme can be utilized as an adaptive scheme. Moreover, this 

variational type of discretization has several advantages over the standard schemes. In 

the existing literature, the majority of the researchers presumed that the supply rate of 

new CD4+ T cells from the thymus is constant when assessing the dynamics of HIV. 

However, HIV is capable of infecting these cells in the thymus, and variable phenomena 

have been observed as contrasted to constant versions. Therefore, we extended the model 

considered in [50] by introducing a variable source term, a monotonically decreasing 

function depending on the concentration of viral load. To understand the stability, we 

determined the basic reproduction number of the model. The model is essential for 

mathematically simulating HIV infection of CD4+ T cells. This will be employed to study 

CD4+ T-cell population dynamics in the involvement and complete lack of HIV, which 

will assist in the perception of diagnostic and therapeutic AIDS symptoms as well as 

diminishing the disease. This will be a helpful addition to the current literature on 
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biomathematics. In the remainder of the present study, healthy cells, infected cells, and 

the virus will be used to mean healthy, infected CD4+ T-cells, and free HIV particles, 

respectively.  

3. Mathematical Formulation of HIV Model 

This section is concerned with the HIV infection model described by Yuzbasi and 

Karacayir [50], in which the total population is divided into three compartments, i.e., 

concentration of healthy T-cells �(�) , concentration of infected T-cells  �(�),  and 

concentration of free HIV �(�) at time �. The description of the model is as follows:  

 
��(�)

��
= � − ���(�) + ���(�) �1 −

�(�)� �(�)

����
� − ��(�)�(�),   

��(�)

��
= ��(�)�(�) − ��(�),   

��(�)

��
= ����(�) − ���(�). 

(1)

Initial conditions for this system are � (0) = ��, �(0) = ��, and �(0) = �� , such that 

�(�)  indicates the concentration of healthy T-cells, �(�)  indicates the population of 

infected T-cells, and �(�) indicates the dynamics of free HIV at time �. 

4. Modified Formulation of HIV Model 

This section is concerned with the extension of the model (Yuzbasi and Karacayir 

[50]) by introducing a variable source term depending on the viral load instead of using a 

constant source for the supply of new cells from the thymus, i.e., “0.5� +
��

���(�)
” [51,52] 

where “�” is the supply rate of healthy cells. The modified model is as follows:  

��(�)

��
= 0.5� +

5�

1 + �(�)
− ���(�) + ���(�) �1 −

�(�) +  �(�)

����
� − ��(�)�(�), (2)

��(�)

��
= ��(�)�(�) − ��(�),  (3)

��(�)

��
= ����(�) − ���(�).  (4)

The initial conditions and parameters involved in the model are explained in Table 1.  

Table 1. The explanation of parameters with their values (Yuzbasi and Karacayir [50]). 

Variables Description Values 

�� Concentration of healthy cells 0.1 mm�� 

�� Population of infected cells 0.0 mm�� 

�� Dynamics of free viruses  0.1 day��mm�� 

� Supply rate of healthy cells   0.1 day��mm�� 

�� Natural death rate for healthy cells 0.02 day�� 

���� Maximum density of healthy cells population  1500 day��mm�� 

� Infection rate of healthy cells 0.0027 day�� 

� Virus particles released by infected cells 0.3 day�� 

�� Virus death rate 2.4 day�� 

��  Death rate of infected cells 10 mm�� 

�� Growth rate of healthy cells 3 day�� 

4.1. Uninfected Steady State 

In this condition, viruses are not present in the human cells and in other living things. 

In this situation, “��” is stable and “��” is unstable in the uninfected steady state. In the 
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uninfected steady condition, we consider that � = ��, � = 0, and � = 0. Then, we discover 

“��” from the uninfected condition from System (1), which after some simplification, is 

as follows: 

�
��

����
� ��(�)� + (�� − ��)��(�) − 5.5� = 0, 

then, using the quadratic formula to find the value of “��” we have: 

�� =
−� ± √�� − 4��

2�
, 

where � =
��

����
, � = (�� − ��), and � = −5.5�. 

Using the above we get: 

�� =
����

2��
�(�� − ��) ± �(�� − ��)� −

22���

����
 �. 

