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Abstract: The development of numeric-analytic solutions and the construction of fractional-order
mathematical models for practical issues are of the greatest importance in a variety of applied mathe-
matics, physics, and engineering problems. The Laplace residual-power-series method (LRPSM), a
new and dependable technique for resolving fractional partial differential equations, is introduced in
this study. The residual-power-series method (RPSM), a well-known technique, and the Laplace trans-
form (LT) are elegantly combined in the suggested technique. This innovative approach computes
the fractional derivative in the Caputo sense. The proposed method for handling fractional partial
differential equations is provided in detail, along with its implementation. The novel approach yields
a series solution to fractional partial differential equations. To validate the simplicity, effectiveness,
and viability of the suggested technique, the provided model is tested and simulated. A numerical
and graphical description of the effects of the fractional order γ on approximating the solutions
is provided. Comparative results show that the suggested method approximates more precisely
than current methods such as the natural homotopy perturbation method. The study showed that
the aforementioned method is straightforward, trustworthy, and suitable for analysing non-linear
engineering and physical issues.

Keywords: fractional partial differential equations; Laplace transform; residual power series;
Caputo operator

MSC: 26A33; 60H15; 35R11; 34A25

1. Introduction

It has been noted that fractional-order α derivatives, often in the range between 0 and
1, are a helpful tool for describing a variety of events [1]. To obtain the desired order of a
fractional derivative, the Caputo fractional derivative computes an ordinary derivative first,
then a fractional integral. In reverse order, the Riemann–Liouville fractional derivative is
calculated. As a result, although the Riemann–Liouville fractional derivative permits initial
conditions in terms of fractional integrals and their derivatives, and the Caputo fractional
derivative only enables the involvement of conventional initial and boundary conditions.
These two operators coincide under the homogeneous initial condition assumption. Anyone
who has studied fundamental calculus is familiar with the differentiation operator D = d

dς .
Furthermore, provided that n is a positive integer, the nth derivative of u, denoted by
Dγu(ς) = dnu(ς)

dςn , is well defined for suitable functions u. L’Hôpital asked Leibnitz in 1695
what significance could be assigned to Dnu(ς) if n were a fraction. However, it was not
until 1884 that the theory of generalized operators reached a stage in its evolution that was
appropriate for the modern mathematician to use as a starting point. By that time, the
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theory had been expanded to include operators Dv, where m could be real or complex,
rational or irrational, and positive or negative [2]. Although derivatives of arbitrary order
were discussed by Leibniz, Euler, Laplace, Lacroix, and Fourier, Niels Henrik Abel used
fractional operations for the first time in 1823. In order to solve the tautochrone paradox,
Abel used fractional calculus [2]. Liouville is to be credited with making what is likely
the first sincere attempt to define a fractional derivative logically. He wrote nine articles
on the topic between 1832 and 1837, with the latest one in the field appearing in 1855.
In recent years, it has been discovered that the fractional calculus is very effective in
describing a wide variety of physical phenomena, including damping laws and diffusion
processes [2–5]. Kilbas and Trujillo [1], Caputo [6], Debanth [7], Jafari and Seifi [8], Kemple
and Beyer [9], Oldham and Spanier [10], Momani and Shawagfeh [11], and others provide
some fundamental works on various elements of the fractional calculus [12–16].

Over the past forty years, fundamental research and advancements on fractional
derivatives and differential equations have been made. Traditional differential equa-
tions with non-local and genetic significance in material characteristics are generalized
as fractional-order differential equations. Fractional partial differential equations are in-
creasingly used in the creation of non-linear models and the analysis of dynamical systems.
The theory of fractional-order calculus has been connected to real-world projects and used
to examine and investigate a variety of phenomena, such as chaos theory [17], financial
models [18], a noisy environment [19], optics [20], and others [21–24]. The characteristics of
non-linear issues that occur in nature are largely described by the solutions of fractional
differential equations. Since it is challenging to find an accurate solution for fractional
differential equations representing non-linear phenomena, many analytical and numerical
techniques are employed [25–28].

