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Abstract: In this work, a Lotka—Volterra type predator-prey system with time delay and stage
structure for the predators is proposed and analyzed. By using the permanence theory for infinite
dimensional system, we get that the system is permanent if some conditions are satisfied. The local
and global stability of the positive equilibrium is presented. The existence of Hopf bifurcation around
the positive equilibrium is observed. Further, by using the normal form theory and center manifold
approach, we derive the explicit formulas determining the stability of bifurcating periodic solutions
and the direction of Hopf bifurcation. Numerical simulations are carried out by Matlab software to
explain the theoretical results. We find that combined time delay and stage structure can affect the

dynamical behavior of the system.
Keywords: stage structure; predator-prey model; delay; Hopf bifurcation
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1. Introduction

Differential equations are a powerful tool for characterizing natural phenomena [1,2].
The predator—prey model is a very classic model, which plays a key role in population
ecology. Many predator-prey models have been investigated by some researchers [3-9].
From [10], we know that if the following classical autonomous Lotka—Volterra type predator
prey model,

{ B = x(B)lk - x() — ay(1)], "
W =)+ px(t) —y(1)]

exists in a positive equilibrium (x!,y!), it must be globally asymptotically stable. Time
lag is pervasive in nature. The stability issues for the Lotka-Volterra system with different
types of time delays have been extensively studied. In [11], by using Lyapunov functional,
He examined the global attraction for a kind of delayed n-species Lotka—Volterra-type
system. In [12], Gopalsamy et al. examined the global stability of a delay nonautonomous
n-species competition system. In [13], He investigated the global asymptotic stability of a
nonautonomous Lotka—Volterra system with “pure-delay type”. In [14], Wang et al. proved
that delays are harmless for the two-dimensional delayed Lotka—Volterra system. As a
special case of Lotka—Volterra-type systems with delays, Chen et al. proposed a model of
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two species’ growth delays as a reasonable generalization of the Lotka—Volterra model,
which takes the form [10]:

dx(t)
dt
dy(t)
dt

System (2) is one of the simplest predator-prey models with a delay. Its stability

()l = x(t) —ay(t - 7)],

* @)
y(t)[=r+ Bx(t —7) —y(1)].

and Hopf bifurcations, both local and global, have been widely investigated. For exam-
ple, Wang et al. [14] found that system (2) was uniformly persistent irrespective of the
size of the delays. He [11] showed that the positive equilibrium is locally and globally
asymptotically stable.

In the real world, however, many consumer species may go though multiple life
phases as they progress from birth to death. In [15,16], the authors studied the delayed
stage structure models. In those models, a constant time lag represented the time from
birth to maturity. References [17,18] have examined the stage structure of species when
the transformation rate of the mature population is proportional to the existing immature
population. Motivated by the works of Chen [10], He et al. [11-13], Cui et al. [15] and
Song et al. [16], we built a predator—prey model based on system (2), which includes a
time delay due to negative feedback of prey and the stage structure for the predators. This
paper’s purpose is to explore the combined effects of both delay and stage structure on the
predator-prey system’s dynamical behavior.

2. The Model

We consider a delayed predator—prey system with a stage structure among predator
populations of the following form:

O — () [k — x(t) — ay(t — 7)),
WO — (1) [—r + Bx(t — 7) — y(B)] + oyi(1), &)
Wil — cy(t) — (0 +7)yilt),

where x(t) expresses prey density at time ¢, and y(t) and y;(t) represent densities of the
mature and the immature predator species at time ¢. In model (3), « and  represent the
capturing rates of the predators; k is the intrinsic rate of increase for the prey; r represents
the mature predator’s death rate; o represents the conversion rate; 7 is the immature
predator’s death rate; ¢ denotes the birth rate of the immature predators; 7 is a constant
delay. All the parameters (i.e., k, «, , 0, B, ¢, 7y, and T) are positive constants.

The initial conditions for system (3) have the following form:

x(g) = ¢1(¢) 20, y(g) = ¢2(¢) 20, yi(g) = ¢2(¢) >0, ¢ €[-7,0],

91(0) > 0, 92(0) > 0. @

We suppose that z(t) = (x(t), y(t),y;(t)) is the solution of system (3) with the initial
conditions (4). Obviously, under the initial conditions given in (4), the solution z(t) of
system (3) exists in the interval [0, +c0). Further, it remains positive for all # > 0. In fact,
from the 1st equation of (3), we obtain

t

x(t) = x(0) exp(/ (k— x(s) — ay(s — 7))ds) > 0

0
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fort > 0. Set &(t) = —r + Bx(t — T) — y(t), we can rewrite the last two equations of (3) as

Q)

{ WD — 31y () + oy,(t),
dyégt) =cy(t) — (e +7)yi(t).