4.2. Infected Steady State 

In an infected state, viruses are in human cells and in other living things. In an 

infected steady state, we consider that � = ��, � = �,̅ and � = ��  in System (7). To obtain the 

value of ��, �,̅ and �� , we get the following after simplification: 

��(�) =
��

���
 

�(̅�) =
��������� − ����(�) − ����(�)�(�)�

(�� + �(�))(�� − ��(�)�� − ��������)
 

��(�) =
���

��
 �(̅�) 

4.3. Reproduction Number 

In the cure rate of infection, the virus can easily be controlled when the value of the 

reproduction number is smaller because the viral infection speed is less. However, the 

disease cannot be controlled easily without a cure rate because the viral infection speed is 

larger, which shows a faster speed of the virus. We determined that the reproduction 

number ��, and observe that the local and global dynamics are absolutely resolute by the 

significance of ��.  When �� ≤ 1,  then the disease-free equilibrium “�� ” is locally and 

globally asymptotically stable, while �� > 1,  then the disease-free equilibrium “ �� ” 

becomes locally and globally asymptotically unstable. The reproduction number is �� =
��

��
,  where ��(�) =

��

���
. 

4.4. Jacobian Matrix 

The Jacobian matrix corresponding to System (7) about �(�, �, �) is provided by:  

�(�) =

⎝

⎜
⎛

−�� + �� − �� −
2��� + ���

����
−

���

����
−

5�

�1 + �(�)�
� − ��

�� −� ��
0 ��� −�� ⎠

⎟
⎞
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4.5. Stability Analysis 

The variational matrix of System (1) about  ��(�, 0, 0) is provided as follows: 

� (��) =  

⎝

⎛
−�� + �� −

2���

����
−

���

����
−5� − ��

0 −� ��
0 ��� −�� ⎠

⎞. 

Theorem 1. If �� ≤ 1 , the disease-free equilibrium ��(�, 0, 0)  is locally and globally 

asymptotically stable. 

Proof. The Jacobian matrix for the given System (1) about  ��(�, 0, 0) is as follows: 

� (��) =  

⎝

⎛
−�� + �� −

2���

����
−

���

����
−5� − ��

0 −� ��
0 ��� −�� ⎠

⎞, 

the characteristic equation of the above matrix is det��� − �(��)� = 0, where “�” is the unit 

matrix. Then, to expand this matrix with respect to the 1st column we obtained 

�� + �� − �� +
2���

����
� (�� + ��� + �� + ��� − �����) = 0, 

�� + �� − �� +
2���

����
� (�� + (�� + �)� + ��� − �����) = 0, 

(� + �)(�� + ��� + ��) = 0, 

where �� = �� + �, 

�� =  ��� − �����, 

and 

� = �� − �� +
2���

����
. 

It is clear from the above equation that one root of this equation is � = −�. Then, to 

determine the other roots, we consider the equation as: 

�� + ��� + �� = 0, 

when �� < 1, �� > 0, �� > 0, and � > 0. 

Hence, by Hurwitz Criterion [28] all roots of the given equation have a negative real 

part. □ 

Theorem 2. The disease-free equilibrium ��(�, 0, 0)  is locally and globally asymptotically 

unstable when �� > 1. 

Proof. ��(�, 0, 0), given from the Jacobian matrix of System (7), is presented below: 

� (��) =  

⎝

⎛
−�� + �� −

2���

����
−

���

����
−5� − ��

0 −� ��
0 ��� −�� ⎠

⎞, 
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the characteristic equation of the above matrix as det��� − �(��)� = 0, and “�” is the unit 

matrix. Then, we expand this matrix with respect to the 1st column and obtained: 

�� + �� − �� +
2���

����
� (�� + ��� + �� + ��� − �����) = 0, 

�� + �� − �� +
2���

����
� (�� + (�� + �)� + ��� − �����) = 0, 

(� + �)(�� + ��� + ��) = 0, 

where �� = �� + �, 

�� =  ��� − �����, 

and � = �� − �� +
����

����
. 

It is clear from the above equation that one root of this equation is � = −�. Then, to 

determine the other roots, we consider the equation: 

�� + ��� + �� = 0, 

when �� > 1, �� > 0, �� > 0, and � > 0. 

Hence by Hurwitz-Criterion [28] all roots of this scheme have a positive real part. □  

Theorem 3. For any positive solution (�(�), �(�), �(�)) of System (1), there is � > 0, such that 

�(�) ≤ �, �(�) ≤ �, ��� �(�) ≤ �, ∀ large t. 