In recent years, scholars and researchers have paid close attention to both the nu-
merical and analytical solutions of PDE systems. For resolving fractional FPDEs such
as this, numerous numerical and analytical algorithms have been used, including the
first integral method [29], the Elzaki transform decomposition method [30,31], the double
Laplace transform method [32], the homotopy perturbation transform method [33,34], the
conformable fractional Laplace transform method [35], the Yang transform decomposi-
tion method [36,37], the generalized two-dimensional differential transform method [38],
the Fourier transform [39], He’s variational iteration method [40], the fractional complex
differential transformation method [41], and the fractional variational iteration method [42].

The power-series method (PSM), which results in a closed-form solution of known
functions, is well proven as an efficient method for solving linear ordinary-partial differen-
tial equations. In the case of nonlinear problems, it is impossible to obtain a closed-form
solution, and finding out the series coefficients is a highly challenging task. A modified ver-
sion of the PSM that treats the coefficients as transformed functions that follow a set of rules
and are determined in recurrence relations is introduced to address the aforementioned
limitations of the standard PSM. The differential transform method is the name of this
improvement (DTM). Different kinds of integro-differential equations and linear-nonlinear
equations have both been solved using it. Another advancement is the establishment of
the residual-power-series method (RPSM) through the differentiation of the nth ordered
coefficient of the PSM’s nth partial sum of the PSM (n-1)-times.

It was necessary to increase the use of the power-series method to deal with fractional
difficulties during the modification of the ordinary derivative to a fractional derivative
because it is more general. Many significant models that arise in various branches of science
and engineering are constructed and solved analytically using the fractional DTM and
fractional RPS methodologies. By including the Laplace transform (LT) into the RPSM’s
technique, we hope to improve its accuracy in this work. This RPSM promotion is known
as the Laplace residual-power-series method (LRPSM). Solving the FPDEs introduces the
building of this innovative approach. Accuracy to the necessary level has been attained.
The suggested technique has a very easy and uncomplicated process. The findings indicate
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that, in comparison to other analytical procedures, the current method has the appropriate
accuracy.

The framework of the study is detailed as follows. First, we use key FC theory ideas
and findings in Section 2. Additionally, several original findings that provide the basis for
the innovative technique in Section 2 are provided. The solutions to time-fractional PDEs
are then determined in Section 3 using the LRPSM. Some of the problems in Section 4 are
solved using LRPSM. A brief conclusion ends Section 6.

2. Preliminaries

Here, we provide some definitions in terms of Caputo and Riemann–Liouville, along
with the Laplace transform theorem .

Definition 1. The fractional derivative in terms of Caputo is stated as [6,43]

CDγ
η u(ς, η) = Jm−γ

η um(ς, η), m− 1 < γ ≤ m, η > 0, (1)

where m ∈ N and Jγ
η represents a fractional integral in terms of Riemann–Liouville (RL) as

Jγ
η u(ς, η) =

1
Γ(γ)

∫ η

0
(η − t)γ−1u(ς, t)dt. (2)

Definition 2. The LT is stated as [43]

u(ς, µ) = Lη [u(ς, η)] =
∫ ∞

0
e−µηu(ς, η)dη, µ > γ, (3)

with inverse LT as

u(ς, η) = L−1
η [u(ς, µ)] =

∫ l+i∞

l−i∞
eµηu(ς, µ)dµ, l = Re(µ) > l0. (4)

Lemma 1. Suppose u(ς, η) is a piecewise continuous function with U(ς, µ) = Lη [u(ς, η)], so

1. Lη [J
γ
η u(ς, η)] = U(ς,µ)

µγ , γ > 0.

2. Lη [D
γ
η u(ς, η)] = µγU(ς, µ)−∑m−1

k=0 µγ−k−1uk(ς, 0), m− 1 < γ ≤ m.

