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Abstract: This paper focuses on the asymptotic stability of second-order switched linear systems
with positive real part conjugate complex roots for each subsystem. Compared with available studies,
a more appropriate state-dependent switching rule is designed to stabilize a switched system with the
phase trajectories of two subsystems rotating outward in the same direction or the opposite direction.
Finally, several numerical examples are used to illustrate the effectiveness and superiority of the
proposed method.
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1. Introduction

For switched systems, differential equations are used to describe the dynamic behavior
of the continuous characteristic, which are marked as subsystems. Meanwhile, a piecewise
constant function is adopted to describe the discrete characteristic, which is referred to as
a switching rule. As an important part of hybrid systems, switched systems have been
exhibited in many practical fields, such as engine systems [1], network systems [2], stirred
reactor systems [3], mobile robot systems [4], etc. Moreover, the expected performance
of some complex controlled systems can be efficiently achieved by switching control
strategies [5,6]. Taking the modern variable-speed wind turbine for example, it can switch
back and forth between low and high wind speed modes according to the current wind
speed, thus capturing as much wind energy as possible at rated power [7]. Meanwhile,
considerable attention has been paid to investigations of switched systems over the last
decades. Wu et al. [8] studied the stability of stochastic switched systems via probabilistic
analysis. Tian et al. [9] considered the controllability and observability of multi-agent
switched systems with continuous and discrete subsystems. Liu et al. [10] and Niu
et al. [11,12] designed neural adaptive control strategies for nonlinear switched systems.
However, in a practical controlled system, actuator or sensor failure would inevitably occur,
thus destabilizing the original stable subsystem. Therefore, it would be very meaningful to
conduct studies on switched systems with unstable subsystems, especially for switched
systems with fully unstable subsystems, which in recent years has attracted the attention
of many researchers and led to the development of numerous significant results. For
instance, a fault detection observer was designed to address subsystem instability caused
by unobservable factors [13]. A sufficient asymptotic stability condition was presented by a
time-dependent strategy for a state-constrained switched system with multiple unstable
subsystems [14]. However, to the best of the authors’ knowledge, a switched system with
the characteristic roots of each subsystem being positive has been rarely considered so far,
and is thus the research subject of this paper.

The succesful design of a switching rule to render a switched system asymptotically
stable presents an interesting problem that has attracted the attention of many scholars. As

Axioms 2022, 11, 566. https://doi.org/10.3390/axioms11100566 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11100566
https://doi.org/10.3390/axioms11100566
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-1841-6736
https://doi.org/10.3390/axioms11100566
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11100566?type=check_update&version=1


Axioms 2022, 11, 566 2 of 13

a robust closed-loop switching mechanism, state-dependent switching is relatively suitable
for solving the above problem. Wu et al. [15] discussed the stability problem of stochastic
switched systems via state-dependent switching rule. Liu and Long [16] designed a state-
dependent switching rule with guaranteed dwell time to stabilize a class of nonlinear
switched systems, with the help of a sum-of-squares constraint approach and an improved
path-tracing method. Guo et al. [17] considered the multi-stability of switched neural
networks with sinusoidal activation functions under state-dependent switching. Yang and
Li [18] achieved the stability of stochastic switched neural networks with time-varying
parameter uncertainty through a state-dependent switching approach. For a switched
system where the characteristic roots of each subsystem are all positive real parts, the
state-dependent switching rule would also be very applicable.

In practical problems, all subsystems may be unstable due to extreme operating
environments, measurement failures, or actuator failures. In general, it could be diffi-
cult to make the switched system with fully unstable subsystems asymptotically stable
via time-dependent switching rules. In particular, when the characteristic roots of each
subsystem are all positive real parts, there are no stable factors in each subsystem. In
this situation, it is impossible to compensate for the divergence of unstable subsystems
through the stability factors of subsystems. That is, the time-dependent switching rule does
not work, and only state-dependent switching rule can be applied to achieve asymptotic
stability of such switched systems. In fact, for switched systems with the characteristic
roots of each subsystem being all positive real parts, there has been little relevant research
work, and no systematic universal method has been formed at present. To the best of
the authors’ knowledge, in the existing representative research literature, Pettersson in-
vestigated a special class of linear switched systems, in which the characteristic roots of
each subsystem were all positive real parts [19]. A state-dependent switching rule was
constructed by the largest region function strategy to achieve system asymptotic stability.
However, the obtained results are somewhat conservative for adopting a linear matrix
inequality approach. Furthermore, the calculation process is relatively complex. In order
to fundamentally address the drawback of poor conservativeness, Ref. [20] constructed
an energy function with practical physical meaning for each subsystem by introducing
an invertible transformation. By analyzing the energy ratio functions of two subsystems,
two switching lines with maximum and minimum energy loss were obtained to design a
proper state-dependent switching rule. The obtained result is evidently simpler and less
conservative than [19], and also demonstrates faster convergence of system states.