Proof. Let 

�(�) = �(�) + �(�), (5)

taking the derivative of Equation (5), with the solution of System (1), to obtain: 

��(�) = ��(�) + ��(�), 

��(�) = 0.5� +
5�

1 + �(�)
− ���(�) + ���(�) �1 −

�(�) +  �(�)

����
� − ��(�)�(�) + ��(�)�(�)

− ��(�), 

��(�) = 0.5� +
5�

1 + �(�)
− ���(�) + ���(�) �1 −

�(�) +  �(�)

����
� − ��(�), 

��(�) = 0.5� +
5�

1 + �(�)
− ���(�) + ���(�) +

−���(�)� + ���(�)I(t)

����
− ��(�), 

≤ −ℎ�(�) + ��, 

where �� = (������
� + 4���)/4��, ℎ = ���(��, �). 

Then, �� > 0 ������ , depending on the parameter of the given system. 

Therefore, �(�) < ��, for all �. Then, �(�) and �(�) are both bounded above. Then, we also 

have �(�) bounded above from the 3rd equation of System (1), and the maximum of this 

is �. The proof is complete. □  

Theorem 4. Suppose that 

(a)  �� > 1, 
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(b)  ��� + � − � +
�����(�)

����
� ���� − ������(�) − ��� − �� +

�����(�)��

����
+

�����(�)�

����
+

���(�)����(�)

����
 � (−���� + �������(�) +

�����(�)���

����
−

�����(�)�����

����
+

���(�)������(�)

����
+ �������(�)��(�) +

��������(�)

�����(�)�
� ) > 0. 

Then, the equilibrium ��(��, �,̅ ��) is locally asymptotically stable. 

Proof. For equilibrium ��(��, �,̅ ��), the given system after simplification reduces to  

�� + ���� + ��� + �� = 0, 

where,  

�� = �� + � − � +
2����(�)

����
 > 0, 

�� = ��� − ������(�) − ��� − �� +
2����(�)��

����
+

2����(�)�

����
+

�����(�)��(�)

����
 > 0, 

 �� = −���� + �������(�) +
2����(�)���

����
−

2����(�)�����

����
+

���(�)������(�)

����

+ �������(�)��(�) +
5�������(�)

�1 + ��(�)�
� > 0, 

and � = −�� + �� − ���(�) −
���̅(�)

����
.  

To find the second part of this Theorem 4, we have 

���� − �� = � ����� − ������(�) − ��� − �� +
2����(�)��

����
+

2����(�)�

����

+
���(�)����(�)

����
 � �−���� + �������(�) +

2����(�)���

����
−

2����(�)�����

����

+
��(�)������(�)

����
+ �������(�)��(�) +

5�������(�)

�1 + ��(�)�
� �� > 0, 

where � = ��� + � − � +
�����(�)

����
�. 

By Routh–Hurwitz criterion [28], i.e., 

�� > 0, �� > 0, �� > 0, 

we also have ���� − ��  > 0. 

Then, ��(��, �,̅ ��) is locally asymptotically stable (LAS) □. 

Theorem 5. System (1) is a competitive system. 

Proof. Consider a matrix “�” and Jacobian matrix of System (1), such that 

� = �
1 0 0
0 −1 0
0 0 1

�, 

System (1) is competitive in“�”, where � = {(�, �, �) ∈  ��: 0 < � ≤ �, 0 < � ≤ �, 0 < � ≤

�}.  For some partial order defined as � = {(�, �, �) ∈ ��: � ≤ 0, � ≥ 0, � ≥ 0} . After 

simplification, we obtained:  
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�
��

��
� =  

�
1 0 0
0 −1 0
0 0 1

�

⎝

⎛
−�� + �� − �� −

2��� + ���

����
−

���

����
−

5�

1 + �(�)
− ��

�� −� ��
0 ��� −�� ⎠

⎞ �
1 0 0
0 −1 0
0 0 1

�, 

�
��

��
� =

⎝

⎛
−�� + �� − �� −

2��� + ���

����

���

����
−

5�

1 + �(�)
− ��

−�� −� −��
0 −��� −�� ⎠

⎞. 

