
Citation: Jiang, T.; Liu, L.; Zhu, H.; Li,

Y. An Improved Elephant Herding

Optimization for Energy-Saving

Assembly Job Shop Scheduling

Problem with Transportation Times.

Axioms 2022, 11, 561. https://doi.

org/10.3390/axioms11100561

Academic Editor: Gustavo Olague

Received: 1 September 2022

Accepted: 14 October 2022

Published: 16 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

An Improved Elephant Herding Optimization for
Energy-Saving Assembly Job Shop Scheduling Problem with
Transportation Times
Tianhua Jiang 1,2,3,* , Lu Liu 1,3, Huiqi Zhu 1 and Yaping Li 1

1 School of Transportation, Ludong University, Yantai 264025, China
2 Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,

Changchun 130012, China
3 Shandong Marine Aerospace Equipment Technological Innovation Center, Ludong University,

Yantai 264025, China
* Correspondence: jth1127@163.com

Abstract: The energy-saving scheduling problem (ESSP) has gained increasing attention of researchers
in the manufacturing field. However, there is a lack of studies on ESSPs in the assembly job shop envi-
ronment. In contrast with traditional scheduling problems, the assembly job shop scheduling problem
(AJSP) adds the additional consideration of hierarchical precedence constraints between different
jobs of each final product. This paper focuses on developing a methodology for an energy-saving
assembly job shop scheduling problem with job transportation times. Firstly, a mathematical model
is constructed with the objective of minimizing total energy consumption. Secondly, an improved
elephant herding optimization (IEHO) is proposed by considering the problem’s characteristics. Fi-
nally, thirty-two different instances are designed to verify the performance of the proposed algorithm.
Computational results and statistical data demonstrate that the IEHO has advantages over other
algorithms in terms of the solving accuracy for the considered problem.

Keywords: energy-saving scheduling; assembly job shop; total energy consumption; improved
elephant herding optimization

MSC: 97P10

1. Introduction

According to the relevant survey, the worldwide industrial sector will consume more
than half of the total energy through 2040 [1]. Against the background of the deteriorating
ecological environment, environmental protection has become a serious issue for global
manufacturing industries. Both economic benefits and environmental factors compel manu-
facturing managers to introduce some promising techniques to control energy consumption.
In recent years, energy-saving scheduling has become a new research direction in the man-
ufacturing field [2]. In this problem, an optimal scheduling scheme is drawn up to reduce
energy consumption from the production management perspective. With a slight extra
financial burden on enterprises, the energy-saving scheduling attracts more attention in
comparison with some traditional methods, such as purchasing energy-efficient equipment
and designing new products, especially for some small-scale enterprises [3].

In recent decades, the flexible job shop scheduling problem (FJSP) has attracted great
attention from researchers due to its wide application and high complexity [4]. Along with
the promotion of green manufacturing, the energy-saving FJSP has gradually become a
research hotspot in recent years [5–13]. Like the classical FJSP, the previous work on the
energy-saving FJSP assumes that operations in each job of the workshop must be processed
following a predefined sequential precedence constraint, while jobs are independent from

Axioms 2022, 11, 561. https://doi.org/10.3390/axioms11100561 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11100561
https://doi.org/10.3390/axioms11100561
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-9260-4041
https://doi.org/10.3390/axioms11100561
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11100561?type=check_update&version=3

Axioms 2022, 11, 561 2 of 23

each other. However, for real-life complex products in many machining-assembly manufac-
turing systems, such as automobile engines, bicycles, etc., they are made up of multiple
and multilevel jobs and characterized by Bills-Of-Materials (BOMs). This means that not
only do sequential operation precedence constraints exist in each job, but hierarchical prece-
dence constraints between different jobs also need to be considered simultaneously [14].
In general, the variant of FJSP with hierarchical job precedence constraints is named the
assembly job shop scheduling problem (AJSP). In the existing literature, AJSP can be classi-
fied into two types: two-stage AJSP and hybrid AJSP. In the two-stage AJSP, the machining
and assembly operations are handled in the machining and assembly stages, respectively.
The traditional FJSP is contained in the machining stage, which deals with the sequential
precedence relationships between operations in each job. The assembly stage is attached to
the machining stage to carry out the assembly operations once all jobs of the same BOM are
completed or available after the machining stage [15–20]. This means that the line-structure
operation precedence constraints and the tree-structure job precedence constraints are
considered separately [14], which leads to the splitting of the inherent parallel relationship
between machining and assembly operations. Compared with the two-stage AJSP, the
hybrid AJSP mixes machining operations and assembly operations. The mixture of hier-
archical and sequential precedence constraints significantly increases the complexity and
makes the hybrid AJSP problem quite challenging to solve. Zhu and Zhou [14] proposed
a multi-objective grey wolf optimization algorithm to solve the FJSP with job precedence
constraints to minimize the makespan, the maximum machine workload, and the total
machine workload simultaneously. Pathumnakul and Egbelu [21] considered the AJSP
problem in just-in-time manufacturing with the objective of optimizing the weighted earli-
ness cost. A heuristic algorithm was developed by decomposing the problem into several
single machine scheduling problems. Chen et al. [22] studied a FJSP with hierarchical job
precedence constraints. An actual weapons manufacturing factory was used as a case study
to test the performance of the proposed dispatching rules. Na and Park [23] considered a
FJSP with multi-level job structures. A hybrid genetic algorithm was proposed to minimize
the total tardiness of jobs. Jiang and Wang [24] studied the AJSP in an aircraft-engine
assembly workshop and proposed a genetic algorithm to solve the problem. Zou et al. [25]
proposed a level-based evolutionary algorithm to deal with the AJSP.