It is worth noting that the switching rule proposed in [20] is only applicable to switched
systems where the phase trajectories of two subsystems rotate counter-clockwise. When
the phase trajectories of both subsystems rotate clockwise, or one rotates counter-clockwise
while the other clockwise, such a switching rule cannot guarantee system stability. Based
on the above-mentioned discussions, two improved state-dependent switching rules are
put forward in this paper. The main innovations are as follows:

(i) A more suitable state-dependent switching rule is designed to stabilize a switched
system with the phase trajectories of both subsystems rotating in the same direction.

(ii) When the phase trajectories of two subsystems rotate outward in opposite direc-
tions, a novel state-dependent switching rule is proposed to guarantee system stability, by
judging whether the system state satisfies a critical switching condition or not.

In addition to the introduction in Section 1, the remainder of the paper is organized
as follows. Section 2 presents the knowledge of the second-order linear switched system.
An improved switching rule is designed in Section 3 for the switched system with phase
trajectories of subsystems rotating in the same direction. Section 4 designs a novel switching
rule for switched systems in which the phase trajectories of subsystems rotate in opposite
directions. Subsequently, two examples are given in Section 5 to illustrate the effectiveness
of the proposed method. Finally, some conclusions of the paper are presented in Section 6.
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2. System Description and Preliminaries

In general, the mathematical model of a linear switched system is described by{
ẋ(t) = Aσ(t)x(t),
x(0) = x0.

(1)

Here, σ(t) : [0, ∞)→ Λ = {1, 2, 3...N} is a piecewise function that represents a switching
rule. N is the number of subsystems in the switched system. x(t) ∈ Rn denotes the state
vector and x0 stands for the given initial value of the system. Ai ∈ Rn×n, i ∈ Λ is the state
matrix of the ith subsystem. In this paper, a second-order switched system with two linear
subsystems is considered, in which the eigenroots of each subsystem matrix are a pair of
positive real part conjugate complex roots. That is to say, N = 2, x(t) ∈ R2 and Ai ∈ R2×2.
Furthermore, x(t) and Ai are specifically depicted as

x(t) =
(

x1(t)
x2(t)

)
, Ai =

(
ai bi
ci di

)
, i = 1, 2.

To elaborate the subsequent work in more clarity, some definitions, hypothesis and
lemma should be distinctly provided.

Definition 1 ([21]). Under the switching rule σ(t), if the solution x(t) of the switched system
(1) is bounded for all t ∈ [0, ∞) and lim

t→∞
x(t) = 0 holds for equilibrium point xe = 0, then the

switched system (1) is said to be asymptotically stable at equilibrium point xe = 0.

Definition 2 ([20]). Consider the following second-order linear system(
ẋ1
ẋ2

)
=

(
a b
c d

)(
x1
x2

)
, c 6= 0, (2)

where its characteristic roots are a pair of conjugate complex roots with positive real parts. Then, the
energy function presented by the sum of kinetic and potential energy, is defined as

E =
1
2
(ad− bc)x2

1 +
1
2
(ax1 + bx2)

2. (3)

Here, ad− bc > 0 denotes the equivalent stiffness coefficient and a+ d > 0 stands for the equivalent
damping coefficient.

Hypothesis 1. Without loss of generality, a1d1 − b1c1 > a2d2 − b2c2 is assumed. Namely, the
equivalent stiffness coefficient of the first subsystem is greater than that of the second subsystem.

Lemma 1 ([20]). When the phase trajectories of both second-order subsystems given in (1) rotate
counter-clockwise, a state-dependent switching rule of the switched system (1) can be designed as

σ(t) =

{
1, (x2(t)− k1x1(t)) · (x2(t)− k2x1(t)) ≥ 0,
2, (x2(t)− k1x1(t)) · (x2(t)− k2x1(t)) < 0.