3. Lη [D
nγ
η u(ς, η)] = µnγU(ς, µ)−∑n−1

k=0 µ(n−k)γ−1Dkγ
η u(ς, 0), 0 < γ ≤ 1.

Proof. For proof, see [44].

Theorem 1. Let us assume that u(ς, η) is a continuous piecewise on I × [0, ∞) and that ϑ is
the order of the exponential function. Take the function U(ς, µ) = Lη [u(ς, η)] with fractional
expansion as

U(ς, µ) =
∞

∑
n=0

fn(ς)

µ1+nγ
, 0 < γ ≤ 1, ς ∈ I, µ > ϑ. (5)

So, fn(ς) = Dnγ
η u(ς, 0).

Proof. For proof, see [43].

Remark 1. On taking the inverse LT of Equation (5) as provided in [43]:

u(ς, η) =
∞

∑
i=0

Dγ
η u(ς, 0)

Γ(1 + iγ)
ηi(ϑ), 0 < ϑ ≤ 1, η ≥ 0. (6)

This corresponds to the fractional Taylor’s formula described in [45].
The convergence of the FPS in Theorem (1) is explained and proven by the following theorem.



Axioms 2022, 11, 574 4 of 15

3. General Methodology of LRPSM

Dγ
η u(ς, η) = cD2

ςu(ς, η) + au(ς, η)− bu4(ς, η), 1 < γ ≤ 2, (7)

with initial source
u(ς, 0) = f0(ς), uη(ς, 0) = g0(ς). (8)

By employing LT to (7),

L
[
Dγ

µ u(ς, η)
]
= cL

[
D2

ςu(ς, η)
]
+ aL2[u(ς, η)]− bL

[
u4(ς, η)

]
. (9)

As from the fact that C
[
Da

1w(ς, η)
]
= µaL[w(ς, η)]− µa−1u(ς, 0)− µa−2u′(ς, 0) and by

utilizing the initial condition (8), we have

U(ς, µ) =
f0(ς) + g0(ς)

µ
+

c
µa D2

µU(ς, µ) +
a

µa U(ς, µ)− b
µa L2

[(
C−1[U(ς, µ)]

]a]
, (10)

with U(ς, µ) = L[w(ς, η)].
We may express the transformed function U(ς, µ) in the following manner:

U(ς, µ) =
∞

∑
n=0

fµ(ς)

µnγ+1 . (11)

The kth-truncated series of (11) can be expressed as

Uk(ς, µ) =
k

∑
n=0

fµ(ς)

µnγ+1 =
fo(ς) + g0(ς)

µ
+

k

∑
n=1

fk(ς)

µnγ+1 . (12)

As provided in [46], from the definition of the Laplace residual function

LResk(ς, µ) =Uk(ς, µ)− f0(ς) + g0(ς)

µ
− c

µγ
D2

µUk(ς, µ)− a
µγ

Uk(ς, µ)

+
b

µγ
L
[(

L−1[Uk(ς, µ)]
]q]

.
(13)

We provide several features that emerge in the common residual power series ap-
proach [46]:
L Res(ς, µ) = 0 and limk→∞ L Res µk(ς, µ) = L Res(ς, µ) for each µ > 0.
limµ→∞ µL Res(ς, µ) = 0⇒ limµ→∞ µL Res(ς, µ) = 0.
limµ→∞ µkγ+1L Res(ς, µ) = limµ→∞ µkγ+1L Resk(ς, µ) = 0, 0 < γ ≤ 1, k = 1, 2, 3, . . . We
will now solve the system below recursively in order to define the coefficient functions
fn(ς).

lim
µ→∞

(
µka+1LResk(ς, µ)

)
= 0, 0 < γ ≤ 1, k = 1, 2, 3, . . .

The next step is to take the inverse LT of Uk(ς, µ) to obtain the kth approximation
uk(ς, η).

4. Numerical Examples

Here, we solve three problems to show the accuracy of the proposed method.