Obviously, there is a unique solution z(t) of system (3) in a maximal interval [0, d) [19].
We can prove that the interval is [0, +00). Since (5) is a quasimonotone system, (0,0) is
a subsolution and w(e, ") with w > y(0), y;(0) and a > ¢, ¢ is a supersolution [19].
This shows that y(t) and y;(t) are bounded in [0, d) and hence exist for all t > 0. Suppose
yi(b) = 0. We can obtain %@|t:b = 0 and y(b) = 0. This shows that (y(), y;(t)) is a
solution of (5) at t = b and hence it is zero in (0, +o0). This is a contradiction. Hence,
y(t) > 0,y;(t) > 0fort > 0. Thereby, x(¢) > 0 for t > 0.

It is straightforward to see that in system (3) there exist four equilibrium points

Eo(0,0,0), Eq(k,0,0), Ex(0,4%4Y), E*(x*,y%y}),

where
0 _ —rloc+y)+oc o _ c(—r(o+7)+oc)
V=" ¥~ "2
Xt — (ktar)(ot+y)—oca s _ (=r+kB)(o+y)+oc  x _ c((=r+pk)(o+7)+0c)
T rap)en) Y @+ap)lotn) 7 Vi (T+ap)(c+n?
If the conditions
(k4 ar)(o+y) —coa >0 (6)
and
—r(c+7)+co>0 (7)

hold, all the equilibria are nonnegative.

3. Permanence of System (3)

We first introduce the definition of permanence.

Definition 1 ([20]). System (3) is permanent if there exist positive constants My and My such
that any positive solution (x(t),y(t),y;(t)) of system (3) with initial conditions (4) satisfies

My <liminfx(t) < limsup x(t) < My,
=00 t—+o0

My <liminfy(t) < limsupy(t) < M,
t—+oo f—too
M <liminfy;(t) < limsupy;(t) < M.
t—+o0 f—to0
Theorem 1. Any positive solution (x(t),y(t),y;(t)) of system (3) with initial condition (4) satis-
fies 0 < x(t),y(t),yi(t) < Mfort > 0.
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Proof. Suppose (x(t),y(t),y;(t)) is a positive solution of system (3) with initial condition (4).
According to the first equation of system (3), it follows from the positivity of the solu-
tion that

#(t) < x(8)(k — x(1)).

The solution of the auxiliary equation
u(t) =u(t)(k—u(t)), u(0)==x(0)>0

has the following properties: there exist e > 0 and T > 0 such that u(t) < k+ ¢ for
t < T. Hence, by comparing the theorems for ordinary differential equations, we have
x(t) <u(t) <k+efort <T.

Denote M; = k + ¢. Then,

x(t) < Mj. (8)
It follows from (8) and the second equation of system (3) that for t < T,
y(t) < y(=r+pMy —y) + oy;. €)

We define
Vi(t) = (e +7)y + oy

Along the last two equations of system (3), we calculate the upper-right derivative
of Vi:
DTVi(t) = (o+7)y+0yi
(@ +7)y(=r+pMi —y) +ocy

[(o+7) (=r+BMq)+oc]?
4(o+7) :

IN A

Then, there exist two positive constants My, M3, such that
0 <y(t) <M, 0<y;(t) < Ms.

Denote M = min{M;j, M, M3}. Then, 0 < x(t),y(t),y;(t) < Mfort > 0.
Next, we discuss the permanence of system (3).
To prove that system (3) is persistent, we will use Theorem 4.1 in [20]. [

Theorem 2. If condition (6) and
—r+kB>0 (10)

hold, then system (3) is permanent.
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Proof. We begin by showing that sets X;, X, X3 and X4 repel the positive solution of
system (3) uniformly. Let us define

C1 = {(91, @2, 93) € C([-7,0], R3) ( )* 0},
C = {(¢1, 92, 93) € C([~7,0L,RY) : 91(6) = 0},
X1 = {(xyfyz)€R3|x>Oy_O]/z>0}
X ={(x,y,y:) €R3 | x =0,y > 0,y; >0},
X3 ={(x,y,y:) €R|x=0,y>0,y; =0},

)

Xg={(xyy) €R’[x=0,y=0,y; >0},
Co = C1UGC,, C¥=IntC([-7,0],R%),
Xo=X1UXoUX3UXy, XO={(x,y,y;) €R3| x>0,y >0,y; >0}

This choice meets the conditions in Theorem 4.1 in [20]. It suffices to show that, for any
solution z(t) = (x(t),y(t),yi(t)) of system (3) initiating from C?, there exists an gy > 0
such that ltim Jinfd (z(t),Xp) > €p. To this end, we shall verify that all the conditions of

— 100

Theorem 4.1 in [20] are satisfied. It is easy to see that C® and Cy are positively invariant.
Obviously, conditions (i) and (ii) of Theorem 4.1 in [20] are satisfied. In the following, we
shall only need to validate conditions (iii) and (iv).

There are three constant solutions, Eq(0,0,0), E;(k,0,0), E2(0,1°, y?), in Xp.