This proof is complete. □  

5. The Numerical Methods 

5.1. The Continuous Galerkin–Petrov Method. 

Numerical methods are widely used to simulate complex real-world problems. Jiwari 

[54–56] proposed the local radial basis function-finite difference based algorithms for the 

singularly perturbed Burgers’ model. Mittal et al. [57] suggested a cubic B-spline quasi-

interpolation algorithm to capture the pattern formation of coupled reaction–diffusion 

models. Pandit [58] discussed the local radial basis functions and scale-3 Haar wavelet 

operational matrices based on numerical algorithms for a generalized regularized long 

wave model. Mittal et al. [59] considered a new scale-3 haar wavelet algorithm for 

numerical simulation of second-order ordinary differential equations. Nowadays, the 

cGP-method has been successfully employed to solve many types of non-linear problems 

in science and engineering, for example [27,33–39]. In this paper, we applied this approach 

to the HIV infection model. The system of ODEs for HIV Model (1) can be considered as: 

Find �: [0, �] →  � = ��  such that  

��(�) = ���, �(�)� ∀ � ∈ (0, �), 

�(0) = ��,  (6)

where �(�)  =  [� (�), �(�), �(�)] and �  is the nonlinear right-hand side vector-valued 

function. At � = 0, �� = �(0), �� = �(0), �� = �(0)  where �(0), �(0)  and �(0)  are the 

initial conditions given in Table 1. 

In order to find the approximate solution of System (1), we partitioned the time 

interval � = [0, �] into a number of small pieces �� = (����, ��], where � = 1, … , �  and 

0= �� < �� … < ���� < �� = �. 

The symbol � = �� − ���� is used to represent the maximum time step size. For the 

derivation of the cGP-method, the system of equations in System (1) is multiplied with 

suitable test functions (see [33–35,39] for more details) and integrated over ��. The discrete 

solution ��/�� can be represented by the polynomial ansatz 

 ��(�)/��(�) = �  

�

���

��
���,�(�),  (7)

where ��
� are the members of the function space � and the basis functions ��,� ∈ ℙ�(��) 

are chosen as Lagrange basis functions w. r. t. the � +  1  points ��,� ∈  ��  with the 

following assumption 

��,����,�� = ��,�, �, � = 0, … , �, (8)
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where ��,� the usual Kronecker delta. We choose the points as ��,� = ���� and ��,� = �� 

the (� +  1)-quadrature points of the Gauß–Lobatto formula on each time interval. In this 

way, the initial condition can be written as 

��
� = ��/����(����), if � ≥ 2 or ��

� = ��, if � = 1.  (9)

The basic functions ��,� ∈ ℙ�(��) of (7) are defined using the reference 

transformations (see [33–35,39] for more details). Similarly, the test basis functions ��� ∈

ℙ���(�̂) are defined with the appropriate choice in order to compute the coefficients (see 

[33–35,39] for details). Finally, the cGP(�)-method reads: 

� � �,���
�

�

���

=
��

2
�����,�, ��

�� + � ��(��,�, ��
�)�, ∀ � = 1, … , �. (10)

where ��
� = ����

�  for � > 1  and ��
� = ��  for � = 1  are the initial values � �,�  and � � 

and are defined as: 

� �,� = ��′�(�̂�) + � ��′�
�(�̂�) and � � = ������(�̂�),  (11)

Once the above system is solved, the initial condition for the next time interval ��
��� 

is set to ����
� = ��

� . For � = 2, the coefficients � �,�  and � �,�  of the cGP(2)-method are 

computed as follows: 

The cGP(2) Method  

We used the three-point Gauß–Lobatto formula (Simpson rule) to define the 

quadratic basis functions with weights ��� = ��� = 1/3, ��� = 4/3, and �̂� = −1, �̂� = 0, �̂� =

1. Then, we get �� �,�� = �
−

�

�
1

�

�

2 −4 2
�, (� �) = �

�

�

−1
�, � = 1,2 and � = 0,1,2. 

Thus, the system to be solved for ��
�, ��

� ∈ �  from the known ��
� = ����

� 

becomes: 

 � �,���
� + � �,���

� = −� �,���
� +

��

2
�����,�, ��

�� + � ��(��,�, ��
�)�, (12)

� �,���
� + � �,���

� = −� �,���
� +

��

2
�����,�, ��

�� + � ��(��,�, ��
�)�, (13)

where ��
� represent the initial condition at the current time interval. 

5.2. The Classical Explicit Runge–Kutta Method 

This the fourth order Runge–Kutta  method is very well known and was developed 

by Kutta [54] (see [55] for more details). 