4.1. Problem

Assume the fractional partial differential equation of the following form:

Dγ
η u− uςς − 2u`` = 0, 1 < γ ≤ 2, (14)
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with the initial condition

u(ς, `, 0) = sin(ς) sin(`), uη(ς, `, 0) = 0. (15)

By employing LT to Equation (1) and by using Equation (9), we obtain

U(ς, `, µ)− sin(ς) sin(`)
µ

+
1

µγ
Lη

[
L−1

η [Uςς] + L−1
η [U``]

]
= 0. (16)

The kth-truncated series can be expressed as

U(ς, µ) =
sin(ς) sin(`)

µ
+

k

∑
n=1

fn(ς, `, µ)

µnγ+1 , k = 1, 2, 3, 4 · · · (17)

so the kth-LRFs are

LtResu,k(ς, `, µ) =Uk(ς, `, µ)− sin(ς) sin(`)
µ

+
1

µγ
Lη

[
L−1

η [Uςς,k] + L−1
η [U``,,k]

]
. (18)

The kth-truncated series Equation (17) will be substituted into the kth-truncated resid-
ual function Equation (18) to yield fk(ς, `, µ). The resulting equation, µkγ+1, will then be
multiplied, and the relation limµ→∞(µkγ+1LtResu,k(ς, `, µ)) = 0, k = 1, 2, 3, · · · . Several
terms are as

f1(ς, `, µ) =− (4) sin(ς) sin(`),

f2(ς, `, µ) =(4)2 sin(ς) sin(`),

f3(ς, `, µ) =− (4)3 sin(ς) sin(`),

f4(ς, `, µ) =(4)4 sin(ς) sin(`),

(19)

and so on.
We may now obtain by altering the values of fk(ς, µ), k = 1, 2, 3, · · · , in Equation (17).

U(ς, `, µ) = sin(ς) sin(`)
µ + −(4) sin(ς) sin(`)

µγ+1 + (4)2 sin(ς) sin(`)
µ2γ+1 + −(4)3 sin(ς) sin(`)

µ3γ+1 + (4)4 sin(ς) sin(`)
µ4γ+1 + · · · . (20)

By employing inverse LT, we obtain

u(ς, η) = sin(ς) sin(`)− 4 sin(ς) sin(`)
ηγ

Γ(γ + 1)
+ (4)2 sin(ς) sin(`)

η2γ

Γ(2γ + 1)
− (4)3 sin(ς) sin(`)

η3γ

Γ(3γ + 1)
+

(4)4 sin(ς) sin(`)
η4γ

Γ(4γ + 1)
+ · · · .

u(ς, `, η) = sin(ς) sin(`)

(
1− 4ηγ

Γ(γ + 1)
+

(4ηγ)2

Γ(2γ + 1)
− (4ηγ)3

Γ(3γ + 1)
+

(4ηγ)4

Γ(4γ + 1)
+ · · ·

)
. (21)

On putting γ = 1, we have

u(ς, `, η) = sin(ς) sin(`)

(
1− 4η

1!
+

(4η)2

2!
− (4η)3

3!
+

(4η)4

4!
+ · · ·

)
,

u(ς, `, η) = sin(ς) sin(`)e−4η .

(22)

4.2. Problem

Assume the fractional partial differential equation of the following form:

Dγ
η u− 6uςu + uςςς = 0, 0 < γ ≤ 1, (23)
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with the initial condition
u(ς, 0) =

1
6
(ς− 1). (24)

By employing LT to Equation (23) and by using Equation (24), we obtain

U(ς, µ)−
1
6 (ς− 1)

µ
− 1

µγ
Lη

[
6L−1

η [Uς]L−1
η [U]− L−1

η [Uςςς]
]
= 0. (25)

The kth-truncated series can be expressed as

U(ς, µ) =
1
6 (ς− 1)

µ
+

k

∑
n=1

fn(ς, µ)

µnγ+1 , k = 1, 2, 3, 4 · · · (26)

so the kth-LRFs are

Lη Resu,k(ς, µ) =Uk(ς, µ)−
1
6 (ς− 1)