In the previous work about AJSP, researchers only concentrated on improving produc-
tion efficiency, such as makespan, earliness, tardiness, workload, etc. In the current context
of green manufacturing, some ecological metrics should be addressed in the energy-saving
AJSP to meet the needs of sustainable development, such as energy consumption, noise
pollution, CO2 emission, and carbon footprint. To the best of our knowledge, there is
little literature focusing on the energy-saving AJSP. Ren et al. [26] developed a mathemati-
cal model with the objective of improving production efficiency and minimizing energy
consumption. Then, a heuristic PSO-GA algorithm was proposed to solve the problem.
However, the considered scheduling problem is a two-stage AJSP rather than a hybrid
AJSP. In addition, the transportation operations of jobs between machines are neglected to
simplify the problem. In fact, production and transportation operations strongly interact
with each other. On one hand, the machine selection of two successive operations in a job
determines the transportation time. On the other hand, the transportation time can affect
the waiting times of machines in terms of different operation sequences [3]. Furthermore,
a certain amount of energy will be generated in the transportation process. Thus, the job
transportation times should also be considered to narrow the gap between the scheduling
problem and the practical production.

Since the considered energy-saving AJSP is the extended version of the classical FJSP,
the problem has the nature of NP-hard. It is well-known that it is difficult to obtain the
optimal solutions to production scheduling problems using exact methods, even for small-
scale problems. Therefore, intelligence algorithms are an effective alternative method due
to the advantage of finding satisfactory solutions in an affordable time. In recent years,
various intelligence algorithms have been successfully applied for solving the energy-

Axioms 2022, 11, 561 3 of 23

saving scheduling problems, such as African buffalo optimization (ABO) [2], genetic
algorithm (GA) [3,5,6], interior search algorithm (ISA) [7], cat swarm optimization (CSO) [8],
imperialist competitive algorithm (ICA) [9], pigeon-inspired optimization (PIO) [10], bat
algorithm (BA) [11], particle swarm optimization (PSO) [26], etc. However, the No Free
Lunch (NFL) theorem [27] implies that no algorithm performs best for all optimization
problems, which means that a particular intelligence algorithm may attain promising
solutions on a set of problems, but it may show poor performance on a different set of
problems. This motivates researchers to explore new meta-heuristics for coping with
various optimization problems. Thus, it is worthwhile to develop a fresh optimization
algorithm for the energy-saving assembly job shop scheduling problem.

Inspired by the social behaviors of elephants in nature, elephant herding optimization
(EHO) a novel swarm intelligence algorithm. Due to the impressive advantages of EHO, in-
cluding easy implementation and good convergence, it has been successfully implemented
for various optimization problems [28–31]. The primary difference with most of the existing
meta-heuristics is that EHO employs a multi-population technique in the evolutionary pro-
cess. In this technique, the elephant population is split into several sub-populations, based
on which differentiated search strategies can be easily adopted among sub-populations and
the collaboration and communication between sub-populations can be easily implemented.
Therefore, the disadvantages of the premature convergence and the loss of population
diversity can be well overcome, which are suffered by most of the existing meta-heuristic
algorithms. This is the main reason to choose the EHO for solving the considered problem.
Furthermore, the basic EHO algorithm was originally presented for continuous optimiza-
tion problems. Thus, some problem-oriented modifications need to be carried out to make
it suitable for the discrete scheduling problem. These reasons motivate the systematic
investigation of the EHO for the considered energy-saving assembly job shop scheduling
problem. The main works of this paper are summarized as follows: (1) A mathematical
model is established for the energy-saving assembly job shop scheduling problem with
transportation times; (2) a two-segment string is adopted to represent scheduling solutions,
and an energy-saving decoding method is proposed to obtain active scheduling solutions;
(3) a population initialization is utilized to obtain initial solutions with a certain quality
and diversity; (4) two searching operators, namely the clan updating operator and sepa-
rating operator, are designed to implement the improved elephant herding optimization
algorithm (IEHO) following the characteristics of the problem.

The remainder of this paper is structured in the following manner. Section 2 formulates
the considered scheduling problem. Section 3 shows the proposed IEHO algorithm in
detail, including the encoding/decoding approach, population initialization, and discrete
search operators. Section 4 conducts extensive experiments to verify the performance of
the proposed algorithm. Section 5 reports the conclusion and future work.

