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Abstract: This paper presents an illustration of how knowledge from the field of special functions,
orthogonal polynomials and numerical series can be applied to solve a very important problem in
the field of modern wireless communications. We present the formulas for the probability density
function (PDF) and cumulative distribution function (CDF) of the composite signal envelope over an
mm-Wave channel. The formulas for the PDF and CDF are expressed in the convergent infinity series
form. The main contribution of the paper is in estimating the upper bounds for absolute truncation
error in evaluating PDF and CDF of the signal envelope. We also derive the formulas for the required
number of terms in the summation under the condition of achieving a given accuracy for typical
values of channel parameters. In deriving these formulas, we use the alternating series estimation
theorem, as well as some properties of orthogonal polynomials in order to derive upper bounds for
hypergeometric functions. Based on the newly derived formulas, numerical results are presented
and commented upon. The analytical results are verified by Monte Carlo simulations. The results
are essential in the designing and performance estimating of the fifth-generation (5G) and beyond
wireless networks.

Keywords: truncation error; probability density function; special functions; communication theory;
wireless communications
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1. Introduction
1.1. Motivation

In order to estimate accurately the performance of telecommunications systems, it is
necessary to know the statistical characteristics of the signals that propagate through the
telecommunication channel. The important metrics of a telecommunication system, such as
error probability, ergodic capacity, and outage probability, can be determined by applying
methods based on knowledge of the probability density function (PDF) and cumulative
distribution function (CDF) of the detected signal envelope. It is desirable the PDF and
CDF be expressed in a closed form. If it is not possible to derive these quantities in a
closed form, then the aim is to express them in the form of convergent series. In the case
when the PDF and CDF are known in the form of an infinite series, in order to calculate
their numerical value, it is necessary to truncate the series. In those cases, it is important
to be able to estimate the truncation error of these series [1,2]. For example, in wireless
channels where the detected signal envelope is not constant, the error probability or the
ergodic capacity is determined by integrating the PDF over all possible values of the signal
envelope, so the accuracy of determining these quantities depends on the accuracy of the
PDF calculation. In addition, the outage probability is determined directly on the basis of
the CDF, so the calculation of the CDF is of exceptional importance for the determination
of this quantity. Very often, both the PDF and CDF of the signal envelope over wireless
channels contain different special functions and it is necessary to find some boundary
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values of these functions for different channel conditions, or it is necessary to perform a
summation of these special functions when diversity techniques are applied at the receiver
side [1,2].

1.2. Literature

High-frequency bands will be used in the fifth-generation (5G) and beyond wireless
networks. In other words, signals will be transmitted over millimeter-wave (mm-Wave)
channels. Recently, it was shown experimentally that the statistical characteristics of
signals transmitted in the band of 60 GHz could be described by the two-wave diffuse-
power (TWDP) model [3–5]. In addition, the authors of [6] illustrated that the fluctuating
multiple-ray models had a good fit with experimental results in outdoor environments at
28 GHz.

It is interesting that the TWDP model of fading over telecommunication channels
was initially suggested in [7]. Namely, small-scale fading is characterized by the TWDP
model whenever the received signal contains two strong (specular) multipath waves and
many diffuse waves. An approximation for the PDF of the signal envelope variations was
presented in [7], where the TWDP model was initially proposed. This model of fading
has constantly been the subject of study by many researchers [8–12]. In Kim et al. [8], the
authors emphasized some shortcomings of the approximation from [7], and they presented
exact and approximate formulas for the bit-error rate when detecting a binary phase-shift
keying signal transmitted over a TWDP channel for large values of the signal-to-noise
ratio. In ref. [9], the authors derived some novel expressions for system performance
metrics and presented interesting result showing that the TWDP fading model had a
closed-form moment-generating function of the received signal envelope. In ref. [10],
the joint estimation of the two parameters of the TWDP fading model was studied. A
closed-form moment-based estimator was presented for fading parameters. The authors
of [11,12] presented a novel way of parametrization of the TWDP channel model that was
slightly different from the parametrization that had previously been utilized in [7–10].
One one hand, based on experimental results [3–6], this model of fading is suitable for
mm-Wave channels. However, on the other hand, there is no closed-form solution for the
PDF and CDF for the TWDP model. Consequently, any deeper theoretical analysis of these
systems is hard because the PDF and CDF of the signal envelope are essential quantities for
this analysis.