In the set X3 or X4, system (3) becomes

y=y(=r—y) or yi=—(C+7)yi
Clearly, tli}rrwy(t) =0, tEr-il:loo y;(t) — 0. Hence, for any solution (x(t),y(t),y;(t)) of

system (3) initiating from Cy, we obtain (x(t),y(t),y;(t)) — E¢(0,0,0) as t — +o0.
In the set Xj, system (3) becomes

{ x(t) = x(#) (k— x(1)),
yi(t) = — (o +7)yi(t).

Obviously, E; (k, 0) is globally asymptotically stable. Therefore, any solution (x(t),y (), y;(t))
of system (3) initiating from Cj is such that (x(t),y(t),y;(t)) — E1(k,0,0) as t — +oo.
In the set X5, system (3) becomes

{ §(8) = y(t) (—r — y(£)) + oy (t),
yi(t) = cy(t) — (@ + 7)yi(t).

Clearly, E»(y°,?) is globally asymptotically stable. Hence, for any solution (x(t),y(t),
vi(t)) of system (3) which initiates from C,, we have (x(t),y(t),y;(t)) — E2(0,y°,1?) as
t — +oo.

Obviously, Ey, E1, E; are isolated invariant, and { Ey, E1, E; } is isolated and is an acyclic
covering.

It is obvious that W*(Ey)) N X = @. Next, we will show that W*(E;) N X? = @,
W (E)N X" =@

Assume WS(Eq) NX% # @. Then, in system (3) there exists a positive solution
(x(t),y(t),y;(t)) such that (x(t),y(t),y;(t)) = E1(k,0,0) as t — +oo. Hence, we have

tlir+n x(t) = k, thatis, for € > 0, there exists ty > 0 such that X(t) > k — &. From system (3),
—r+00

for t > ty+ T,

y(t) Z y(B)(=r + Pk —¢) —y(t)).
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From (10), we can find that (t) — —r + kp. This is a contradiction. Therefore, we
have W*(E;) N X° = @.

Assume W?(E) N X% # @. Then, there is a positive solution (X(t),%(t),;(t)) of (3)
that (x(t),7(t),7;(t)) = E2(0,4%,99) as t — +oo. Hence, y — 1%,y — yV ast — +oo.
From system (3), for t > tp + T, we have

x() = x() (k= x(t) — ay° +e)).

From (6), we find that ¥(t) — k — ay® as t — +co. This is a contradiction. Therefore,
we have W*(E;) N X = @.

At this time, we can conclude that X repels the positive solutions (x(t),y(t), y;(t)) of
system (3) which initiates from C° uniformly.

Thus, there exists an ¢ > 0 such that

im i > iminfy(t) > e.
a0 Z e hmigh() 2 &

From the 3rd equation of system (3), we obtain

Yi(t) > ceq — (v +0)yi(t).

CEq
Yt+o

Then y; — ast — +oo. Denote 1 = L, theny; > ¢e. O

Yo’

4. Stability of Equilibria

In this section, we will discuss the sufficient conditions for the stability of all the
equilibrium points for system (3).

Firstly, we analyze the local stability of the equilibria Ey, E1, E;.

The characteristic equation of equilibrium Ey is

A=K)A2+(c+y+1)A+r(0c+7) —0oc)=0.

Obviously, the above equation always has a positive eigenvalue A = k. Hence,
Ey(0,0,0) is unstable.
The characteristic equation of equilibrium Ej is

A+K)A + (r—Bk+ 0 +7)A+ (r— Bk) (0 + ) —oc] = 0. (11)

Let
fA) =A%+ (r—Bk+o+9)A+ (r— pk)(c + ) — oc.

From (7), we can find (r — pk)(c + ) —oc < 0. Then, f(4o00) = 400, f(0) < 0. So
(11) has a positive root, i.e., the equilibrium E; (k, 0, 0) is unstable.
The characteristic equation of equilibrium E; is

A—k+ay”) A2+ +2°0 +o+ A+ (r+2y") (0 + ) —oc] =0. (12)
Denote

fA) =224 (r+2y° + o+ NA+ (r+2y°) (0 +7) —oc.
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Then, f(400) = 400, f(0) < 0, so (13) has a positive root. Then the equilibrium E,
is unstable.

In the following, we shall discuss the local and global properties of positive equilib-
rium E*.

Theorem 3. The interior equilibrium E*(x*,y*,y;) of system (3) is locally asymptotically stable
if conditions (6) and (7) and the condition

ap <1 (13)
hold.
Proof. Linearizing system (3) at the equilibrium E*(x*, y*, y}) leads to

X(t) = —x*x(t) —axy(t — 1),
y(t) = By*x(t — T) + (—r + px* =2y )y(t) + oyi(t), (14)
yi(t) = cy(t) — (0 +7)yi(t).