(4)

Here, k1, k2 are two constants with k1 < k2 and x2 = k1x1, x2 = k2x1 make the following energy
ratio function

E1

E2
=

1
2 (a1d1 − b1c1) +

1
2 (a1 + b1k)2

1
2 (a2d2 − b2c2) +

1
2 (a2 + b2k)2

, k =
x2

x1
(5)

take the maximum and minimum, respectively.
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Remark 1. According to Lemma 1, by using the switching rule (4), the energy loss of the switched
system (1) is the largest in a switching loop, so that the system state can converge to the equilibrium
point as fast as possible.

For the switched system (1) with characteristic roots of each subsystem being conjugate
complex roots with positive real parts, the switching rule (4) is quite effective. However,
ref. [20] only investigates the stability of a switched system with phase trajectories of
both subsystems rotating counter-clockwise. The cases of two phase trajectories rotating
clockwise or one rotating clockwise while the other rotates counter-clockwise are not
considered. Motivated by the above discussion, the objectives of this paper are two-fold.

(i) One is to propose an improved state-dependent switching rule for stabilizing the
switched system with the phase trajectories of two subsystems rotating outward in the
same direction.

(ii) The other is to design an appropriate state-dependent switching rule to guarantee
the asymptotic stability of the switched system with phase trajectories of two subsystems
rotating in opposite directions.

3. The Case of Two Subsystems with Same Rotation Direction of Phase Trajectories

To address the stability problem of a switched system with phase trajectories of two
subsystems rotating in the same direction, we first need to determine the rotation direction
of phase trajectory for a second-order linear system. Thus, the following lemma is necessary.

Lemma 2. The phase trajectory of system (2) rotates clockwise if and only if b− ad
c > 0. Further-

more, the phase trajectory of system (2) rotates counter-clockwise if and only if b− ad
c < 0.

Proof of Lemma 2. We first show the sufficient proof. Since the characteristic roots of sys-
tem (2) are positive real conjugate complex roots, the phase trajectory is spirally divergent
and c 6= 0. Then, set a point on the phase trajectory as (x1, x2)

T = (− d
c , 1)T. Substituting it

into system (2) yields

ẋ1 = b− ad
c

, ẋ2 = 0.

When b− ad
c > 0, the tangent vector of phase trajectory is horizontal to the right. This

implies that the phase trajectory rotates clockwise. Similarly, the tangent vector is horizontal
to the left if b− ad

c < 0. Accordingly, the phase trajectory rotates counter-clockwise.
In the next step, we exhibit the necessary proof. Obviously, when the phase trajectory

of system (2) rotates clockwise, the tangent vector at point (x1, x2)
T is horizontal to the

right. This implies b− ad
c > 0. Conversely, when the phase trajectory of the system rotates

counter-clockwise, the tangent vector at point (x1, x2)
T is horizontal to the left. Accordingly,

it indicates b− ad
c < 0. This completes the proof.

In fact, in order to stabilize the switched system (1) with same rotation direction of
phase trajectories, we need to switch from the first (second) subsystem to the second (first)
subsystem at the maximum (or minimum) value of energy ratio function E1

E2
. Therefore, the

increased energy from operation unstable subsystems can be compensated by the decreased
energy from system switching. On this basis, an improved state-dependent switching rule
is proposed as follows

σ(t) =

{
1, φ · (x2(t)− k1x1(t)) · (x2(t)− k2x1(t)) ≥ 0,
2, φ · (x2(t)− k1x1(t)) · (x2(t)− k2x1(t)) < 0.

(6)
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Here, the slope of x1 = 0 is assumed to be negative infinity. φ is a sign function, described by

φ =


1, k1 − k2 > 0 and bi − aidi

ci
> 0,

−1, k1 − k2 < 0 and bi − aidi
ci

> 0,

−1, k1 − k2 > 0 and bi − aidi
ci

< 0,

1, k1 − k2 < 0 and bi − aidi
ci

< 0.

(7)

The switching rule (6) includes rule (4) and is also applicable to the switched system with
the phase trajectories of two subsystems rotating clockwise. That is, when two subsystems
rotate in the same direction, either clockwise or counter-clockwise, the switching rule (6)
can be adopted to guarantee the asymptotic stability of the switched system.