1.3. Contribution

In this paper, we briefly show that the statistical characterization of the TWDP channel
can be performed by applying the equivalence of this model with a situation where there
are a useful signal, cochannel interference and an additive white Gaussian noise (AWGN).
I. Kostic [13,14] derived the PDF and CDF for the envelope of the composite signal consist-
ing of a narrowband useful signal, cochannel interference and an AWGN. Very recently,
the equivalence between that scenario and the case where the composite signal envelope
variations are described by the TWDP model was noticed in [11]. However, in the numeri-
cal evaluation of the PDF and CDF, there is still the important open problem of how many
terms should be taken in the summation in both formulas. Because of that, our emphasis
is on the derivation of upper bounds for the absolute truncation error in infinite series in
formulas for the PDF and CDF. The alternating series estimation theorem [15] is used in
determining the bound for the truncation error. Furthermore, in order to derive an explicit
formula linking the number of terms in the series we are summing up and the truncation
error, it is necessary to determine the boundary values of the Bessel function of the first kind
and order ν defined by ([16], (8.431)), as well as some bounds for hypergeometric functions
2F1(−m,−m; 1; ·) and 1F1(1−m; 2; ·) that can be presented as generalized hypergeometric
series defined by ([17], (1)). Based on these newly derived expressions of the upper bounds
for the truncation error and newly derived expressions for the required number of terms to
achieve a given truncation error, we present some numerical values of the required number
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of terms in the summation in order to achieve the given accuracy for representative values
of channel parameters. In addition, we verify the analytical results by independent Monte
Carlo simulations.

1.4. Structure

In Section 2, we briefly describe the fading model and present the parameters defini-
tion, including the PDF and CDF of the signal envelope. Section 3 presents a convergence
analysis of the series in the formulas for the PDF and CDF. For the series in both PDF and
CDF formulas, we estimate the absolute truncation error, and derive the relation between
the number of terms in the summation and the given absolute accuracy. Numerical results
followed by appropriate discussions are given in Section 4, while Section 5 presents basic
concluding remarks.

2. Physical Background

Based on the measurement verifications from [3–6] and the analytical models presented
in [7–12], the resulting received complex signal envelope is given by [7–12]

r = V1ejΨ1 + V2ejΨ2 + xF + jyF, (1)

The resulting signal envelope consists of two specular components and a diffuse part.
Specular components have constant amplitudes V1 and V2, and uniformly distributed
phases (Ψ1 and Ψ2) in the interval from 0 to 2π. The diffuse component has a Rayleigh
distribution, i.e., it consists of the in-phase and quadrature components having a Gaussian
distribution with zero mean value and standard deviation denoted by σF. These in-phase
and quadrature components are denoted by xF and yF, respectively.

The complex fading can be presented in terms of the envelope r and argument θ as

Vr = rejθ , (2)

where the fading envelope is given by:

r =
√
(V1 cos Ψ1 + V2 cos Ψ2 + xF)

2 + (V1 sin Ψ1 + V2 sin Ψ2 + yF)
2 (3)

This model of fading can be described in terms of two parameters denoted by K and ∆.
The parameter K denotes the ratio of the power of the specular components to the power
of the diffuse component. The parameter ∆ is related to the ratio of the peak specular
components power to the average specular components’ power. These two parameters are
defined as [7–10]

K =
Average specular power
Average diffuse power

=
V2

1 + V2
2

2σ2
F

, (4)

∆ =
Peak specular power

Average specular power
− 1 =

2V1V2

V2
1 + V2

2
. (5)

When K → 0+, the case corresponds to the situation without specular components,
i.e., the resulting PDF is the Rayleigh one. Based on [7–10], the typical values of parameter
K for terrestrial mobile links have values as high as 20 dB. The larger the value of the
parameter K, the larger the power of the specular components compared with the power of
the diffuse component. In other words, the fading is shallower. The values of parameter ∆
lie in the range from zero to one. When ∆ is equal to one, the specular components have an
equal amplitude, while when ∆ is equal to zero, either specular component’s amplitude is
equal to zero.
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An alternative way for parametrization was recently suggested in [11,12]. The authors
of [11,12] used the same definition of parameter K, but instead of parameter ∆, they
introduced parameter Γ defined simply as

Γ = V2/V1 (6)

The values of parameter Γ lie in the range from zero to one. When Γ is equal to
one, specular components have an equal amplitude, while when Γ is equal to zero, either
specular component’s amplitude is equal to zero.