2. Problem Description and Mathematical Model
2.1. Problem Description

The energy-saving AJSP can be described as follows: In a workshop, there are n
products {P1, P2, · · · , Pn} to be manufactured by m machines {M1, M2, · · · , Mm}. Each
product is composed of Ii jobs

{
JBi1, JBi2, · · · , JBiIi

}
corresponding to a tree-structure

BOM. Each job is consisted by Jij operations
{

Oij1, Oij2, · · · , OijJij

}
with a line-structure

precedence relationship. For each operation Oijq, it must be processed on a machine
chosen from its eligible machine set. The processing time of Oij depends on the processing
capacity of the selected machine. In addition, an operation consumes a different amount
of energy when it is assigned to different machines. When a job is finished on a machine,
it will be immediately conveyed to the next machine for machining or assembly. The
transportation times between different machines are assumed to be known. The transfer
also consumes an amount of energy during the transportation time. This problem attempts
to assign operations to an appropriate machine and sequence them on each machine. The
objective is to optimize the total energy consumption, which is composed by four types:

Axioms 2022, 11, 561 4 of 23

processing energy consumption (PEC), idle energy consumption (IEC), transportation
energy consumption (TEC), and auxiliary energy consumption (AEC). Some assumptions
are considered as follows:

(1) All jobs are released and all machines are available at time zero.
(2) Each machine can perform one operation simultaneously.
(3) Each job can only be processed by one machine at a time.
(4) The processing of each operation cannot be interrupted.
(5) Each machine cannot be turned off until all jobs on it are completed.
(6) There are enough transfers for transportation operations between machines.
(7) The last operation of each product does not need to be transported after it is finished.
(8) Machine breakdown is negligible and setup times of machines are ignored.

2.2. Mathematical Model

Before describing the problem, some necessary symbols are shown as below.
i: The index of products, i = 1, 2, 3, · · · , n;
j: The index of jobs, j = 1, 2, 3, · · · , Ii;
q: The index of operations, q = 1, 2, 3, · · · , Jij;
k: The index of machines, k = 1, 2, 3, · · · , m;
Oijq: The qth operation of job j in product i;
OP(ijq): The immediate successor operation of Oijq;
pijqk: The processing time of Oijq when it is processed on machine k;
F1: The objective function;
TOE: Total energy consumption;
PEijqk: Processing energy consumption coefficient of Oijq when it is processed on

machine k;
IEk: Idle energy consumption coefficient of machine k when it is idle;
AE: Auxiliary energy consumption coefficient;
TE: Transportation energy consumption coefficient;
Ck: Completion time of machine k;
Sk: Start time of machine k;
WLk: Workload of machine k, the sum of the processing times of jobs on machine k;
Cmax: The final completion time (makespan);
TTijqw,P(ijq)k: The transportation time between machine w and machine k for Oijq

and OP(ijq);
STijq: Starting time of Oijq;
CTij: Completion time of Oijq;
Γ: A positive number big enough for Constraints (8) and (9);
xijqk: A binary variable, if Oijq is processed on machine k, xijqk = 1; otherwise, xijqk=0;
yijqi′ j′q′k: A binary variable, if Oijq is processed before Oi′ j′q′ adjacently on machine k,

yijqi′ j′q′k = 1; otherwise, yijqi′ j′q′k = 0.

F1 = minTOE = min(PEC + IEC + TEC + AEC) (1)

s.t.PEC =
n

∑
i=1

Ii

∑
j=1

Jij

∑
q=1

m

∑
k=1

PEijqk pijqkxijqk (2)

IEC =
m

∑
k=1

IEk(Ck − Sk −WLk) (3)

TEC =
n

∑
i=1

Ii

∑
j=1

Jij

∑
q=1

m

∑
w=1

m

∑
k=1

TE · TTijqw,P(ijq)kxijwxP(ijq)k (4)

AEC = AE× Cmax (5)

Axioms 2022, 11, 561 5 of 23

CTijq − STijq =
m

∑
k=1

xijqk pijqk, i = 1, 2, · · · , n; j = 1, 2, · · · , Ii; q = 1, 2, · · · , Jij (6)

STP(ijq) ≥ CTijq +
m
∑

w=1

m
∑

k=1
TTijqw,P(ijq)kxijqwxP(ijq)k, i = 1, 2, · · · , n; j = 1, 2, · · · , Ii; q = 1, 2, · · · , Jij (7)

STi′ j′q′ + Γ(1− yijqi′ j′q′k) ≥ CTijq,

i, i′ = 1, 2, · · · , n; j(j′) = 1, 2, · · · , Ii(Ii′); q(q′) = 1, 2, · · · , Jij(Ji′ j′); k = 1, 2, · · · , m
(8)

STijq + Γyijqi′ j′q′k ≥ CTi′ j′q′ , i, i′ = 1, 2, · · · , n; j(j′) = 1, 2, · · · , Ii(Ii′); q(q′) = 1, 2, · · · , Jij(Ji′ j′); k = 1, 2, · · · , m (9)

m

∑
k=1

xijqk =1, i = 1, 2, · · · , n; j = 1, 2, · · · , Ii; q = 1, 2, · · · , Jij (10)