In order to better understand the above switching rule, we further present its geometric
meaning. As shown in Figure 1a,d, when the system state goes from region Q1 to Q2
through the critical line x2 = k1x1, and the system switches from the first subsystem to
the second subsystem, then the energy loss would be maximized under Hypothesis 1. On
the contrary, when the system state goes from region Q2 to Q1 through the critical line
x2 = k2x1, and the system switches from the second subsystem to the first subsystem,
then the increased energy would be minimized. Thus, the first subsystem should be run
in (x2 − k1x1) · (x2 − k2x1) ≥ 0 and the second subsystem should be run in (x2 − k1x1) ·
(x2 − k2x1) < 0. Likewise, as reflected in Figure 1b,c, if the second subsystem is activated
at (x2 − k1x1) · (x2 − k2x1) > 0 and the first subsystem is activated at (x2 − k1x1) · (x2 −
k2x1) ≤ 0, the total energy loss in the switching loop would be maximized. Based on the
above analysis, the switching rule (6) is suitable for stabilizing the switched system (1) in
which the phase trajectories of two subsystems rotate in the same direction.

X2

x2=k1x1 maximum value x2=k2x1 minimum  value 
X1

Q1:  (x2 k1x1)(x2 k2x1)>0
Q1:  (x2 k1x1)(x2 k2x1)>0Q2:  (x2 k1x1)(x2 k2x1)<0Q2:  (x2 k1x1)(x2 k2x1)<0

(a) k1 − k2 > 0 and bi − aidi
ci

> 0

X1

X2

Q1:  (x2 k1x1)(x2 k2x1)>0

Q2:  (x2 k1x1)(x2 k2x1)<0

x2=k1x1 maximum value 

x2=k2x1 minimum  value 

Q2:  (x2 k1x1)(x2 k2x1)<0

Q1:  (x2 k1x1)(x2 k2x1)>0

(b) k1 − k2 < 0 and bi − aidi
ci

> 0

X2

x2=k1x1 maximum value 

x2=k2x1 minimum  value 

X1

Q1:  (x2 k1x1)(x2 k2x1)>0

Q1:  (x2 k1x1)(x2 k2x1)>0

Q2:  (x2 k1x1)(x2 k2x1)<0Q2:  (x2-k1x1)(x2-k2x1)<0

(c) k1 − k2 > 0 and bi − aidi
ci

< 0

X2

x2=k1x1 maximum value 

x2=k2x1 minimum  value 

X1

Q2:  (x2 k1x1)(x2 k2x1)<0Q2:  (x2 k1x1)(x2 k2x1)<0

Q1:  (x2 k1x1)(x2 k2x1)>0

Q1:  (x2 k1x1)(x2 k2x1)>0

(d) k1 − k2 < 0 and bi − aidi
ci

< 0

Figure 1. A diagram of system switching for different cases given in (7).
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4. The Case of Two Subsystems with Opposite Rotation Directions of
Phase Trajectories

In this section, we investigate the stability of switched systems with phase trajectories
of two subsystems rotating outwards in opposite directions.

By means of the switching rule (6), the phase plane is divided into four switching
regions, and only one subsystem can be operated in each switching region. When the phase
trajectories of two subsystems rotate in opposite directions, the system state may switch
back and forth on one of the two critical switching lines if switching rule (6) is adopted. In
order to be more specific, an example is presented as below.

Example 1. Consider a switched system consisting of the following two subsystem state matrices

A1 =

(
1 4
−80 2

)
, A2 =

( 1
2 −6

10 1
2

)
, (8)

with the initial condition being x(0) = (−1, 2)T.

By calculation, the eigenvalues of the first subsystem and the second subsystem
are, respectively, given by 1.50± 17.88i and 0.50± 7.75i. Since the characteristic roots of
both subsystems are positive real parts, the two subsystems are unstable. According to
Lemma 2, the phase trajectory of the first subsystem rotates clockwise, while the second
one rotates counter-clockwise, as depicted in Figure 2. Clearly, the phase trajectories of the
two subsystems rotate in opposite directions.

4 3 2 1 0 1 2 3
x 103

2

1

0

1

2 x 104

x 2

x1

(a) The phase trajectory of the first subsystem

30 15 0 15 30
26

13

0

13

26

39

x 2

x1

(b) The phase trajectory of the second subsystem

Figure 2. The phase trajectories of the two subsystems.