For our analysis presented in this paper, both parametrizations can be applied equally.
We use the second one for illustrative purposes. Without loss of generality, we assume that
the mean squared value of the envelope is equal to one, i.e.,

r̄2 = V2
1 + V2

2 + 2σ2
F = 1 (7)

From (4), (6) and (7), it follows that

V1 =
√

K/((1 + Γ2)(1 + K)), V2 = V1Γ, (8)

σF =
√

1/(2(1 + K)). (9)

On the basis of the analytical derivations presented in [13,14], the PDF and CDF of the
signal envelope given by (3) can be presented, respectively, in the forms of

p(r) =
r

σF
e
− r2+V2

1 +V2
2

2σ2
F

[
I0

(
rV1

σ2
F

)
I0

(
rV2

σ2
F

)
I0

(
V1V2

σ2
F

)
+

2
+∞

∑
m=1

(−1)m Im

(
rV1

σ2
F

)
Im

(
rV2

σ2
F

)
Im

(
V1V2

σ2
F

)]
(10)

F(r) =
r e
− r2

2σ2
F

2σ2
F

+∞

∑
m=1

(−1)m

m!

(
V2

1
2σ2

F

)m

2F1

(
−m,−m; 1;

V2
2

V2
1

)
1F1

(
1−m; 2;

r2

2σ2
F

)
, (11)

where Iν(·), ν = 0, 1, · · · denotes a modified Bessel function of the first kind and order ν
([16], (8.431)), 2F1(·, ·; ·; ·), and 1F1(·; ·; ·) denote the hypergeometric functions that can be
presented as the generalized hypergeometric series defined by ([17], (1)).

Formulas (10) and (11) were originally derived in [13,14], and here they are adapted to
describe the composite signal envelope in the case where a signal is transmitted over an
mm-Wave channel, which is relevant for terrestrial mobile systems [3–6].

3. Convergence Analysis of Series in PDF and CDF

In order to evaluate the numerical value of the PDF and CDF given by (10) and (11),
respectively, it is necessary to take a finite number of terms in the summation in (10) and (11).
Because of that, our aim is to estimate the truncation errors appearing after truncating the
series in (10) and (11), as well as to give a direct relation between the number of terms in
the summation on one hand, and give the absolute accuracy in the summation and channel
parameters on the other hand.

3.1. Convergence Analysis of Series in PDF

Our goal is to estimate firstly the upper bound for the absolute truncation error of
the series in (10) and secondly to estimate in advance the number of terms required for a
specified accuracy level.
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3.1.1. Truncation Error of Series in PDF

The alternating series estimation theorem bounds the absolute truncation error on the
upper side to the absolute value of the first term left out after stopping the summation [15].
In estimating the truncation error of the series in (10), we are actually focusing on the series

S1 =
+∞

∑
m=1

(−1)m Im

(
rV1

σ2
F

)
Im

(
rV2

σ2
F

)
Im

(
V1V2

σ2
F

)
. (12)

The truncation error of series S1 is defined as

εPDF
N =

+∞

∑
m=N+1

(−1)m Im

(
rV1

σ2
F

)
Im

(
rV2

σ2
F

)
Im

(
V1V2

σ2
F

)
. (13)

Proposition 1. The upper bound for the absolute truncation error εPDF
N defined by (13) is given by

∣∣∣εPDF
N

∣∣∣ ≤ RPDF
N =

1

((N + 1)!)3

(
rV1V2

2
√

2σ3
F

)2(N+1)

, (14)

where V1, V2 and σF are defined by (8) and (9).

Proof of Proposition 1. In order to estimate the upper bound for the truncation error εPDF
N ,

we start by estimating the upper bound for the function Im(·). Using the inequality from
Luke ([18], (6.25)), and [19]

1 ≤ Im(x) ≤ ex

m!

( x
2

)m
, (15)

it directly holds that

Im

(
rV1

σ2
F

)
Im

(
rV2

σ2
F

)
Im

(
V1V2

σ2
F

)
≤ 1

(m!)3 exp

(
r(V1 + V2) + V1V2

σ2
F

)(
rV1V2

2
√

2σ3
F

)2m

(16)

Consequently the absolute truncation error is bounded as it is presented by (14).