WLk =
n

∑
i=1

Ii

∑
j=1

Jij

∑
q=1

pijqkxijqk, k = 1, 2, · · · , m (11)

Ck = max
{

CTijqxijqk

}
, i = 1, 2, · · · , n; j = 1, 2, · · · , Ii; q = 1, 2, · · · , Jij; k = 1, 2, · · ·, m (12)

Sk = min
{

STijqxijqk

}
, i = 1, 2, · · · , n; j = 1, 2, · · · , Ii; q = 1, 2, · · · , Jij; k = 1, 2, · · ·, m (13)

STijq ≥ 0, i = 1, 2, · · · , n; j = 1, 2, · · · , Ii; q = 1, 2, · · · , Jij (14)

xijqk ∈ {0, 1}, i = 1, 2, · · · , n; j = 1, 2, · · · , Ii; q = 1, 2, · · · , Jij; k = 1, 2, · · ·, m (15)

yijqi′ j′q′k ∈ {0, 1}, i, i′ = 1, 2, · · · , n; j(j′) = 1, 2, · · · , Ii(Ii′); q(q′) = 1, 2, · · · , Jij(Ji′ j′); k = 1, 2, · · · , m (16)

Equation (1) denotes the optimization objective of the problem. Constraint (2) denotes
the processing energy consumption, which originates from the processing of operations
on machines. Constraint (3) represents the idle energy consumed by machines when
waiting for processing tasks. Constraint (4) gives the transportation energy consumption,
which is generated by transfers for transporting jobs between machines. Constraint (5)
defines the energy consumed by auxiliary equipment, such as lighting and air conditioning.
Constraint (6) means that preemption is not allowed. Constraint (7) gives the precedence
relationships between operations. Constraints (8) and (9) guarantee that each machine
cannot process more than one operation at a time. When yijqi′ j′q′k = 1, Oijq is processed before
Oi′ j′q′ on machine k. Accordingly, Constraint (8) holds. Γ is set to ensure that Constraint (9)
also holds. When yijqi′ j′q′k = 0, Oijq is processed behind Oi′ j′q′ on machine k. Accordingly,
Constraint (9) holds. Γ is used to let Constraint (8) also be met; Constraint (10) ensures that
any operation can only choose one machine for its processing; Constraint (11) calculates
the machine workload; Constraints (12) and (13) give the completion time and starting time
of each machine; Constraint (14) represents that the start time of each operation is greater
than zero; Constraints (15) and (16) state two 0–1 variables.

3. Overview of the Basic EHO Algorithm

The elephant herding optimization (EHO) algorithm was proposed by Wang et al. [28]
according to the herding behavior of elephants. In the EHO, two operators are used to
formulate the herding behavior of elephants, i.e., the clan updating operator and separating
operator. A brief introduction of the basic EHO algorithm is presented as follows.

3.1. Clan Updating Operator

In each clan, each elephant updates its position under the guidance of the fittest
elephant corresponding to the natural matriarch. For the elephant i in clan c, the updating
operation can be formulated by Equation (17).

Xt+1
ci = Xt

ci + α× (Xt
c,best −Xt

ci)× r (17)

Axioms 2022, 11, 561 6 of 23

where t is the current generation; Xci is the position of individual i in clan c; α ∈ [0, 1]
is a scale factor which reflects the influence of the matriarch on Xci; Xt

c,best represents the
matriarch’s position in clan c. r is a random number with the uniform distribution in [0, 1].
In addition, for the matriarch, its position is updated by Equation (18).

Xt+1
ci = β×Xt

c,center (18)

Xt
c,center,d =

1
nc
×

nc

∑
i=1

Xt
c,i,d (19)

where β is a scale factor in [0, 1]; Xt
c,center is the center of the clan, which can be calculated

by Equation (19); nc is the number of elephants in clan c; Xt
c,center,d and Xt

c,i,d are the dth
dimension of Xt

c,center and Xt
ci, respectively.

3.2. Separating Operator

The separating operator simulates the leaving of the mature male elephants from their
groups. This operator is conducted to the individual elephants with the worst fitness value,
as shown in Equation (20).

Xt+1
c,worst = Xmin + (Xmax −Xmin + 1)× rand (20)

where Xmin and Xmax are the lower and upper bounds of the elephant’s position. Xc,worst
represents the worst individual in clan c. rand is a random number with a uniform
distribution in [0, 1].

3.3. Elitism Strategy

Like some other intelligence algorithms, the elitism strategy is adopted to avoid the
best individuals from being ruined during the evolutionary process. In the beginning of
each generation, the nKEL best elephant individuals are saved, which are used to replace
the nKEL worst elephant individuals at the end of every search process. This strategy
guarantees that the later elephant population is not worse than the former one.