In view of Equation (5), the energy ratio function between the first and second subsys-
tems is obtained as

E1

E2
=

161 + (1+4k)2

2

241
8 +

( 1
2−6k)2

2

. (9)

Taking the derivative of Equation (9) with respect to k yields the following two critical
switching lines

x2 = k1x1 = 0.11x1, x2 = k2x1 = −55.63x1. (10)

Here, x2 = 0.11x1 and x2 = −55.63x1 make the energy ratio function (9) take the maximum
and minimum values, respectively. As depicted in Figure 3, the switching rule (6) cannot
stabilize the switched system (8) irrespective of whether φ = 1 or φ = −1. In particular, the
system state switches back and forth on the critical switching line x2 = 0.11x1 when φ = 1,
as shown in Figure 4a. Similarly, in Figure 4b, the system state hovers around the critical
switching line x2 = −55.63x1 when φ = −1.
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7 5 3 1 1
1

0

1

2

x 2

x1

(a) φ = 1

12 9 6 3 0
×103

0

2

4

6×10
5

x 2

x1

(b) φ = −1

Figure 3. The phase diagrams of system (8) under the switching rule (6).

x 2

x1

 phase trajectory
 x2= 55.63x1

 x2= 0.11x1

(a) φ = 1

x 2

x1

 phase trajectory
 x2= 55.63x1

 x2= 0.11x1

(b) φ = −1

Figure 4. Phase diagrams and critical switching lines.

We can see from the above simulation that the switched system fails to switch from the
first subsystem to the second subsystem at the maximum value of E1

E2
, or from the second

subsystem back to the first subsystem at the minimum value of E1
E2

. In this situation, the
energy reduced by system switching cannot offset the energy increased from the unstable
subsystem operation. Naturally, the switching rule (6) cannot stabilize the switched system
with phase trajectories of two subsystems rotating in opposite directions. In order to avoid
the system switching occurring back and forth on one of the two critical switching lines,
the switching rule (6) is improved as follows

σ(t +4t) =


1, σ(t) = 1 and (x2(t)− k1x1(t)) · (x2(t−4t)− k1x1(t−4t)) > 0,

2, σ(t) = 1 and (x2(t)− k1x1(t)) · (x2(t−4t)− k1x1(t−4t)) ≤ 0,

1, σ(t) = 2 and (x2(t)− k2x1(t)) · (x2(t−4t)− k2x1(t−4t)) ≤ 0,

2, σ(t) = 2 and (x2(t)− k2x1(t)) · (x2(t−4t)− k2x1(t−4t)) > 0.

(11)

Here,4t is the step length of time in the numerical calculation, which is defined as 0.001
seconds in this paper.

In what follows, we will present a detailed explanation of the switching rule (11).
For simplicity, we assume that the first subsystem is activated at the initial time, and
the equivalent stiffness coefficients of two subsystems satisfy Hypothesis 1. In addition,
k1and k2 are assumed to be the maximum and minimum points of E1

E2
, respectively. To

avoid switching back and forth on one critical switching line only, we need to make a
restriction on the switching rule (6). That is, the system is required to switch from the
first (or second) subsystem to the second (or first) one if and only if the system state
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crosses the switching line x2 = k1x1 (or x2 = k2x1). Moreover, whether the system
state crosses the switching line x2 = k1x1 can be judged by considering the inequation
(x2(t)− k1x1(t)) · (x2(t−4t)− k1x1(t−4t)) > 0. In other words, the system state crosses
the switching line x2 = k1x1 if and only if (x2(t)− k1x1(t)) · (x2(t−4t)− k1x1(t−4t)) <
0 holds. Based on the above restriction, we can obtain the switching rule (11) and the system
switching process is as follows. Starting from the first subsystem, we need to determine
whether the inequation (x2(t)− k1x1(t)) · (x2(t−4t)− k1x1(t−4t)) > 0 holds from time
to time during its operation. If so, the first subsystem continues to run. Otherwise, the
system state would cross the switching line x2 = k1x1, and then the system needs to be
switched from the first subsystem to the second subsystem. Similarly, it is necessary to
judge whether the inequation (x2(t)− k2x1(t)) · (x2(t−4t)− k2x1(t−4t)) > 0 holds in
the operation of the second subsystem. Repeating the above switching steps, the energy
loss from system switching in a switching loop could be maximized as much as possible,
thereby rapidly achieving asymptotic stability.