Corollary 1. On the basis of (14), it is evident that lim
N→+∞

RPDF
N = 0, which means the series S1

given by (12) is convergent.

3.1.2. Required Number of Terms in evaluating PDF

Proposition 2. The required number of terms in the summation in (12) to achieve the absolute
truncation error εPDF

N can be expressed as N = dme

m ≥



1
2

log
1

d(εPDF
N )

W0

( 1
2ae

log
1

d(εPDF
N )

) , d(εPDF
N ) < e2a, d(εPDF

N ) 6= 1

ae, d(εPDF
N ) = 1

a, d(εPDF
N ) = e2a

0, otherwise

(17)

where a and d(εPDF
N ) are defined by (20) and (26), respectively, and W0(·) is the principal branch of

the Lambert W function.
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Proof of Proposition 2. In estimating the required number of terms of S1 to achieve a given
truncation error εPDF

N , we need to find N = dmin{m}e so that

1
(m!)3 exp

(
r(V1 + V2) + V1V2

σ2
F

)(
rV1V2

2
√

2σ3
F

)2m

≤ εPDF
N (18)

The inequality (18) can be written in the simpler form

am

m!
≤ b, (19)

where a and b are given by

a =

(
rV1V2

2
√

2σ3
F

)2/3

, (20)

b = 3
√

εPDF
N exp

(
− r(V1 + V2) + V1V2

3σ2
F

)
. (21)

Using Stirling’s formula for factorial ([16], 8.327(2)) m! >
√

2πm
(m

e

)m
, we rewrite

the inequality (19) as
am

m!
<
( ae

m

)m 1√
2πm

≤ b. (22)

Since m ≥ 1, we can write( ae
m

)m 1√
2πm

≤
( ae

m

)m 1√
2π
≤ b. (23)

Formula (23) introduces a significant simplification 1 ≥ 1/
√

m, but also enables
the expression of the result in explicit form. Therefore, we expect the value of m to be
overestimated, which is a trade-off for simplicity. The rightmost inequality( ae

m

)m
≤ b
√

2π (24)

can be rearranged to show the explicit value for m expressed in terms of the Lambert W
function [20]

m ≥

1
2

log
1

d(εPDF
N )

W0

( 1
2ae

log
1

d(εPDF
N )

) , d(εPDF
N ) < e2a, (25)

where

d(εPDF
N ) = 2π

(
εPDF

N

)2/3
exp

(
− 2

r(V1 + V2) + V1V2

3σ2
F

)
, (26)

and W0(·) stands for the principal branch of the Lambert W function (also known as
product logarithm).

For d(εPDF
N ) → e2a, the limiting value is m ≥ a. On the other hand, in the case of

d(εPDF
N ) > e2a, inequality (24) is fulfilled for any m ≥ 0, so there is effectively no need for

the summation. Furthermore, for the sake of completeness, we notice that

m ≥ ae, when d(εPDF
N )→ 1. (27)

Based on the previously mentioned equation, the required number of terms in the
summation in (10) can be expressed as in (17).
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While there are recent results that enable the precise computation [21] of the Lambert
W function, there have also been some attempts to produce analytical approximations for
the principal branch, such as [22,23]. For our purposes, we found that lower bound (32)
from [23]

W0(x) ' x
1 + log(1 + x)

1 + 3x + x log(1 + x)

(
1 + log

1 + 2x
1 + log(1 + x)

)
(28)

provided a reasonable compromise between accuracy and complexity. Therefore, in nu-
merical computation we used this equation as a stand-in replacement for the Lambert W0
function.

For illustrative purposes, we present the required number of terms (N) given by (17)
versus the truncation error εPDF

N in Figure 1. The numerical results presented in Figure 1
were evaluated for r = 0.5, K = 8 dB and Γ = 0.5.

On the other hand, this figure presents the required number of terms in the summation
when the termination criterion is an absolute value of the first term left after terminating the
summation to be less than εPDF

N . In other words, if we denote the (N + 1)th term of the series
by bN+1 = (−1)N+1Im

(
rV1/σ2

F
)
Im
(
rV2/σ2

F
)
Im
(
V1V2/σ2

F
)
, we perform the summation until

the condition |bN+1| ≤ εPDF
N is satisfied. It is clear that the required number of terms

estimated on the basis of (17) is larger than the number of terms determined under the
condition that the absolute value of the first term left after terminating the summation is
less than εPDF

N . That means we have derived a bound on the truncation error which gives
us the required number of terms in the summation to be sure that a given accuracy will be
satisfied.