We obtain the characteristic equation of the form
TAT)=A2 4+ pA2 4+ gA+s+e 2T (IA+1n) =0, (15)
where

p—a+7+g+7+x +y* >0,

q= "4y )o+7)+x" (5 +y) >

s=x"y*(c+79) >0,

I =x*y*ap >0,

n=x*y*ap(c+v) > 0.
When T = 0, we can easily check that all the characteristic roots have negative real parts.
We will show that all the characteristic roots have negative real parts for all T > 0, which
implies that E*(x*,y*,y; ) is locally asymptotically stable for (3). Obviously, the character-
istic Equation (15) has no positive real parts roots. Now, we suppose that there exists a
characteristic root of (15) on the imaginary axis of the complex plane for some 75 > 0. Let
A = iw be such a characteristic root. It is straightforward to see that w # 0. Substituting
(A, 7) = (iw, 1) into (15) and separating the real and imaginary parts, we obtain

—pw? + 5 + ncos(2wty) + lwsin(2wy) = 0,

and
—w® + qw + wl cos(2wTy) — nsin(2wy) = 0.

Furthermore,

(IPw? 4+ n?) sin(2wTy) = plw?® — Isw — nwd® + quwn,

16
(IPw? 4+ n?) cos(2wTty) = lw* — glw? + pw?n — ns. (16)

Squaring and adding the two equations yields

(Pw? +n2)? = (plw® — Isw — nw® 4 qwn)? + (lw* — glw? + pw?n — ns)?. (17)
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D*V(t)|@)

Let O = w? and
Q)= Q¥+ (p*>—29)0% + (g* —2ps — 12)Q + s> —n? = 0. (18)

Then, f(Q) must have a positive zero Q = w? because (17) and w # 0. What is more,
the coefficients of 0%, Q and £(0) in (18) need to be positive. In fact, the coefficients of O
and () are expressed in the following ways:
pP=20=(c+7)?+ (G5 + 12+ y 2+ 20 + ELy >0,
g> —2ps — 12 = x*2 (0 + )% + y*z(U +9)% + (f,‘fy) +2x*2%co +
4 (1 _ aZﬁZ)x*Zy*Z

2cox*“y*
o+y

Furthermore,
f(0) =% —n® = (0 +7)°x* 2y (1 —a®p?) > 0.

Hence, f'(Q) > 0. Therefore, f(Q) = 0 has no positive roots, which is a contradiction. We
complete the proof. O

Theorem 4. Suppose that (6) and (7) and
x+p <2 (19)
hold. Then the positive equilibrium E* (x*,y*,y}) of system (3) is globally asymptotically stable.

Proof. Let (x(t),y(t),y;(t)) be any solution of system (3) satisfying initial condition (4).
Define

V(t) =7\1(x—x*—x*ln,%)ﬂ”\z(]/—y*—y*lnyl*)+)\3(]/i—yf—y,1n;’)
t
3 [ xopas+ A0 [ y(o)Pas,
-7

t—1

(20)

where A1, Ay, A3 are suitable positive constants to be determined in the subsequent steps.
It is easy to see that V is a positive definite function in the region R3. except at E* (x*,y*, y})
where it vanishes. Further,

lim V(x,y,y;) = lim V(x,y,yi) = oo

x—0,y—0,y;—0 X—>00,y —>00,1f; —»00

Calculating the upper right derivative of V along the solutions of system (3), we have:

= M(x = x*) (k= x = ay(t = 7)) + Aoy — y*)[(—r + Bx(t = 7) — y) + %]
A3y =y (E = (0 +7) + 28 [(x = 22 = (x(t = 7) — x*)2]

Ay — )2 — (y(t— 1) — Y )]

= —Al(x—x*)2+/\1(x—x )(ay* —ay(t—1)) — A2 (y —y*)*+
Aaly = y) (Bx(t —7) = B* — 2 + ) + Ag(y; — Y1) (L — (0 +7))
+22B[(x — x*)2 - <<t—r> )2+ My — )2 — (y(t— 1) —y*)?]
<M= 22+ M (= )2 = Aoy — v )2+ B (y — )P+ P (- x)?
+48 (g — )2 + 2D (0 + 9)oy; — coy] + 2L (cy — (0 +7)y)

(<A1 + %+ S0 (=) 4 (<A + B+ )y -y

Aoy yi—A i i :
_[haer 5 ;)(;f;v)yy + (Utgz_yg)y;l?"w J(cy — (o +7)y;)-
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Let Ay0 = A3(0 + 7). Then,

DTV()le < (A + 2%+ 20 (x — x*)2 4 (<A + % + 228y (y — )2

A i—As(o+7)yy:
— RIRIEIE (cy — (o + 7))

= (M) (- (A )y -y

A i
— B ey — (o + )i

Let Ay = Ay. If (19) holds, then
D+V(t)|(3) <0

Therefore, by using a Lyapunov—-Lasalle type theorem [21], we have x — x*, y — y*,
yi —y;ast—oco. [

5. Existence of Hopf Bifurcation

In this section, we shall find the conditions under which a Hopf bifurcation may occur
around the positive equilibrium point E* when delay T passes through some critical values.