Numerical Results and Discussions 

In this section, we investigate the numerical solutions of the extended HIV Model (1) 

by using the cGP(2) method. Initial values of the variables, different parameters, and their 

detailed descriptions are provided in Table 1. Various parameters present in the model 

are investigated with the help of graphs to understand their behavior. Figures 1–3 depict 

the healthy cells, infected cells, and virus particles for different values of the growth rate 

of healthy cells “��”, respectively. It is concluded that the concentration of healthy cells 

decreases, whereas the distribution of infected cells and the virus increases. Furthermore, 

it could be seen clearly from the previously mentioned figures that all the distributions 

display decaying oscillatory behavior. 
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Figure 1. The influence of �� on the population dynamics of uninfected cells. 

 

Figure 2. The influence of �� on the population dynamics of infected cells. 

 

Figure 3. The influence of �� on the population dynamics of the HIV virus. 

Figures 4–6 show the variation of the death rate of the virus “��” on the distribution 

of T(t), I(t), and V(t), respectively. From analysis of the graphs, it is observed that healthy 

cells and infected cells increased and the virus decreased by increasing the value of “��”. 

Moreover, notice that the amplitude of oscillations decreases for all cases. 
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Figure 4. The effect of �� on the density of uninfected cells. 

 

Figure 5. The effect of �� on the density of infected cells. 

 

Figure 6. The effect of �� on the density of the HIV virus. 

Figures 7–9 represent the influence of “�” (virus particles released by infected cells) 

on the population dynamics of healthy cells, infected cells, and the virus. The density of 
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graphs, it is noticed that the healthy cells grow up which improves the resistance against 

the virus, maintaining the life of the infected patients for some time, but eventually the 

number of these cells decreases and the disease grows to AIDS which is the crucial 

condition of the disease. 

 

Figure 7. Concentration of healthy cells while increasing the value of �. 

 

Figure 8. Concentration of infected cells while increasing the value of �. 
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Figure 9. The effect of � on the density of virus particles. 

Figures 10–12 demonstrate the impact of the death rate of infected cells on the 

dynamic behavior of healthy/infected cells and the virus, respectively. From the figures, 

it is concluded that when the value of parameter “ �� ” increases, the strength of 

healthy/infected cells and the virus increases. Due to an increase in the production of 

infected cells, the number of healthy cells increases and reaches the highest stage with the 

passage of time, minimizing the ability of healthy cells to resist against the virus attack, 

which leaves the body open for disease. 

 

Figure 10. The effect of �� on the density of healthy cells. 
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Figure 11. The effect of ��on the density of infected cells. 

 

Figure 12. The effect of �� on the density of virus particles. 

Figures 13–15 indicate that when the death rate of healthy cells “��” increases, the 

concentration of healthy/infected cells and virus decreases. From the graph, we obtained 

that the number of healthy cells increases initially, but after some days these cells decrease 

due to the continuous death of healthy cells and eventually reaches the minimum stage, 

which shows that the virus attacks the healthy cells. From the aforementioned discussion, 

all the distributions show decaying oscillatory behaviors that demonstrate the fight 

among the immune system of the body and the HIV virus. The amplitude of the 

oscillations gradually decreasing shows that the immunity of the body decreases with the 

passage of time during infection to fight against the infectious virus. The phase diagram 

of I(t)—T(t), V(t)—T(t), V(t)—I(t) and V(t)—I(t)—T(t) are depicted in Figures 16–19, 

respectively. 
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Figure 13. The effect of �� on the density of healthy cells. 

 

Figure 14. The effect of �� on the density of infected cells. 

 

Figure 15. The effect of �� on the density of virus particles. 
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Figure 16. The phase diagram �(�) and �(�). 

 

Figure 17. The phase diagram of �(�) and �(�). 

 

Figure 18. The phase diagram of �(�) and �(�). 
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Figure 19. The phase diagram of �(�), �(�), and �(�). 