Based on the results from Figure 1, it can be noted that the same number of terms
in the summation is needed to reach the bound for the truncation error in the range of
several orders of magnitude. For example, 16 terms are necessary to ensure the bound on
the truncation error from 2× 10−15 to 3× 10−13 This is the consequence of the number of
terms being an integer value, which leads to the step-like behavior in Figure 1.

Figure 1. Required number of terms computed numerically and using the bound given by (17).

3.2. Convergence Analysis of Series in CDF

As in the case of the PDF considered in the previous subsection, in this subsection, we
derive the upper bound for the absolute truncation error when evaluating the CDF given
by (11) and we derive the formula for the required number of terms to achieve a given
accuracy in the summation in (11).
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3.2.1. Truncation Error of Series in CDF

Here, we can also apply the alternating series estimation theorem bounding the
absolute truncation error on the upper side to the absolute value of the first term left out
after stopping the summation [15]. In estimating the truncation error in (11), we focus
on series

S2 =
+∞

∑
m=1

(−1)m

m!

(
V2

1
2σ2

F

)m

2F1

(
−m,−m; 1;

V2
2

V2
1

)
1F1

(
1−m; 2;

r2

2σ2
F

)
(29)

The truncation error of series S2 is

εCDF
N =

+∞

∑
m=N+1

(−1)m

m!

(
V2

1
2σ2

F

)m

2F1

(
−m,−m; 1;

V2
2

V2
1

)
1F1

(
1−m; 2;

r2

2σ2
F

)
(30)

Proposition 3. The upper bound for the truncation error εCDF
N defined by (30) is given by

∣∣∣εCDF
N

∣∣∣ ≤ RCDF
N =

(
N − 1/2

N + 1

)
[2a(1 + b)]N+1

(N + 1)!
(((N + 1)!)1/N + c)N

(N + 1)!
. (31)

where the parameters are defined as a = V2
1 /(2σ2

F), b = V2
2 /V2

1 and c = r2/(2σ2
F).

Proof of Proposition 3. In order to estimate the upper bound for the truncation error and
the required number of terms in the series to achieve a given absolute accuracy, we derive
the bound for the hypergeometric functions appearing in (29).

• Derivation of the upper bound for function 2F1(−m,−m; 1; z).
Based on ([24], (07.23.03.0195.01)), it holds that

2F1(−m,−m; 1; z) = (1− z)mPm

(1 + z
1− z

)
(32)

where Pm(x) denotes the Legendre polynomial defined in ([16], (8.910)). We start the
derivation of the bound for the hypergeometric function in (29) by proving the equality

|Pm(x)| < am|x|m, (33)

where am denotes the coefficient with xm in the Legendre polynomial of order m. The
coefficient am can be expressed as ([25], p. 40)

am =
(2m)!

2m(m!)2 = 2m
(

m− 1/2
m

)
(34)

Since the zeros of Legendre polynomials are real and symmetrical, we write

Pm(x) = am x(1+(−1)m+1)/2
bm/2c

∏
i=0

(x2 − α2
i ), (35)

where αi are zeros of the Legendre polynomial of order m. The polynomials of odd order
have an additional zero which is located at x = 0. All zeros are located inside the interval
(−1, 1), implying 0 ≤ α2

i < 1 and therefore |x2 − α2
i | < x2 when x > 1, so we can directly

write
|Pm(x)| < am|x|m, |x| > 1, m > 1 (36)

Since −1 ≤ Pm(x) ≤ 1, for −1 ≤ x ≤ 1, we can extend the inequality to arbitrary real
x in the following way

|Pm(x)| < 1 + am|x|m, m > 1 (37)
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Since (1 + x)/(1 − x) ≥ 1 when 0 ≤ x < 1, we use the first version (36) of the
inequality, yielding

2F1(−m,−m; 1; x) ≤ am(1 + x)m, x ≥ 0, (38)

where equality is achieved at x = 1. This derived inequality (38) is illustrated in Figure 2.