µ
+

1
µγ

Lη

[
6L−1

η [Uς,k]L
−1
η [Uk]− L−1

η [Uςςς,k]
]
. (27)

The kth-truncated series Equation (26) will be substituted into the kth-truncated resid-
ual function Equation (27) to yield fk(ς, `, µ). The resulting equation, µkγ+1 will then be
multiplied, and the relation limµ→∞(µkγ+1LtResu,k(ς, `, µ)) = 0, k = 1, 2, 3, · · · . Several
terms are as

f1(ς, µ) =
(ς− 1)

6
,

f2(ς, µ) =
(ς− 1)

6
,

f3(ς, µ) =
(ς− 1)

6
,

(28)

and so on.
We may now obtain by altering the values of fk(ς, µ), k = 1, 2, 3, · · · , in Equation (26).

U(ς, µ) =
1
6 (ς− 1)

µ
+

(ς−1)
6

µγ+1 +
(ς−1)

6
µ2γ+1 +

(ς−1)
6

µ3γ+1 + · · · . (29)

By employing inverse LT, we obtain

u(ς, η) =
1
6
(ς− 1) +

(ς− 1)
6

ηγ

Γ(γ + 1)
+

(ς− 1)
6

η2γ

Γ(2γ + 1)
+

(ς− 1)
6

η3γ

Γ(3γ + 1)
+ · · · .

On putting γ = 1, we have

u(ς, η) =
1
6

ς− 1
1− η

. (30)

4.3. Problem

Assume the fractional partial differential equation of the following form:

Dγ
η u− u3uςu = 0, 0 < γ ≤ 1, (31)

with the initial condition

u(ς, 0) =

(
a− 3

√
b

2
ς

) 2
3

. (32)
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By employing LT in Equation (31) and by using Equation (32), we obtain

U(ς, µ)−

(
a− 3

√
b

2 ς

) 2
3

µ
+

1
µγ

Lη

[
L−1

η [U3]L−1
η [Uς]L−1

η [U]
]
= 0. (33)

The kth-truncated series can be expressed as

U(ς, µ) =

(
a− 3

√
b

2 ς

) 2
3

µ
+

k

∑
n=1

fn(ς, µ)

µnγ+1 , k = 1, 2, 3, 4 · · ·
(34)

so the kth-LRFs are

Lη Resu,k(ς, µ) =Uk(ς, µ)−

(
a− 3

√
b

2 ς

) 2
3

µ
+

1
µγ

Lη

[
L−1

η [U3
k ]L
−1
η [Uς,k]L

−1
η [Uk]

]
.

(35)

The kth-truncated series Equation (34) will be substituted into the kth-truncated resid-
ual function Equation (35) to yield fk(ς, `, µ). The resulting equation, µkγ+1, will then be
multiplied, and the relation limµ→∞(µkγ+1LtResu,k(ς, `, µ)) = 0, k = 1, 2, 3, · · · . Several
terms are as

f1(ς, µ) =− b
2
3

(
a− 3

√
b

2
ς

)− 1
3

,

f2(ς, µ) =− b3

2

(
a− 3

√
b

2
ς

)− 4
3

,

f3(ς, µ) =b
9
2

(
a− 3

√
b

2
ς

)− 7
3
(

15
2

Γ(2γ + 1)
2(Γ(γ + 1))2 − 16

)
,

(36)

and so on.
We may now obtain by altering the values of fk(ς, µ), k = 1, 2, 3, · · · , in Equation (34).

U(ς, µ) =

(
a− 3

√
b

2 ς

) 2
3

µ
+

−b
2
3

(
a− 3

√
b

2 ς

)− 1
3

µγ+1 +

− b3

2

(
a− 3

√
b

2 ς

)− 4
3

µ2γ+1 +

b
9
2

(
a− 3

√
b

2 ς

)− 7
3
(

15
2

Γ(2γ+1)
2(Γ(γ+1))2 − 16

)
µ3γ+1 + · · · .