From (18) we can see thatif 1 —af < 0 and g2 — 2ps — I?> > 0, then f(0) = s? —n? <0,
f(+00) = 400 and f/(0) > 0. Hence, Equation (15) has a unique positive root. Then, we
have the following lemma.

Lemma 1. Let 1 — aB < 0and q> — 2ps — 1> > 0 hold. Then Equation (15) with T = 1y has
a unique pair of wo, Ty, WwoTy < 27 such that T (iwy, 1) = 0, where wy and 1y are given by
Equations (16).

Let us suppose T = 7 when w = wy. From (16) we have

1 lw3 — Iswy — nw? won 2k
T, = — arcsin -0 0 nep T qWon | KT 41, 1)
wo 12w0 + n? wy

Theorem 5. Assume 1 —af < 0and g2 —2ps — 12 > 0. If T € [0, 7)), then the equilibrium E*
of system (3) is asymptotically stable; if T > 79, then E* is unstable. T = 1 (k = 0,1,2,---)
are Hopf bifurcation values for system (3), where 7. is defined by (21), that is, a family of periodic
solutions bifurcates from E* as T passes through the critical value T.

Proof. Let A(T) = a(T) + iw(7) be a root of Equation (15). Substituting A = a + iw in (15)
and separating real and imaginary parts, we get the transcendental equations

a® — 3aw? + pa* — pw? 4+ qa+s+e 2 (la +n) cos(2Tw) + e 2Mwsin(2tw) =0 (22)
and
302w — w3 + 2paw + qw — e~ 2" (la + n) sin(2Tw) + e~ *™lw cos(2Tw) = 0. (23)

Obviously, E* is stable when T = 0. Hence, E* remains stable for T < 19 (7 is the smallest
value for which where is a solution to (15) with real part zero). We now have to show that
% |r=7,> 0 when w = wy.



Axioms 2022, 11, 575 10 of 19

Now differentiating the two sides of Equation (22) with respectto 7, ata =0, T = 19,
w = wy, we can obtain:

[—3wd + ¢ — 2179 cos(2Towp ) + I cos(2Towp) — 2l Towp sin(27pwp) ] 42

T
+[—2pwp — 2nTH sin(21pwp ) + 2l THw0 cos(2THwy)
+1 sin(ZTOwO)]‘Z—‘;’ + [—2nwy sin(219wy ) + 21w cos(21pwp)] = 0

and
[2pwy + 21Ty sin(2Towp) — 21 THwp cos(2Towy) — 1 sin(21pwy )] Z—Z
+[—3w(2) +q — 2n7y cos 2Tywq + I cos(2Tpwy)
—2lthwp sin(2THwy) | % + [—2nwy cos(2twy ) + 2lw? sin(21Hwy )] = 0.
Hence,

[(—3w}3 + q — 2nT cos(2Towy) — 2l Thwp sin(2Towp) + I cos(21pwy) )?
—|—(2pr + 2n1 Sin(ZTowO) — lSiI‘l(ZTOwQ) — 21plwy COS(ZT()CU()))Z} % |a:0,w:w0,T:Tg
— lzwgﬁ[&zzwg + 6128 + 2n2wi (g — 2ps — 1)

+2Pw;(q? — 2ps — I2) + dn*wi(p? — 2q) + 412w (p? — 2q)).

Since q2 — 2ps — 12 > 0, then g—i >0ata =0, 7T =1, w = wp, the transversality
condition holds. Hence, Hopf bifurcation occurs at w = wyp, T = 1. O

6. Direction and Stability of the Hopf Bifurcation

In this section, we shall discuss the direction and stability of the Hopf bifurcation via
the method introduced in [22].

Let uq(t) = x(t) — x%, up(t) = y(t) —y*, us(t) = yi(t) —y;, xi(t) = u;(7t), (=1,2,
3), T = T + u. System (3) is transformed into functional differential equation (FDE) in
C = C([-1,0],R3) given by

77 = Lu(ue) + f(pue), (24)

where u(t) = (uy(t),ua(t),us(t))" € R®and

—x* 0 0 £1(0)
Lu(@)=(m+mu)| 0 —r4px"—2y* o $2(0)
0 c 0= &3(0)

Hm+pu)| pyr 0 0 &(=1) |, (25)

1
f) = (u+p)| BE(=1)E(0)-5(0) |- (26)
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By the Riesz representation theorem, there exists a 3 x 3 matrix function (6, u) of
bounded variation for 6 € [—1,0], such that

0
Ly = [ dn(6,0(6) @)

for¢ € C.
In practice, one can choose:

—x* 0 0 ¢1(0)
n0u)=(n+u)| 0 —r+px*-2y" ¢ g2(0) | 4(0) (28)
0 c —0—7 ¢3(0)
0 —ax* O
—(T+n) By* 0 0 |5(6+1), (29)
0 0 0

where §(6) denotes the Dirac delta function. For & € C'([—1,0], R3), we define

(0) )

Ape=4 407
[ ez, 0=0,

€[-1,0),

and

o 6 e[-1,0),
RW‘{ Fud), 0=o0,

Then, system (24) is equivalent to

up = A(p)us + R(p)uy, (30)
where u;(0) = u(t+6),0 € [—1,0].
For ¢ € C!([-1,0], (R3)*), we define the adjoint operator A* of A as
d
A'gls) = { o s€(01]
f dn'(t,0)¢(—t), s=0,

and a bilinear inner product given by

<e(s),80) >=c0c0) - [ [ cc- oo Q)

where 77(6) = #(68,0). Clearly, A(0) and A* are a pair of adjoint operators. From the
discussions in Section 5, we know that +iwgTy are eigenvalues of A(0). Thus, they are
also eigenvalues of A*. In the next, we shall calculate the eigenvector 4(0) of A(0) and
eigenvector g*(s) of A* corresponding to +iwyT, and —iwy Ty, respectively.
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Let (0) = (1,v,v) T e/0%9 be the eigenvector of A(0) corresponding to +iwyT;, then
A(0)q(0) = iwgTrq(0). From the definition of A(0) and (25), (27) and (28), we can ob-

tain that
iwy + x* ax* e iwoTk 0 0
—By*e M0 w41 — Bx* 4+ 2y* -0
c iwy + 0+ 7y 0
From above, it is easy to obtain ¢(0) = (1.’ v,v)", where v = — "‘f;%::ﬁrk V= woil()r =
Similarly, assuming that g*(s) = D(1, v*, v*)e""oTkS is the eigenvector of A* corresponding
to —iw( T, we can get v* = =F szzzifk V' = 1555 by the definition of A* and (25)~(27).
In order to ensure < g*(s),q(#) >= 1, we need to determine the value of D. From (31),
we have
<q*(s),q(0) > =D(1,v5v")(1,v,v f fg’ o D(1,v%,v%)e *i‘*’OTk@*G)dq(Q)(l, v,v) ey

= D{1 + vv* + vv* — f_l(l, v*,v*)Ge""OTdeU(Q)(l, v,v) "}
= D{1 + vv* + vv* + (ax*v — By v%) e 10Tk},
Thus, we can select D as

1
14 00* FuvF A+ (axto — ByFuT) Te ot

Using the same notations as in [22], we first calculate the coordinates to describe the
center manifold Cyp at # = 0. Let u; be the solution of (30) when y = 0. Define

z(t) =< q",ur >, W(w,0) = us(0) —2Re{z(t)q(0)}. (32)
On the center manifold Cy we have

W(t,0) = W(z(t),z(t),0),

where
2 =2 3

z VA
W(z,z0) = W20(9)§ + Wia (0)2z + Woa (6) - + Wso(e)g +-, (33)

z and £ are local coordinates for center manifold Cp in the direction of g* and g*. Note that
W is real if x; is real. We only consider real solutions. For solution x; € Cy of (30), since
u =0, we have

z(t) = iwotez + q*(0) (0, W(z,2,0) + 2Re{zq(0) }) = iwoiz + 4*(0) fo(z, 2).
We rewrite this equation as
2(t) = iwotz(t) + g(z,2),

where

2 72 227

_ ya
8(z,2) =q%(0)fo(z,2) = 8205 812 +gn s +8u1—5 - (34)



Axioms 2022, 11, 575 13 0of 19

It follows from (32) and (33) that:

x1(8) = W(t,6) — 2Re{z(1)q(t))

_ . _ . 35
— Wao(8)5 + Wi1(0)22 + W ()5 + (1, B) Tei0™bz 1 (1,&, B) e~ w0tz 4 ... . (35)
It follows together with (26) that:
8(zz) =q7(0)fo(z2)
=q*(0)£(0, xt)
—x%,(0) — axy; (0)xpe(—1)
=5D(L o5, v*) [ Bay(—1)x(0) — xZ,(0)
0
5 W2 o D) M o 2 52
= —TD{[z+2 + Wy (0) 5 + Wy’ (0)22 + W, (0) 5 +0(| (2, 2)°)] (36)
2 52
_ 1 4 1 _ 1 Z _
+ulz+ 24 Wy (005 + Wiy (0022 + Wi (0) 5 +0(| (2 2) )]
x [ve 0Tz 4 etz 4 WD (~1) % + W (~1)zz + WE (—1)F +0(|(z,2) )]
— 0Bl 0Tz 4 eiwotiz + W (=1)Z + W (—=1)zz+ W (-1)F +0(|(z,2) )]
x[vz + 02+ W2 (0)5 + W2 (0)2z+ WE (05 +0(|(2,2) )]
+07 [0z + 02+ W (005 + WP (0)22+ WG (005 + (| (2,2) ).
Comparing the coefficients with (34), we have:
920 = 2Tk D(1 — vFv? + vae 0Tk — pFyBe~iw0T),
g1 = ZTkE(l — UFuD + ﬁocei“’OTk—i-Zvae’i“’OTk _ F(ve’iw02+veiw0Tk)),
902 = 2T D(1 — UF 0% + vaei“0™ — v*5fel«0), 7
o (2) iwo T a7 (1)
g1 = —2TkD{2W1(}) (0) + Wz(é)(o) +a[wl(%)(_1) + Wzoz(()) + e'vo kI;\IZO (0)
. _ . (2) iwn T
_|_le(}) (0)e—iwot] — U*,B[Wl(f) (0)e—iwoT 4 Wao (02)‘3 0k