3.4. Steps of the Basic EHO

The detailed steps of the basic EHO algorithm are shown as below.
Step 1. Create the initial population at random, and determine the parameters of the

algorithm, such as the population size popsize, the number of saved best elephants nKEL,
the maximum generation maxiter, the scale factors α and β, the number of clans nclan, and
the number of elephants nc in the cth clan.

Step 2. Evaluate the fitness of each elephant.
Step 3. Sort all the elephants in the population according to the fitness values, save the

nKEL best elephants, and then divide the population into nclan clans.
Step 4. Conduct the clan updating operator following Equations (17) and (18).
Step 5. Conduct the separating operator following Equation (20).
Step 6. Combine the clans into one population, and evaluate the fitness of all new

individuals.
Step 7. Conduct the elitism strategy to replace the worst individuals with the nKEL

saved ones.
Step 8. Judge whether the maximum generation is met. If yes, go to Step 9, otherwise,

go to Step 3.
Step 9. Output the results.

4. Implementation of the IEHO
4.1. Encoding Approach

To implement the IEHO, the first step is to devise an encoding approach to represent
the solution to the problem. Here, a two-segment string is applied to express each schedul-

Axioms 2022, 11, 561 7 of 23

ing solution. The first segment stores the information of machine assignment (MA) for each
operation, and the second gives the information of operation permutation (OP) on each
assigned machine. The length of the MA segment is equal to that of the OP segment, which

equals the total number of operations in the workshop, i.e., len =
n
∑

i=1

Ii
∑

j=1
Jij.

An example of two products is provided to describe this encoding scheme. The
processing times and the tree-like structure of the two products are respectively presented
in Table 1 and Figure 1. In Table 1, Pi represents the ith product, JBij defines the jth job of
the ith product, and Oijq is the qth operation of the jth job in the ith product. In addition,
‘-’ means that the machine is unavailable for the operation. In Figure 1, the numerical
representation in each rectangle, i-j-q, denotes the qth operation of job j in product i. Based
on the above information, Figure 2 illustrates the encoding scheme of a scheduling solution.
The MA segment stores the machine index following a fixed sequence of operations. Each
machine is selected from the eligible machine set of the corresponding operation. The OP
segment contains the codes of products and jobs. The elements with the same values belong
to the same job of the product. The rth occurrence of the value refers to the rth operation of
the job in the product. For example, the second ‘(1,3)’ represents the second operation of
job 3 in product 1, and the first ‘(2,5)’ denotes the first operation of job 5 in product 2.

Table 1. Processing times of the operations in the two products.

Product Job Operation M1 M2 M3 M4

P1

JB11
O111 - 1 3 -
O112 2 3 - 4

JB12 O121 2 - - 3

JB13
O131 - 3 1 5
O132 - - 5 2

JB14 O141 3 5 6 7

JB15 O151 4 - 3 -

P2

JB21 O211 - 1 2 5

JB22
O221 - 5 4 1
O222 4 - 5 3

JB23 O231 3 1 2 4

JB24 O241 5 4 7 3

JB25
O251 2 - 6 5
O252 3 - 5 4

Axioms 2022, 11, x FOR PEER REVIEW 8 of 25

12JB 121O 2 - - 3

13JB 131O - 3 1 5
132O - - 5 2

14JB 141O 3 5 6 7
15JB 151O 4 - 3 -

2P

21JB 211O - 1 2 5

22JB 221O - 5 4 1
222O 4 - 5 3

23JB 231O 3 1 2 4
24JB 241O 5 4 7 3

25JB 251O 2 - 6 5
252O 3 - 5 4

1-2-1

1-5-1

1-4-1

1-1-2

1-1-1

1-3-2

1-3-1

2-2-2

2-5-1

2-4-1

2-1-1

2-2-1

2-3-1

2-5-2

Figure 1. The tree-like structure of the products.

Operation Permutation

(1,1) (2,5)(2,5)(2,4)(1,3)(2,3)(1,1)(2,1)(1,2) (1,3)(1,4)(2,2)(1,5)(2,2)

O111 O252O251O241O131O231O112O211O121 O132O141O222O151O221O111

Machine Assignment

2 22134312 12443

O111 O221O211O151O141O132O131O121O112 O252O251O241O231O222O111

Figure 2. The encoding scheme.

According to the encoding scheme, the elements in the first segment are always se-
lected from the eligible machine set, which can ensure the feasibility of the machine as-
signment. However, the second segment is most likely unfeasible due to the existence of
hierarchical job precedence constraints. For example, 132O and 141O is processed before

151O , which does not meet the job precedence constraints of 1P in Figure 1. Here, a job
precedence repair mechanism is devised to obtain a feasible operation permutation. The
repair mechanism can be described below.

Step 1. Scan the OP segment of the candidate individual from left to right.
Step 2. For each operation, judge whether the current operation has precedent op-

erations in product tree. If yes, pick out the current operation and all its precedent oper-
ations from the OP segment, keeping the positions of others unchanged.

Step 3. Relocate the current operation behind its precedent operations, and then
place these elements back the OP segment following the new sequence.

After performing the repair mechanism, a feasible operation permutation is shown
in Figure 3.