 

10
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-2

10
-1

10
0

10
1

10
2

10
-2

10
8

10
18

10
28

10
38
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48

2
F

1
(-
m

, 
-m

; 
1

; 
x
) 

an
d

 U
p

p
er

 b
o

u
n

d

x

 Upper bound

 
2
F

1
(-m, -m; 1; x)

Figure 2. Simple upper bound for 2F1(−m,−m; 1; x), for m = 20.

• Derivation of the upper bound for function 1F1(1−m; 2; z).
A confluent hypergeometric function can be represented as ([24], (07.03.26.0002.01),

(07.20.27.0001.01))

1F1(1−m; 2; z) =
1
m

L1
m−1(z). (39)

where Lα
m(z) represents the Laguerre function [16]. Love noted in [26] that there were only

a few results published about Laguerre polynomials’ inequalities. Our result in this context
is stated as:

1
m

∣∣∣L1
m−1(z)

∣∣∣ ≤ 1
m!

(α(m− 1) + z)m−1 =
b(1)m−1(z)

m
, α(m− 1) = (m!)1/(m−1). (40)

Using ([27], (5.17)), we get
L1

m(0) = m + 1. (41)

By substituting z = 0 into the previous inequality, we get∣∣∣L1
m−1(0)

∣∣∣ = m ≤ 1
(m− 1)!

α(m− 1)m−1, (42)

which yields an appropriate value for α(m), as

α(m) = ((m + 1)!)1/m. (43)

All the zeros of Laguerre polynomials are positive, so we can prove∣∣∣L1
m(z)

∣∣∣ < 1
m!

zm, (44)

when z is larger than the largest zero of L1
m(z). Therefore,

1
m

∣∣∣L1
m−1(z)

∣∣∣ ≤ 1
m!

(α(m− 1) + z)m−1, z > z1, (45)
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where z1 is the largest zero of L1
m−1(z). Another bound can be proven for Laguerre polyno-

mials, ([28], 10.18(14)), ([29], (18.14.8))∣∣∣L1
m(x)

∣∣∣ ≤ (m + 1) exp
x
2
= b(2)m (x), z > 0. (46)

An illustration of the two bounds is shown in Figure 3. It can be seen that the bound
b(1)m (z) is valid, but not as sharp as b(2)m (z) for smaller values of z that are below the largest
zero. On the other hand, for large z, the bounds’ sharpness is reversed.
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Figure 3. Two upper bounds for |1F1(1−m; 2; x)|, for m = 20.

On the basis of the previously derived formulas and the alternative series truncation
error theorem, Proposition 3 is proven.

Corollary 2. On the basis of (31), it is evident that lim
x→+∞

RCDF
N = 0, which means the series S2

given by (29) is convergent.

Regarding Figure 3, the crossing point x0 between the two bounds can be used in the
following statement:

bound =

{
bound 2, 0 ≤ x < x0

bound 1, x0 ≤ x < +∞
(47)

To date, we have not seen in the literature this exact combination of bounds addressing
the [0, ∞) range. Additionally, the crossing point can be expressed in closed*form as

x0

2m
= −βm −W−1

(
−βme−βm

)
, (48)

where βm =
((1 + m)!)1/m

2m
.

3.2.2. Required Number of Terms for Evaluating CDF

In this subsection, we derive two formulas giving an explicit relation between the
required number of terms in the summation, and the value of the absolute truncation error.
One equation is marked as “Upper bound 1”, and the other is marked as “Upper bound 2”.

Proposition 4. The required number (N1) of terms in the summation in (29) under the condition
of achieving absolute truncation error εCDF

N can be determined by N = dme
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m ≥



2ec + log
1

2π2
(
εCDF

N
)2

2W
( 1

4a(1 + b)e
(
2ec + log

1

2π2
(
εCDF

N
)2

)) εCDF
N < ε1 =

1
π

(1
2

e4a(1+b)+2ec
)1/2

2a(1 + b), εCDF
N =ε1

0, otherwise

, (49)

where a =
V2

1
2σ2

F
, b =

V2
2

V2
1

and c =
r2

2σ2
F

.