(37)

By employing inverse LT, we obtain

u(ς, η) =

(
a− 3

√
b

2
ς

) 2
3

− b
2
3

(
a− 3

√
b

2
ς

)− 1
3

ηγ

Γ(γ + 1)
− b3

2

(
a− 3

√
b

2
ς

)− 4
3

η2γ

Γ(2γ + 1)
+

b
9
2

(
a− 3

√
b

2
ς

)− 7
3
(

15
2

Γ(2γ + 1)
2(Γ(γ + 1))2 − 16

)
η3γ

Γ(3γ + 1)
+ · · · .

On putting γ = 1, we have

u(ς, η) =

(
a− 3

√
b

2
(ς + bη)

) 2
3

. (38)
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5. Results and Discussion

The numerical analysis between exact and approximative solutions, as shown in
Tables 1–3, has been investigated in detail and with more precision in this study. The
correctness and simplicity of the suggested method are demonstrated by computing the
numerical values at different fractional orders. Tables 1–3 display the numerical comparison
of the accurate and approximative solutions, demonstrating that the series solution soon
converges to a small value. As a result, adding more terms for an approximate solution
increases the accuracy of the analytical result. Figure 1 shows how the accurate and
suggested approaches behave, as well as the characteristics of the approximative solution.
For a better understanding of the problem’s characteristics, we also provide the suggested
method solution at various fractional orders in Figures 2 and 3. Figure 4 calculates the
solution to problem 2 using the suggested and actual method. Figure 5 displays the
graphical representations for γ = 0.8, 0.6. The behaviour of problem 2 in 2D and 3D for
different fractional orders is shown in Figure 6. Similarly, Figure 7 presents the actual and
suggested methods’ solutions at γ = 1, whereas Figures 8 and 9 present the proposed
approach solution at different fractional orders. Based on the tables and graphs, we came
to the conclusion that the proposed technique solution was in good agreement with the
precise solution.

Table 1. Comparison of the accurate and suggested technique solution at different values of γ for
problem 1.

η ς γ = 1.4 γ = 1.6 γ = 1.8 γ = 2(approx) γ = 2(NHPM) [47] γ = 2(exact)

0.2 0.0914144 0.0915022 0.0915102 0.0915124 0.0915123 0.0915124
0.4 0.1792532 0.1793622 0.1793743 0.1793766 0.1793765 0.1793766

0.01 0.6 0.2600133 0.2600643 0.2600832 0.2600895 0.2600894 0.2600895
0.8 0.3303134 0.3304152 0.3304302 0.3304335 0.3304334 0.3304335
1 0.3875321 0.3875931 0.3876011 0.3876042 0.3876041 0.3876042

0.2 0.0878231 0.0879102 0.0879211 0.0879242 0.0879241 0.0879242
0.4 0.1722330 0.1723331 0.1723412 0.1723431 0.1723430 0.1723431

0.02 0.6 0.2497621 0.2498821 0.2498901 0.2498913 0.2498911 0.2498913
0.8 0.3173292 0.3174609 0.3174721 0.3174770 0.3174769 0.3174770
1 0.3723141 0.3723920 0.3724021 0.3724060 0.3724060 0.3724060

0.2 0.0843204 0.0844602 0.0844720 0.0844766 0.0844765 0.0844766
0.4 0.1654231 0.1655713 0.1655831 0.1655854 0.1655853 0.1655854

0.03 0.6 0.2400015 0.2400820 0.2400912 0.2400929 0.2400928 0.2400929
0.8 0.3050004 0.3050121 0.3050242 0.3050286 0.3050285 0.3050286
1 0.3577116 0.3577930 0.3578010 0.3578038 0.3578037 0.3578038

0.2 0.0810192 0.0811513 0.0811614 0.0811642 0.0811641 0.0811642
0.4 0.1590002 0.1590105 0.1590903 0.1590927 0.1590926 0.1590927