(1,1) (2,3)(2,2)(2,2)(1,3)(2,4)(1,1)(2,1)(1,2) (1,5)(1,3)(2,5)(1,4)(2,5)

O111 O231O222O221O131O241O112O211O121 O151O132O252O141O251O111

Figure 1. The tree-like structure of the products.

Axioms 2022, 11, 561 8 of 23

Axioms 2022, 11, x FOR PEER REVIEW 8 of 25

12JB 121O 2 - - 3

13JB 131O - 3 1 5
132O - - 5 2

14JB 141O 3 5 6 7
15JB 151O 4 - 3 -

2P

21JB 211O - 1 2 5

22JB 221O - 5 4 1
222O 4 - 5 3

23JB 231O 3 1 2 4
24JB 241O 5 4 7 3

25JB 251O 2 - 6 5
252O 3 - 5 4

1-2-1

1-5-1

1-4-1

1-1-2

1-1-1

1-3-2

1-3-1

2-2-2

2-5-1

2-4-1

2-1-1

2-2-1

2-3-1

2-5-2

Figure 1. The tree-like structure of the products.

Operation Permutation

(1,1) (2,5)(2,5)(2,4)(1,3)(2,3)(1,1)(2,1)(1,2) (1,3)(1,4)(2,2)(1,5)(2,2)

O111 O252O251O241O131O231O112O211O121 O132O141O222O151O221O111

Machine Assignment

2 22134312 12443

O111 O221O211O151O141O132O131O121O112 O252O251O241O231O222O111

Figure 2. The encoding scheme.

According to the encoding scheme, the elements in the first segment are always se-
lected from the eligible machine set, which can ensure the feasibility of the machine as-
signment. However, the second segment is most likely unfeasible due to the existence of
hierarchical job precedence constraints. For example, 132O and 141O is processed before

151O , which does not meet the job precedence constraints of 1P in Figure 1. Here, a job
precedence repair mechanism is devised to obtain a feasible operation permutation. The
repair mechanism can be described below.

Step 1. Scan the OP segment of the candidate individual from left to right.
Step 2. For each operation, judge whether the current operation has precedent op-

erations in product tree. If yes, pick out the current operation and all its precedent oper-
ations from the OP segment, keeping the positions of others unchanged.

Step 3. Relocate the current operation behind its precedent operations, and then
place these elements back the OP segment following the new sequence.

After performing the repair mechanism, a feasible operation permutation is shown
in Figure 3.

(1,1) (2,3)(2,2)(2,2)(1,3)(2,4)(1,1)(2,1)(1,2) (1,5)(1,3)(2,5)(1,4)(2,5)

O111 O231O222O221O131O241O112O211O121 O151O132O252O141O251O111

Figure 2. The encoding scheme.

According to the encoding scheme, the elements in the first segment are always
selected from the eligible machine set, which can ensure the feasibility of the machine
assignment. However, the second segment is most likely unfeasible due to the existence
of hierarchical job precedence constraints. For example, O132 and O141 is processed before
O151, which does not meet the job precedence constraints of P1 in Figure 1. Here, a job
precedence repair mechanism is devised to obtain a feasible operation permutation. The
repair mechanism can be described below.

Step 1. Scan the OP segment of the candidate individual from left to right.
Step 2. For each operation, judge whether the current operation has precedent opera-

tions in product tree. If yes, pick out the current operation and all its precedent operations
from the OP segment, keeping the positions of others unchanged.

Step 3. Relocate the current operation behind its precedent operations, and then place
these elements back the OP segment following the new sequence.

After performing the repair mechanism, a feasible operation permutation is shown
in Figure 3.

Axioms 2022, 11, x FOR PEER REVIEW 8 of 25

12JB 121O 2 - - 3

13JB 131O - 3 1 5
132O - - 5 2

14JB 141O 3 5 6 7
15JB 151O 4 - 3 -

2P

21JB 211O - 1 2 5

22JB 221O - 5 4 1
222O 4 - 5 3

23JB 231O 3 1 2 4
24JB 241O 5 4 7 3

25JB 251O 2 - 6 5
252O 3 - 5 4

1-2-1

1-5-1

1-4-1

1-1-2

1-1-1

1-3-2

1-3-1

2-2-2

2-5-1

2-4-1

2-1-1

2-2-1

2-3-1

2-5-2

Figure 1. The tree-like structure of the products.

Operation Permutation

(1,1) (2,5)(2,5)(2,4)(1,3)(2,3)(1,1)(2,1)(1,2) (1,3)(1,4)(2,2)(1,5)(2,2)

O111 O252O251O241O131O231O112O211O121 O132O141O222O151O221O111

Machine Assignment

2 22134312 12443

O111 O221O211O151O141O132O131O121O112 O252O251O241O231O222O111

Figure 2. The encoding scheme.