_ s _ _
W (—1) + P CU) oW (0) —207uwi2 (0)}.

Since there are Wy(0) and W11 (6) in go1, we still need to compute them. From (30)
and (32), we have

AW — 2Re{7%(0) foa (0)}, 0e—1,0),
W=y —3q— 27 = etq"(0)foq(6)) €[=10) 2 AW + H(z 2,0), (38)

AW — 2R€{‘77*(0)f0‘1(9)} +f0/ 6 =0,
where

2 52
H(z,2,6) = Hao(6) 5 + Hir(8)2 + Hoa(6) 5 + -+ (39)
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Substituting the corresponding series into (38) and comparing the coefficients, we ob-

tain
(A — 2iwgt9)Wao(0) = —Hpo, AW11(0) = —Hy1, -~ .
From (38), we know that for 6 € [—1,0),
H(z,z,0) = —q7(0) fo4(6) — 4°(0) fod (6) = —8(z,2)(6) — &(2,2)4(0).
Comparing the coefficients with (39) gives that
Hao(60) = —g209(6) — Z027(6),
and
Hi1(60) = —g119(0) — §117(6).
From (40), (42) and the definition of A, it follows that
Wag = 2iwotWao(0) + 8209(6) + Z024(6).-
Notice that g(8) = (1,v,v) Te“0%% hence

WZO(Q) = %q(o)eiwo'fkg + %q(o)e—inTkg + E1€2iw0Tk9,

(40)

(41)

(42)

(43)

(44)

where E; = (Egl), Egz), E§3)) € R3 is a constant vector. Similarly, from (40) and (43), we

obtain

:_& iwoTd igll 7(0 —iwy 0 E
Wir(6) = — B go)eier? 4 Bl 4(0)p—irf + gy,

where E; = (Egl), Eéz), E§3)) € R3 is also a constant vector.

(45)

In what follows, we shall seek appropriate E; and E;. From the definition of A and

(40), we obtain
0 .
/;1 dﬂ(@)Wzo(e) = ZZwOTkWZO(Q) — HZ()(Q),
and
0
/_1 dn(8)W11(0) = —Hi1(0),
where #7(0) = 1(0,0). By (38), we have

1 4 vae w0
Hyo(8) = —£209(0) — §204(0) + 27 | —02 — ppe—iwon |,

0

(46)

(47)

(48)
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and
= iwo'rk 7iw0‘rk
1+ vae +2UIX€
Hi1(0) = —g119(0) — gnq(0) + 21 | —pp — ve“Uhiue®% |, (49)
0

Substituting (44) and (48) into: (46), we obtain

1 + voe 1 @oTk

0] .
(2iw0Tk1 — / ezszTkedﬂ(Q))El = 2Tk —U2 — vﬁgiinTk ,
J-1

0
which leads to:
2iwg + x* ax* e 2iwoTk 0 1 4 vae w0k
[Sy*e’zi“’ofk 2iwy +r — Bx* +2y* —0 E,=2| —v*— vﬁe’i“’ofk
0 c 2iwg+ 0+ 7y 0
It follows that:
1 + vae 0Tk % ax* e 2iwoTk 0
Egl) = A% —02 — vfe” Nk iy + 1 — Bx* + 2y* —0 ,
0 c 2iwg+ o0+ v
2iwg + x* 1+ vae o 0
E§2) _ All ﬁy*e—ziwork 2 vﬁe_i‘*’oTk - ,
0 0 2iwy + 0+
2iwy + x* ax* e HwoTk 1+ vae @0k
E§3) _ All ﬁy*efziwork Qiwy + 1 — ﬁX* + 2]/* 2 — U'Befiwork
0 c 0
where 4
2iwy + x* ax*e 2iwoTk 0
Ay = | Byre %0 2wy +r — Bx* + 2y —0
0 c 2iwg + 0+ 7y