0.04 0.6 0.2305280 0.2306696 0.2306754 0.2306787 0.2306786 0.2306787
0.8 0.2930001 0.2930530 0.2930632 0.2930682 0.2930681 0.2930682
1 0.3436561 0.3437631 0.3437709 0.3437741 0.3437740 0.3437741

0.2 0.0778561 0.0779702 0.0779800 0.0779817 0.0779816 0.0779817
0.4 0.1527245 0.1528461 0.1528502 0.1528546 0.1528545 0.1528546

0.05 0.6 0.2215890 0.2216241 0.2216312 0.2216337 0.2216336 0.2216337
0.8 0.2814600 0.2815653 0.2815731 0.2815769 0.2815768 0.2815769
1 0.3301343 0.3302863 0.3302916 0.3302945 0.3302944 0.3302945
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Table 2. Comparison of the accurate and suggested technique solution at different values of γ for
problem 2.

η ς γ = 0.4 γ = 0.6 γ = 0.8 γ = 1(approx) γ = 1(NHPM) [47] γ = 1(exact)

0.2 −0.1334995 −0.1334877 −0.1334768 −0.1334668 −0.1334669 −0.1334668
0.4 −0.1001246 −0.1001158 −0.1001076 −0.1001001 −0.1001002 −0.1001001

0.01 0.6 −0.0667497 −0.0667438 −0.0667384 −0.0667334 −0.0667335 −0.0667334
0.8 −0.0333748 −0.0333719 −0.0333692 −0.0333667 −0.0333668 −0.0333667
1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0.2 −0.1336590 −0.1336381 −0.1336185 −0.1336005 −0.1336006 −0.1336005
0.4 −0.1002443 −0.1002286 −0.1002139 −0.1002004 −0.1002005 −0.1002004

0.02 0.6 −0.0668295 −0.0668190 −0.0668092 −0.0668002 −0.0668001 −0.0668002
0.8 −0.0334147 −0.0334095 −0.0334046 −0.0334001 −0.0334002 −0.0334001
1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0.2 −0.1338163 −0.1337871 −0.1337597 −0.1337345 −0.1337346 −0.1337345
0.4 −0.1003622 −0.1003403 −0.1003197 −0.1003009 −0.1003009 −0.1003009

0.03 0.6 −0.0669081 −0.0668935 −0.0668798 −0.0668672 −0.0668673 −0.0668672
0.8 −0.0334540 −0.0334467 −0.0334399 −0.0334336 −0.0334337 −0.0334336
1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0.2 −0.1339721 −0.1339352 −0.1339005 −0.1338688 −0.1338689 −0.1338688
0.4 −0.1004791 −0.1004514 −0.1004253 −0.1004016 −0.1004017 −0.1004016

0.04 0.6 −0.0669860 −0.0669676 −0.0669502 −0.0669344 −0.0669345 −0.0669344
0.8 −0.0334930 −0.0334838 −0.0334751 −0.0334672 −0.0334673 −0.0334672
1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0.2 −0.1341270 −0.1340828 −0.1340411 −0.1340033 −0.1340034 −0.1340033
0.4 −0.1005952 −0.1005621 −0.1005308 −0.1005025 −0.1005026 −0.1005025

0.05 0.6 −0.0670635 −0.0670414 −0.0670205 −0.0670016 −0.0670017 −0.0670016
0.8 −0.0335317 −0.0335207 −0.0335102 −0.0335008 −0.0335009 −0.0335008
1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

Table 3. Comparison of the accurate and suggested technique solution at different values of γ for
problem 3.