According to the encoding scheme, the elements in the first segment are always se-
lected from the eligible machine set, which can ensure the feasibility of the machine as-
signment. However, the second segment is most likely unfeasible due to the existence of
hierarchical job precedence constraints. For example, 132O and 141O is processed before

151O , which does not meet the job precedence constraints of 1P in Figure 1. Here, a job
precedence repair mechanism is devised to obtain a feasible operation permutation. The
repair mechanism can be described below.

Step 1. Scan the OP segment of the candidate individual from left to right.
Step 2. For each operation, judge whether the current operation has precedent op-

erations in product tree. If yes, pick out the current operation and all its precedent oper-
ations from the OP segment, keeping the positions of others unchanged.

Step 3. Relocate the current operation behind its precedent operations, and then
place these elements back the OP segment following the new sequence.

After performing the repair mechanism, a feasible operation permutation is shown
in Figure 3.

(1,1) (2,3)(2,2)(2,2)(1,3)(2,4)(1,1)(2,1)(1,2) (1,5)(1,3)(2,5)(1,4)(2,5)

O111 O231O222O221O131O241O112O211O121 O151O132O252O141O251O111

Figure 3. The OP segment after the repair operation.

4.2. Energy-Saving Decoding Approach

Due to job/operation precedence constraints and transportation times between ma-
chines, there exists some idle time slots between the adjacent operations on each machine.
Hence, we propose an energy-saving decoding approach under the principle of the left-shift
rule, which considers the makespan and energy consumption simultaneously. The left-shift
rule states that if an operation can be inserted into one of the left idle time slots on the
assigned machine as compactly as possible without violating the precedence constraints,
the slot is first preferred. Based on this rule, the idle times of each machine are compacted,
which leads to the reduction in the idle energy consumption. Meanwhile, the makespan
may also be shortened, resulting in the reduction in auxiliary energy consumption. When
executing the decoding approach, the OP segment of the candidate individual is traversed
from left to right, and the left-shift rule is repeated for each operation until all operations in
the current individual have been scheduled. For each operation, the detailed steps of the
left-shift rule are shown below.

Step 1. Find out the assigned machine k in the MA segment, and obtain the processing
time pijqk of the current operation Oijq.

Step 2. Find out all the idle time slots in machine k. For each slot, it can be represented
by [tS

k ,tE
k], where tS

k and tE
k are the start time and the end time of the slot, respectively.

Step 3. Traverse all the slots on machine k from left to right, and try to insert
the current operation Oijq into one slot as early as possible. When STijq + pijqk ≤ tE

k
is met, the time slot is available for Oijq. If Oijq has precedent operations, STijq =

max
{

tS
k , max

{
CTi′ j′q′ + TTi′ j′q′w,ijk

∣∣∣Oi′ j′q′ ∈ Subijq

}}
, Subijq is the precedent operation set

of Oijq, otherwise, STij = tS
k .

Axioms 2022, 11, 561 9 of 23

Step 4. If all slots on machine k are unavailable for Oijq, append it at the rear of
machine k.

Figure 4 illustrates the left-shift rule, where four operations have been scheduled, i.e.,
O111, O112, O121, O141. It is assumed that O131 is assigned to Machine 2 for processing. If the
idle time slots are not considered, O131 will be placed behind O141. When the condition
max

{
tS
2, max{CT112 + TT1123,1122, CT121 + TT1211,1212}

}
+ p1312 < tE

2 is met, O131 can be
shifted to the left of O141, by which the idle time slot can be compacted. This mechanism
provides an opportunity for decreasing the makespan and the total energy consumption.

Axioms 2022, 11, x FOR PEER REVIEW 9 of 25

Figure 3. The OP segment after the repair operation.

4.2. Energy-Saving Decoding Approach
Due to job/operation precedence constraints and transportation times between ma-

chines, there exists some idle time slots between the adjacent operations on each machine.
Hence, we propose an energy-saving decoding approach under the principle of the
left-shift rule, which considers the makespan and energy consumption simultaneously.
The left-shift rule states that if an operation can be inserted into one of the left idle time
slots on the assigned machine as compactly as possible without violating the precedence
constraints, the slot is first preferred. Based on this rule, the idle times of each machine
are compacted, which leads to the reduction in the idle energy consumption. Meanwhile,
the makespan may also be shortened, resulting in the reduction in auxiliary energy
consumption. When executing the decoding approach, the OP segment of the candidate
individual is traversed from left to right, and the left-shift rule is repeated for each oper-
ation until all operations in the current individual have been scheduled. For each opera-
tion, the detailed steps of the left-shift rule are shown below.

Step 1. Find out the assigned machine k in the MA segment, and obtain the pro-
cessing time ijqkp of the current operation ijqO .