Similarly, substituting (45) and (49) into (47), we can obtain:

* * D 0Tk +vae 0Tk
X ax 0 1+ -2

* — Bx* — E, = 5 ve 0%k e’ 0k
By* r—pBx*+2y o 2 vD 5

0 —C o+ 0
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and hence
14+ chei“’OTkEvae*"“’OTk ax* 0
1 2 _ —iwy T iwgT;
Eg):yz —vp — —rve — = 0"2”““ r—pBx*+2y*  —o |
0 —c o+
x* 14+ ﬁaeinTkJrzvae_i“)OTk 0
(2) 2 _ —iwy T iw T
E)" = 4| By* —vo— —re—= Ok;”e 0k o |,
0 0 o+y
x* axt 1+ oae'0Tk +pwe 0Tk
2
(3 _ 2 % % " _ Ve 0Tk 4 el 0Tk
E)" =& | By* r—pxt+2yf —vp— 2 —SRe 2R,
0 —C 0
where
* ax* 0
Ay =| By* r—pBx"+2yF —0o
0 —c o+y

Thus, we can determine Wy (6) and Wy (6) from (44) and (45). Furthermore, g5 in (37)
can be expressed by the parameters and delay. Then, we can compute the following values:

: 2
c1(0) = a7 (820811 — 2lgn|? - 7|g032| )+ 84,

Re{c1 (0
b =~

,32 = 2R€{C1 (0) },

T, = — lm{61(0)}2€l§k1m{/\'(Tk)}

(50)

In conclusion, we have the results as following.

Theorem 6. (1) If jiy < 0 (up > 0), Hopf bifurcation is subcritical (supercritical); (2) If Bo < 0
(B2 > 0), the bifurcating periodic solution is stable (unstable); (3) If T, > 0 (T, < 0), the period
increases (decreases).

7. Numerical Simulations

In this section, we provide numerical examples of Theorems 5 and 6 by using Matlab.

Letk=3,a=1r=1,8=15c=2,0=0.5,7 =05. Hence, p =5, g = 6.36,
s=216,1=324,a+ B >2,q° —2ps — I = 8.352 > 0, 1p = 1.3434655328, E*(x*,y*, y}) =
(1.2,1.8,3.6).

(i) T = 1.2, T < 79. In this case, the numerical simulation (see Figure 1) shows that the
predator and prey populations spiral toward the equilibrium E*(1.2,1.8,3.6);

(ii) By calculation, we obtain 79 = 1.3434655328. By Theorem 5.1, a Hopf bifurcation
occurs when T = 1y. Select T = 1.8. From Figure 2, we can find that both the predator
and prey populations reach periodic oscillations around the equilibrium E*(x*, y*,y;) in
finite time;

(iii) From our calculations, we can see that wy = 0.6514262661 and A’ (1) = 0.6127495603
+0.4261524984i. From the formulae (50), we can obtain ¢; (0) = —10.29371206 — 73.4416490i,
H2 >0, B2 < 0and T, > 0. Hence, the Hopf bifurcation is supercritical, the direction of the
bifurcation is T > 1y and these bifurcating periodic solutions are stable (see Figure 2).
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Figure1. k =3, a =1,r =1, =15¢c=2,0 =05, vy = 05, 7 = 1.2. The solution tends to
the positive equilibrium. The initial value is constant function x(t) = 1,y(¢) = 0.1,y;(t) = 0.5 for
t e [—-1,0].
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00 120 140 180
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Figure 2. Trajectory of the system with same parameters as Figure 1. except that T = 1.8. The solution

tends to the periodic solution. The initial value is constant function x(t) = 1,y(t) = 0.1, y;(t) = 0.5
fort € [—7,0].
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8. Discussion

In this paper, a new dynamics for a predator—prey model with staged structure and
time delay has been analyzed. We discuss the influence of the parameter T on the dynamics
of the system (3). The system (3) is permanent under some conditions. The local and
global stability of the positive equilibrium is presented. By choosing 7 as a bifurcation
parameter, we prove that the delay loss of stability phenomenon appears under the condi-
tions 1 — aB < 0 and g% — 2ps — I2 > 0. That is to say, there is a critical value 1y of T such
that system (3) is stable in the range T € (0, 1) at positive equilibrium E* (see Figure 1);
when T = 19, a Hopf bifurcation occurs around E* (x*,y*,y:-‘ ); when T > 79, the system
is unstable (see Figure 2) and there are always Hopf bifurcations near the positive equi-
librium E*(x*,y*, y7) when T takes other critical values. We derive explicit formulae for
determining the properties of Hopf bifurcation at the critical value of 1y via the ideas of
Hassard et al. If we do not consider the staged structure of the predator, system (2) has
no periodic solutions, which shows that the staged structure of the predator can severely
affect the dynamical behavior of the system. However, for system (3), there is no chaotic
behavior of the system (3) by numerical simulations.
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