6. Comparison between the Results of Proposed Method and other Classical Methods 

In this section, we describe the comparison of the solutions of the proposed scheme 

with those solutions already obtained in the literature. In Tables 2–4, the approximate 

solutions obtained from the proposed scheme are compared with those obtained from the 

Laplace Adomian decomposition method with Pade approximation [29], the Bessel 

Collocation method [31], modified variational iteration method [33], an exponential 

Galerkin method (EGM) [50], and classical Runge–Kutta method of the fourth order. In 

order to illustrate the solutions, the graphs of the RK4-method solutions and the proposed 

method solutions are depicted in Figures 20–22, for T(t), I(t), and V(t), respectively. Lastly, 

for the purpose of having an idea about the accuracy among the approximate solutions 

obtained from the aforesaid methods relative to the RK4-method, estimations of the 

absolute errors are demonstrated in Tables 5–7. A close inspection of the results is 

displayed in Tables 2–7 and Figures 20–22. The results suggest that our approximate 

solutions are closer to solutions of the RK4-method compared with the solutions of the 

aforementioned schemes. It is observed that the proposed scheme is reliable for finding 

approximate solutions to real-world problems. 

 

Figure 20. Comparative analysis of Galerkin and RK4 schemes from �(�). 

0

500

1000

1500

0

500

1000

1500
0

200

400

600

800

1000

1200

T(t)I(t)

V
(t

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

time in days

T
(t

)=
c

o
n
c
e
n
tr

a
ti

o
n
 o

f 
h
e
a
lt

h
y
 C

D
4
+

 T
-c

e
lls

 a
t 

ti
m

e
 "

t"

 

 

cGP(2)

RK4



Axioms 2022, 11, 578 20 of 25 
 

 

Figure 21. Comparative analysis of Galerkin and RK4 schemes from �(�). 

 

Figure 22. Comparative analysis of Galerkin and RK4 schemes for �(�). 

Table 2. Comparison between the results of the cGP(2)-method with other classical methods for 

T(t). 

t Runge–Kutta LADM-Pade [29] Bessel Coll. N = 8 [30] PIA(1,1) [31] MVIM [32] 

0.2 0.2088006789 0.2088072731 0.2038616561 0.2087295073  0.2088080868 

0.4 0.4062136749 0.4061052625 0.3803309335 0.4059404993 0.4062407949 

0.6 0.7643508145 0.7611467713 0.6954623767 0.7635790156  0.7644287245 

0.8 1.4138702489 1.3773198590 1.2759624442 1.4119543417  1.4140941730 

1.0 2.5911951903 2.3291697610 2.3832277428 2.5867690583 2.5919210760 

t DTM N = 6 [33] EGM N = 3 [50] EGM N = 4 [50] EGM N = 5 [50] cGP(2)-Method 

0.2 0.2116480000  0.2722229510 0.2345157340 0.1982953765 0.2088064964 

0.4 0.4226850000 0.3065308713 0.4201803666 0.4183153468 0.4062347843 

0.6 0.8179400000 0.7075440591 0.7255920466 0.7603331972 0.7644082444 

0.8 1.5462110000 1.5297610198 1.4170402360 1.4077147917  1.4140090611 

1.0 2.8540530000 2.6678673734 2.5916251711 2.5915947135  2.5915094589 

Table 3. Comparison between the results of the cGP(2)-method with other classical methods for I(t). 

t Runge–Kutta LADM-Pade [29] Bessel coll. N=8[30] PIA(1,1) [31] MVIM [32] 

0.2 0.0000060318  0.0000060327  0.0000062478 0.0000060315  0.0000060327 

0.4 0.0000131564  0.0000131591  0.0000129355 0.0000131530  0.0000131583 
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0.6 0.0000212206  0.0000212683  0.0000203526 0.0000212101  0.0000212233 

0.8 0.0000301728  0.0000300691  0.0000283730  0.0000301480 0.0000301745 

1.0 0.0000400314  0.0000398736  0.0000369084  0.0000399785  0.0000400254 

t DTM N = 6 [33] EGM N = 3 [50] EGM N = 4 [50] EGM N = 5 [50] cGP(2)-Method 

0.2 0.0000063666  0.0000091673  0.0000058251 0.0000059641  0.0000060325 

0.4 0.0000139924  0.0000155229  0.0000134051 0.0000131340  0.0000131579 

0.6 0.0000226514  0.0000228459  0.0000213405 0.0000212682  0.0000212231 

0.8 0.0000332836  0.0000318486  0.0000301313 0.0000301754  0.0000301764 

1.0 0.0000485399  0.0000421057  0.0000400369 0.0000400377  0.0000400364 

Table 4. Comparison between the results of the cGP(2)-method with other classical methods for V(t). 

t  Runge–Kutta LADM-Pade [29] Bessel Coll. N = 8 [30] PIA(1,1) [31]  MVIM [32] 