Remark 2. Although the switching mechanism proposed in this manuscript is suitable for a
second-order switched system with three subsystems, the switching sequence of subsystems bears
a significant impact on system stability. As such, constructing an optimal switching sequence
that enables rapid convergence of the system presents a challenging problem under the proposed
state-dependent switching rule.

5. Simulation Results

Example 2. To illustrate the effectiveness of the switching rule (6), we consider a switched system
with the following two state matrices

A1 =

( 1
3 −10

100 1
3

)
, A2 =

(
1 −3
2 1

2

)
, (12)

where the initial condition is x(0) = (1,−1)T.

By calculation, the eigenvalues of matrix A1 are 0.33± 31.62i and the eigenvalues of
matrix A2 are 0.75± 2.44i. It implies that both subsystems are unstable. Applying Lemma 2,
phase trajectories of both subsystems rotate counter-clockwise. As can be seen in Figure 5,
the phase trajectories of two subsystems rotate in the same direction, which indicates that
the switching rule (6) is effective.

75 50 25 0 25 50 75
210

140

70

0

70

140

210

x 2

x1

(a) The phase trajectory of the first subsystem

50 40 30 20 10 0 10 20
60

45

30

15

0

15

30

x 2

x1

(b) The phase trajectory of the second subsystem

Figure 5. The phase trajectories of the two subsystems.

According to Equation (5), the energy ratio function of two subsystems is calculated as

E1

E2
=

9001
18 +

( 1
3−10k)2

2
13
4 + (1−3k)2

2

. (13)
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By solving
d( E1

E2
)

dk = 0, two critical switching lines are obtained as

x2 = k1x1 = 0.36x1, x2 = k2x1 = −30.92x1. (14)

Here, x2 = 0.36x1 and x2 = −30.92x1 make the energy ratio function (13) take the maximum
and minimum values, respectively. For the two subsystems, since the rotation directions of
their phase trajectories are counter-clockwise, bi − aidi

ci
< 0. Therefore, the switching rule of

switched system (12) is finally derived as

σ(t) =

{
1, −(x2(t)− 0.36x1(t)) · (x2(t) + 30.92x1(t)) ≥ 0,
2, −(x2(t)− 0.36x1(t)) · (x2(t) + 30.92x1(t)) < 0.

From Figure 6, we can see that the switched system (12) can be quickly stabilized
to the equilibrium point under the switching rule (6). That is, the switching rule (6) can
stabilize the switched system (1) with the phase trajectories of two subsystems rotating in
the same direction.

0 1 2 3 4 5
1.0

0.5

0.0

0.5

1.0

1.5

S
ys

te
m

 s
ta

te
s

Time(s)

 x1 
 x2

(a) The time history of system states

0.6 0.3 0.0 0.3 0.6 0.9 1.2
1.0

0.5

0.0

0.5

1.0

1.5

x 2

x1

(b) The phase diagram of switched system (12)

Figure 6. The switched system (12) is asymptotically stable under the switching rule (6).

Example 3. The switched system (8) in Example 1 is used to clarify the validity of the switching
rule (11).

Since the phase trajectories of two subsystems rotate in opposite directions, the switch-
ing rule (11) is employed. Substituting Equation (10) into this state-dependent switching
rule, one obtains

σ(t +4t) =


1, σ(t) = 1 and (x2(t)− 0.11x1(t)) · (x2(t−4t)− 0.11x1(t−4t)) > 0,
2, σ(t) = 1 and (x2(t)− 0.11x1(t)) · (x2(t−4t)− 0.11x1(t−4t)) ≤ 0,
1, σ(t) = 2 and (x2(t) + 55.63x1(t)) · (x2(t−4t) + 55.63x1(t−4t)) ≤ 0,
2, σ(t) = 2 and (x2(t) + 55.63x1(t)) · (x2(t−4t) + 55.63x1(t−4t)) > 0.

As can be seen in Figure 7, the switching rule (11) makes the switched system (8)
converge to the equilibrium point quickly. This indicates that the switching rule (11) is very
effective when the phase trajectories of the two subsystems rotate in opposite directions.
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Figure 7. The switched system (8) is asymptotically stable under the switching rule (11).