Proof of Proposition 4. By regarding the generalized binomial coefficient as(
m
n

)
=

Γ(m + 1)
Γ(n + 1)Γ(m− n + 1)

m, n, m− n /∈ Z−0 , (50)

and expanding (m−1/2
m ) into a series around m→ +∞, we get(

m− 1/2
m

)
=

1√
mπ

+ O(m−3/2). (51)

It can be proved that the following holds

1√
mπ
≥
(

m− 1/2
m

)
(52)

Unfortunately, after the previous simplification, (31) is still too complex for symbolic
manipulation. In order to obtain results with a reasonable complexity, we use the limit

lim
m→+∞

((m!)1/(m−1) + c)m−1

m!
= exp(ec). (53)

Our upper bound is now

RCDF
m−1 ≈

[2a(1 + b)]m

m!
exp (ec)√

mπ
<

[2a(1 + b)]m

m!
exp (ec)√

π
, m > 1. (54)

This leads to an equation for m given by

exp(ec)
π
√

2

(
2a(1 + b)e

m

)m
≤ ε. (55)

The variable m can be expressed similarly as it was in the case of the PDF. The solution
is given by (49). We note that the limiting value is

lim
ε→ε−1

2ec + log
1

2π2ε2

2W
( 1

4a(1 + b)e
(
2ec + log

1
2π2ε2

)) = 2a(1 + b), (56)

and for ε > ε1, the required m is m ≥ 0.



Axioms 2022, 11, 569 12 of 17

Proposition 5. The required number (N2) of terms in the summation in (29) under the condition
of achieving the truncation error can be determined by N = dme

m ≥



c + log
1

2π2(εCDF
N )2

2W
( 1

4a(1 + b)e
(
c + log

1
2π2(εCDF

N )2

)) εCDF
N < ε2 =

1
π

(1
2

e4a(1+b)+c
)1/2

2a(1 + b), εCDF
N > ε2

0, otherwise

, (57)

where a =
V2

1
2σ2

F
, b =

V2
2

V2
1

and c =
r2

2σ2
F

. This solution is denoted by “Upper bound 2”.

Proof of Proposition 5. By direct use of (46), it follows that

am

m! 2F1(−m,−m; 1; b)|1F1(1−m; 2; c)| <
(

m− 1/2
m

)
[2a(1 + b)]m

m!
exp(c/2), (58)

From inequality (58), (57) follows.

By comparing (49) with (57), we can notice that the latter is obtained by substituting c
with c/(2e) in the former.

Figure 4 presents the required number of terms (both N1 and N2) needed to achieve
a given absolute truncation error. This figure also presents the required number of terms
that is determined from the criterion that the summation be terminated when the absolute
value of the next term is less than εCDF

N .
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Figure 4. Illustration of the required number of terms in the summation in the CDF to achieve a
specified absolute truncation error.

Figure 4 illustrates the required number of terms in the sum in (29). Firstly, we
estimated the number of terms numerically in a way that we terminated the summation
when the absolute value of the first term left after the summation was less than the accuracy
level denoted by εCDF

N . Secondly, we determined the number of terms was the summation
based on (49), and that value was denoted as “Upper bound 1”. Thirdly, we estimated the
number of terms based on (57). That bound was denoted as “Upper bound 2”. It is clear
that the values that were estimated numerically are closer to the values estimated based on
(57) compared with those estimated based on (49).
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4. Numerical Results and Discussion

In the previous section, we derived new closed-form expressions ((13) and (30)) for
the upper bounds of the truncation errors when evaluating the PDF and CDF of the signal
envelope. These expressions were derived in terms of elementary mathematical functions.
In addition, we derived closed-form Formulas (17), (49) and (57) giving a straightforward
relation between the number of terms in the summation on one hand, and the value of the
truncation error and channel parameters on the other hand. In this section, we give some
illustrations of applications of these formulas.

Figures 5 and 6 present the numerical values of the upper bounds for the truncation
error of the PDF under different channel conditions. Figure 5a presents the upper bound
for the truncation error vs. the required number of terms in the summation to achieve this
upper bound. We present several curves corresponding to different values of parameter K.
The larger the value of parameter K, the larger the number of terms necessary to achieve
the given bound for the truncation error. For example, to achieve the bound for a truncation
error of 10−12, the required number of terms in the summation increases from N = 8 to
N = 21 when parameter K increases from K = 4 dB to K = 12 dB. In other words, a larger
number of terms is required in channels with stronger specular components compared with
the diffuse component. Figure 5b presents the dependence of the required number of terms
in the summation vs. the truncation error. This dependence is given by (17). For values of
the truncation error of 10−12, the required numbers of terms according to (17) are 10 and 23.
We can conclude that relation (17) gives numbers of terms larger than those numbers that
can be noticed from the dependence in Figure 5a, which were obtained based on (14).
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Figure 5. Effect of parameter K on accuracy of evaluating PDF: (a) upper bound for truncation error
vs. number of terms in summation; (b) required number of terms vs. truncation error.
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Figure 6. Effect of parameter Γ on accuracy of evaluating PDF: (a) upper bound for truncation error
vs. number of terms in summation; (b) required number of terms vs. truncation error.