0.2 0.0618808474  0.0618799602 0.0618799185   0.0618796999 0.0618799087 

0.4 0.0382961304  0.0383132488 0.0382949349   0.0382939096 0.0382959576 

0.6 0.0237057031  0.0243917434 0.0237043186   0.0237016917 0.0237102948 

0.8 0.0146813143  0.0099672189 0.0146795698   0.0146744145 0.0147004190 

1.0 0.0091015791  0.0033050764 0.0090993030   0.0090905052 0.0091572387 

t DTM N = 6 [33] EGM N = 3 [50] EGM N = 4 [50] EGM N = 5 [50] cGP(2)-Method 

0.2 0.0618800000  0.0618823466  0.0618790041  0.0618799035 0.0618799805 

0.4 0.0383090000  0.0383077329  0.0382950148  0.0382947890 0.0382950575 

0.6 0.0239200000  0.0237055266  0.0237053683  0.0237046061 0.0237047074 

0.8 0.0162120000  0.0146708169  0.0146798882  0.0146803810 0.0146804932 

1.0 0.0160500000  0.0091056907  0.0091009339  0.0091008486 0.0091009447 

Table 5. Comparison of absolute errors for T(t) of the cGP(2) and classical methods relative to the 

RK4-method. 

t  LADM-Pade [29] Bessel Coll. N = 8 [30] PIA(1,1) [31] MVIM [32] DTM N = 6 [33] 

0.2 0.000006594223280 0.004939022776720 0.000071171576720 7.40792327999 × 10−6 0.002847321123280 

0.4 0.000108412464641 0.025882741464641 0.000273175664641 2.71199353589 × 10−5 0.016471325035359 

0.6 0.003204043237096 0.068888437837096 0.000771798937096 7.79099629040 × 10−5 0.053589185462904 

0.8 0.036550389916353 0.137907804716353 0.001915907216353 2.23924083647 × 10−3 0.132340751083647 

1.0 0.262025429366243 0.207967447566243 0.004426132066243 7.25885633757 × 10−3 0.262857809633757 

t EGM N = 3 [50] EGM N = 4 [50] EGM N = 5 [50] cGP(2)-Method 

0.2 0.063422272123280 0.025715055123280 0.010505302376720 5.81760745974 × 10−6 

0.4 0.099682803664641 0.013966691635359 0.012101671835359 2.11093478030 × 10−5 

0.6 0.056806755437096 0.038758767937096 0.004017617337096 5.74299020841 × 10−5 

0.8 0.115890770883647 0.003169987083647 0.006155457216353 1.38812210279 × 10−4 

1.0 0.076672183033757 0.000429980733757 0.000399523133757 3.14268571135 × 10−4 

Table 6. Comparison of absolute errors for I(t) of the cGP(2) and classical methods relative to the 

RK4-method. 

t LADM-Pade [29] Bessel Coll. N = 8 [30] PIA(1,1) [31] MVIM [32] DTM N=  6 [33] 

0.2 8.21028439 × 10−10 2.15921028439 × 10−7 3.7897156100 × 10−10 8.2102843899 × 10−10 3.3472103 × 10−7 

0.4 2.61393801 × 10−9 2.20986061988 × 10−7 3.4860619888 × 10−9 1.8139380112 × 10−9 8.3591393 × 10−7 

0.6 4.76223967 × 10−8 8.68077603328 × 10−7 1.0577603329 × 10−8 2.6223966711 × 10−9 1.4307224 × 10−6 

0.8 1.03710297 × 10−7 1.79981029736 × 10−6 2.4810297362 × 10−8 1.6897026384 × 10−9 3.1107898 × 10−6 

1.0 1.57815845 × 10−7 3.12301584505 × 10−6 5.2915845057 × 10−8 6.0158450573 × 10−9 8.5084842 × 10−6 

t EGM N = 3 [50] EGM N = 4 [50] EGM N = 5 [50] cGP(2)-Method 

0.2 3.1354210284 × 10−6 2.0677897156 × 10−7 6.77789715609 × 10−8 6.6752196826462 × 10−10 

0.4 2.3664139380 × 10−6 2.4861393801 × 10−7 2.24860619888 × 10−8 1.4924805624754 × 10−9 
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0.6 1.6252223967 × 10−6 1.1982239667 × 10−7 4.75223966710 × 10−8 2.4821350652576 × 10−9 