η ς γ = 0.4 γ = 0.6 γ = 0.8 γ = 1(approx) γ = 1(NHPM) [47] γ = 1(exact)

0.2 2.3919191 2.3920191 2.3921191 2.3922195 2.3922194 2.3922195
0.4 2.2607964 2.2608964 2.2609964 2.2610967 2.2610966 2.2610967

0.01 0.6 2.1257538 2.1258538 2.1259538 2.1260541 2.1260540 2.1260541
0.8 1.9862757 1.9863757 1.9864757 1.9865760 1.9865759 1.9865760
1 1.8417147 1.8418147 1.8419147 1.8420150 1.8420150 1.8420150

0.2 2.3919181 2.3920181 2.3921181 2.3922188 2.3922187 2.3922188
0.4 2.2607954 2.2608954 2.2609954 2.2610961 2.2610960 2.2610961

0.02 0.6 2.1257528 2.1258528 2.1259528 2.1260534 2.1260533 2.1260534
0.8 1.9862747 1.9863747 1.9864747 1.9865753 1.9865752 1.9865753
1 1.8417137 1.8418137 1.8419137 1.8420142 1.8420141 1.8420142

0.2 2.3919171 2.3920171 2.3921171 2.3922182 2.3922181 2.3922182
0.4 2.2607944 2.2608944 2.2609944 2.2610954 2.2610953 2.2610954

0.03 0.6 2.1257518 2.1258518 2.1259518 2.1260527 2.1260526 2.1260527
0.8 1.9862737 1.9863737 1.9864737 1.9865746 1.9865745 1.9865746
1 1.8417127 1.8418127 1.8419127 1.8420135 1.8420134 1.8420135

0.2 2.3919161 2.3920161 2.3921161 2.3922175 2.3922174 2.3922175
0.4 2.2607934 2.2608934 2.2609934 2.2610947 2.2610946 2.2610947

0.04 0.6 2.1257508 2.1258508 2.1259508 2.1260520 2.1260519 2.1260520
0.8 1.9862727 1.9863727 1.9864727 1.9865739 1.9865738 1.9865739
1 1.8417117 1.8418117 1.8419117 1.8420128 1.8420127 1.8420128

0.2 2.3919151 2.3920151 2.3921151 2.3922169 2.3922168 2.3922169
0.4 2.2607924 2.2608924 2.2609924 2.2610941 2.2610940 2.2610941

0.05 0.6 2.1257498 2.1258498 2.1259498 2.1260514 2.1260513 2.1260514
0.8 1.9862717 1.9863717 1.9864717 1.9865732 1.9865731 1.9865732
1 1.8417107 1.8418107 1.8419107 1.8420120 1.8420120 1.8420120
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Figure 1. The proposed method solution and accurate solution at γ = 2.

Figure 2. The proposed method solution at γ = 1.8, 1.6 for example 1.

Figure 3. The proposed method solution for problem 1 at different values of γ.
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Figure 4. The proposed method solution and accurate solution at γ = 1.

Figure 5. The proposed method solution at γ = 0.8, 0.6 for example 2.

Figure 6. The proposed method solution at different values of γ for example 2.
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Figure 7. The proposed method solution and accurate solution at γ = 1.

Figure 8. The proposed method solution at γ = 0.8, 0.6 for example 3.

Figure 9. The proposed method solution at different values of γ for example 3.

6. Conclusions

In this study, the Laplace residual-power-series method (LRPSM), a powerful new
technique for solving fractional partial differential equations, is developed by successfully
combining the residual-power-series method (RPSM) and the Laplace transform. The
new technique provides a series solution with elegant computational terms that quickly
converges to an exact or approximate solution. The fractional derivative is handled in
the Caputo sense in this novel analytical technique. With the help of the new analytical
technique, fractional partial differential equations are successfully solved precisely. The
obtained results via our technique are compatible with the results obtained by the natural
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homotopy perturbation method. In order to understand the behavior of the provided
problems, solutions at different fractional orders are taken and are shown with the help
of graphs and tables, which confirm that we get closer to the exact solution as the order
of γ goes from fractional-order towards the integercorder. It is clearly proven that the
new reliable approach is both straightforward and highly accurate. The Laplace residual-
power-series method is a powerful and reliable technique for handling fractional partial
differential equations that are both linear and nonlinear.
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