Example 4. Consider a switched system (1) with the following three state matrices

A1 =

(
1 100
−100 1

)
, A2 =

( 1
3 −10

30 1
2

)
, A3 =

( 1
4 1
−9 1

4

)
, (15)

where the initial condition is x(0) = (2, 4)T.

The eigenvalues of matrices A1, A2, and A3 are calculated as 1± 100i, 0.42± 17.32i,
and 0.25 + 3i, respectively. Clearly, all subsystems are completely unstable. As shown in
Figure 8, the phase trajectories of the first and third subsystems rotate clockwise outside,
while the phase trajectory of the second subsystem rotates counter-clockwise outside.
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4 ×1026
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(a) The phase trajectory of the first
subsystem
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(b) The phase trajectory of the sec-
ond subsystem
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x1

(c) The phase trajectory of the third
subsystem

Figure 8. The phase trajectories of the three subsystems.

For a switched system (15) with three subsystems, there are six different switch-
ing sequences. Without loss of generality, the switching sequence is assumed to be
(i1→i2→i3→i4), where i4 = i1 and is ∈ {1, 2, 3}, (s = 1, 2, 3) indicates that the isth subsys-
tem is running.

If the phase trajectories of the isth subsystem and the is+1th subsystem rotate in the
same direction, the switching rule (6) is adopted. Since the is+1th subsystem does not need
to be switched back to the isth subsystem, the switching rule should be improved by adding
the limited function σ(t) = is. As such, the switching rule is rewritten as

σ(t +4t) =

{
is, σ(t) = is and φ · (x2(t)− k1x1(t)) · (x2(t)− k2x1(t)) ≥ 0,
is+1, σ(t) = is and φ · (x2(t)− k1x1(t)) · (x2(t)− k2x1(t)) < 0.

Here, x2 = k1x1 and x2 = k2x1 make the energy ratio function Eis
Eis+1

take the maximum

and minimum values, respectively. If the phase trajectories of the isth and the is+1th
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subsystems rotate in opposite directions, the switching rule (11) is used. Similarly, due to
the unidirectional switching, the switching rule is formulated by

σ(t +4t) =

{
is, σ(t) = is and (x2(t)− k1x1(t)) · (x2(t−4t)− k1x1(t−4t)) > 0,
is+1, σ(t) = is and (x2(t)− k1x1(t)) · (x2(t−4t)− k1x1(t−4t)) ≤ 0.

Here, x2 = k1x1 is the maximum point of the energy ratio function Eis
Eis+1

.

Based on the above analysis, we only use switching sequences (1→3→2→1) and
(1→2→3→1) as examples to illustrate the effect of switching sequences on system stability.
As can be seen in Figure 9, the switched system (15) rapidly converges to the equilibrium
point under the switching sequence (1→3→2→1). However, the switched system (15)
diverges outward under the switching sequence (1→2→3→1), as depicted in Figure 10.
From Figures 9 and 10, we can conclude that the switching sequence plays a crucial role in
system stability. Moreover, constructing an appropriate switching sequence is both difficult
and important for the switched system (1) with N ≥ 3.
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(a) The time histories of system states
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(b) The phase diagram of switched system (15)

Figure 9. The switched system (15) is asymptotically stable under the switching rule (1→3→2→1).
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Figure 10. The switched system (15) is not stable under the switching rule (1→2→3→1).

6. Conclusions

The asymptotic stability of a class of second-order switched linear systems, where the
characteristic roots of each subsystem are a pair of complex conjugate roots with positive
real parts, is investigated in this paper. For the switched systems with phase trajectories
rotating in the same direction, a more appropriate state-dependent switching rule is for-
mulated to guarantee system stability. In addition, a new switching rule is developed to
stabilize the switched system in which the phase trajectories of two subsystems rotate in
opposite directions.
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Compared with previous findings, the proposed state-dependent switching rule has
the advantages of fast convergence, simple computation and weak conservativeness. How-
ever, the limitation of the present method is that the considered switched system is overly
simplistic. In view of this, we will try to extend the results to the case of higher-order
subsystems in future, for which we need to find a matched mechanical model. Meanwhile,
the proposed switching mechanism is expected in the case of multiple subsystems, in which
the relationship between the switching sequence and subsystem characteristics warrant
clarification. Both represent the focus of our future research work.
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