0.8 0.1.67578970 × 10−6 4.1510297361 × 10−8 2.58970263849 × 10−9 3.6558718785258 × 10−9 

1.0 2.0742841549 × 10−6 5.4841549427 × 10−9 6.28415494269 × 10−9 5.0422736406875 × 10−9 

Table 7. Comparison of absolute errors for V(t) of the cGP(2) and classical methods relative to the 

RK4-method. 

t LADM-Pade [29] Bessel Coll. N =  8[30] PIA(1,1) [31] MVIM [32] DTM N = 6 [33] 

0.2 8.87201671 × 10−7 9.28901670999 × 10−7 1.14750167099 × 10−6 9.3870167099 × 10−7 8.47401671 × 10−7 

0.4 1.71183628 × 10−5 1.19553719699 × 10−6 2.22083719699 × 10−6 1.7283719699 × 10−7 1.28695628 × 10−5 

0.6 6.86040272 × 10−4 1.38452847400 × 10−6 4.01142847400 × 10−6 4.5916715259 × 10−6 2.14296871 × 10−4 

0.8 4.71409543 × 10−3 1.74452298399 × 10−6 6.89982298399 × 10−6 1.9104677016 × 10−5 1.53068567 × 10−3 

1.0 5.79650268 × 10−3 2.27607680900 × 10−6 1.10738768090 × 10−5 5.5659623191 × 10−5 6.94842092 × 10−3 

t EGM N = 3 [50] EGM N = 4 [50] EGM N = 5 [50] cGP(2)-Method 

0.2 1.499198329 × 10−6 1.8433016709 × 10−6 9.43901670998 × 10−7 8.6688500106069 × 10−7 

0.4 1.160246280 × 10−5 1.1156371969 × 10−6 1.34143719699 × 10−6 1.0728542867849 × 10−7 

0.6 1.765284740 × 10−7 3.3482847399 × 10−7 1.09702847399 × 10−6 9.9566078337957 × 10−7 

0.8 1.049742298 × 10−5 1.4261229840 × 10−6 9.33322984000 × 10−7 8.2106806348695 × 10−7 

1.0 4.111623191 × 10−6 6.4517680900 × 10−7 7.30476809001 × 10−7 6.3432370331871 × 10−7 

7. Conclusions 

The aim of the present study was to modify the HIV model and introduce a variable 

source term for the generation of healthy cells dependent on the virus and numerically 

approximate the density of healthy cells, infected cells, and free HIV virus after infection. 

We implemented a new numerical technique, namely, the continuous Galerkin–Petrov 

scheme for efficient and accurate solutions with the aforementioned model In addition, the 
impact of various physical parameters was analyzed, and all the observations were presented 
graphically. The main findings of the current study are summarized as follows: 

i. Increasing growth rate of healthy cells, ( �� ), shows a decreasing effect in the 

population dynamics of healthy cells, while showing an increasing effect in the 

population dynamics of infected cells and HIV particles. All the profiles showed a 

decaying oscillatory behavior. 

ii. The healthy cells and infected cells show an increasing effect, while free virus 

distribution shows a decreasing behavior with an increase in the values of the virus 

death rate (��). 

iii. It is noticed that the virus particles released by infected cells (�) show significant 

variations in the population distributions of healthy cells, infected cells, and the 

virus. By increasing the value of “�”, the healthy cells, infected cells, and the virus 

increases. 

iv. The graphical trends illustrate increased decay in distributions of all dependent 

variables with an  increase in the death rate of infected cells (��). 

v. The decrease in the density of healthy cells, infected cells, and free HIV particles is 

observed by increasing “��”. 

Moreover, we performed an analysis for the reproduction of number “�� ” and 

concluded that when “�� ≤ 1” the disease-free equilibrium state “��” is locally as well as 

globally stable, while when “�� > 1”, then “��” is locally and globally unstable. 

Furthermore, the well-known classical method for the initial value problem, namely, 

the RK-method, is utilized for the model and all the outcomes were compared with those 

from the proposed scheme and other schemes available in the open literature. It was 

observed that the suggested scheme is efficient and accurate in comparison with the other 

schemes. The proposed scheme could be applicable for solving complex real-world 

problems. In the future, the presented work is extendable in different directions. For 
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instance, the authors are interested to determine the most proper and effective method of 

vaccination and treatment using the model. 
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