The influence of parameter Γ on the number of required terms for achieving a given
upper bound for the truncation error is illustrated in Figure 6. The larger the value of
parameter Γ, the larger the number of terms in the summation required to achieve a given
upper bound for the truncation error. If we fix the bound for the truncation error to 10−12,
from Figure 6a, we can read that it is necessary to sum N = 10 and N = 15 terms if Γ = 0.2
and Γ = 1, respectively. When applying (17), i.e., from the results presented in Figure 6b,
we conclude that for a truncation error of 10−12, relation (17) gives the estimation that it
is necessary to have 11 and 16 terms in the summation. As it was highlighted during the
derivation, (17) gives overestimated values compared with those values that can be read
from the dependence defined by (14).

The effect of channel conditions on the required terms when evaluating a CDF value
is illustrated in Figure 7. The high values of parameter K mean that a larger number of
terms is required, as in the case of evaluating a PDF value. As in the case of evaluating
PDF, the same conclusions are derived from the results presented in the figure. Relation
(57), linking the required number of terms in the summation vs. the truncation error, gives
overestimated values of the number of terms compared with those values that can be read
from the dependence of the bounds for the truncation error vs. the number of terms, which
are defined by (31). When comparing the results from Figures 5 and 7, we can conclude
that a larger number of terms is required when evaluating the CDF in comparison with the
number of terms when evaluating the PDF, for the same conditions.

Figure 8 presents PDF curves that were evaluated based on (10), when the number
of terms in the summation was estimated under the condition that the upper bound of
the truncation error be less than 10−12. The PDF curves obtained by simulations are also
presented in Figure 8. These simulation results were estimated based on samples generated
according to (3). The samples were generated in the software package Mathematica 13.
Uniform and Gaussian random numbers were generated by using built-in subroutines in
Mathematica 13. When showing the histograms of the Monte Carlo data, we used linearly
distributed bins with a total bin count of 200, and a total number of simulation points of
106. The standard deviation of the histogram relative to numerically computed values of
the distribution was σ = 0.008 for the 10 dB case and σ = 0.0062 for 4 dB. It is visible that
the analytical and simulation results are in agreement, which is a confirmation that the
suggested estimation of the required number of terms in the summation presented in this
paper is correct.
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Figure 7. Effect of parameter K on accuracy of evaluating CDF: (a) upper bound for truncation error
vs. number of terms in summation; (b) required number of terms vs. truncation error.
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Figure 8. Analytical and Monte Carlo simulation results.

5. Conclusions

By applying the alternating series estimation theorem, we derived novel formulas
for the upper bounds for the absolute truncation error when evaluating the PDF and CDF
of a composite signal envelope transmitting over mm-Wave channels. In addition, we
derived novel analytical expressions giving the required number of terms in the infinity
sums in the PDF and CDF under the condition of achieving a given absolute accuracy.
In deriving these main formulas, we first derived two formulas for the upper bounds
for the special functions 2F1(−m,−m; 1; ·) and 1F1(1−m; 2; ·), where some properties of
orthogonal polynomials were used. All the formulas were derived in terms of elementary
mathematical functions. Based on the results presented here, both series (in the PDF and
CDF) converged fast and for all practical channel parameters, it was enough to evaluate up
to 100 terms in order to achieve an absolute accuracy of 10−12. A larger number of terms
was required for evaluating the CDF in comparison with the number of terms required for
evaluating the PDF, for the same channel conditions. To verify the analytical results, when
evaluating PDF curves, we used in the summation the required number of terms predicted
by the formulas derived here. These analytical curves were verified by independent Monte
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Carlo simulations. The results will have an important role in contemporary wireless
communications theory for the design and analysis of beyond-5G networks.
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