Step 2. Find out all the idle time slots in machine k . For each slot, it can be repre-
sented by [S

kt , E
kt], where S

kt and E
kt are the start time and the end time of the slot, re-

spectively.
Step 3. Traverse all the slots on machine k from left to right, and try to insert the

current operation ijqO into one slot as early as possible. When E
ijq ijqk kST p t+ ≤ is met, the

time slot is available for ijqO . If ijqO has precedent operations,
S

,max{ ,max{ | }}ijq k i j q i j q w ijk i j q ijqST t CT TT O Sub′ ′ ′ ′ ′ ′ ′ ′ ′= + ∈ , ijqSub is the precedent operation
set of ijqO , otherwise, S

ij kST t= .
Step 4. If all slots on machine k are unavailable for ijqO , append it at the rear of

machine k .
Figure 4 illustrates the left-shift rule, where four operations have been scheduled,

i.e., 111 112 121 141, , ,O O O O . It is assumed that 131O is assigned to Machine 2 for processing. If
the idle time slots are not considered, 131O will be placed behind 141O . When the condi-
tion S E

2 112 1123,1122 121 1211,1212 1312 2max{ ,max{ , }}t CT TT CT TT p t+ + + < is met, 131O can be
shifted to the left of 141O , by which the idle time slot can be compacted. This mechanism
provides an opportunity for decreasing the makespan and the total energy consumption.

O121

O112

O131

Machine 1

Machine 2

TT1211,1212

O131O141O111

TT1123,1122

Machine 3

Figure 4. The left-shift process of operation 131O .

4.3. Population Initialization and Splitting
In order to obtain initial solutions with a certain quality and diversity, a population

initialization approach is proposed to construct the MA and OP segments, which is de-
scribed as below.

Figure 4. The left-shift process of operation O131.

4.3. Population Initialization and Splitting

In order to obtain initial solutions with a certain quality and diversity, a population ini-
tialization approach is proposed to construct the MA and OP segments, which is described
as below.

For the MA segment, the two assignment rules proposed by Pezzella et al. [32],
named AssignmentRule1 and AssignmentRule2, are used to select an appropriate machine
for each operation. In these two rules, a matrix with the size of len×m is created to record
the workload of each machine. For each operation, the machine assignment procedure
includes finding the machine with the minimum workload, fixing that assignment, and
then updating the workload of the selected machine by adding the processing time of
the operation to all the entries in the columns where the selected machine resides. In
this paper, by considering the optimization objective, the matrix is modified to record the
processing energy of each machine. In addition, the random assignment rule (RAR) is
also used to select a machine from the eligible machine set of each operation at random.
Here, 10% of the initial population is generated by RAR, 10% by AssignmentRule1, and 80%
by AssignmentRule2.

For the OP segment, we present three dispatching rules to generate the operation
sequence on each machine, i.e., LLC + MWR, LLC + MOR, RSR. RSR denotes the random
sequencing rule, by which the operations are randomly sequenced on each machine. The
operation’s lowest level (LLC) means that the operation located on the lowest level of
product three has the highest priority to be scheduled. For example, in Figure 1, O111, O221
are located on the lowest level of the product tree, which have the highest priority among
all the operations, O121, O112 have higher priority than O131, etc. Most Work Remaining
(MWR) defines that the operation belonging to the job with the most remaining processing
time has higher priority to be selected. Most Operations Remaining (MOR) represents
that the operation belonging to the job with the most remaining operations has a higher
priority to be selected. LLC + MWR means that the LLC rule is first used to selected the
operations with the lowest level, and the MWR rule is adopted to break a tie if more than
one operation has the lowest level. LLC + MOR means that the LLC rule is first used to
selected the operations with the lowest level, and the MOR rule is employed to break a tie.
If one operation has been scheduled, the operation will be deleted from the product tree to
update the current lowest level. Here, 40% operation sequences are generated by the LLC +
MWR rule, 40% by the LLC + MOR rule, and 20% by the RSR rule.

Axioms 2022, 11, 561 10 of 23

In EHO, before undertaking the evolutionary process, the population is first split into a
fixed number of clans, which can also be viewed as sub-populations. The existing research
reported that the multi-population method is one of the most effective methods to maintain
population diversity, by which solutions are scattered over the search space rather than
focusing on a specific area [33,34]. The procedure of the population splitting is as follows:
First, all solutions are sorted in descending order based on their fitness values. Then, the
first elephant is assigned to the first clan, the second elephant is assigned to the second
clan, the nclanth elephant goes to the nclanth clan, the (nclan + 1)th elephant goes to the
first clan, the (nclan + 2)th elephant goes to the second clan, etc.

4.4. Clan Updating Operator

It is obvious that Equations (17) and (18) are not suitable for the discrete scheduling
problem. Therefore, in this paper, the original clan updating operator is discretized based
on the crossover operation. Before performing the crossover operation, a random number
rand is generated with a uniform distribution in [0, 1]. If rand is smaller than the crossover
rate pc, the crossover operator will be performed to obtain a new individual.

For the candidate individual i in clan c, the crossover operator is first performed
between Xci and Xc,best. If the new individual X′ci is better than Xci, Xci is replaced by
X′ci. Otherwise, the crossover operator is then performed between Xci and the global best
individual Xg,best in the whole population to obtain X′′ ci. If X′′ ci is superior to Xci, Xci is
replaced by X′′ ci, else Xci is unchanged.

For the matriarch in each clan, the crossover operator is first performed between Xc,best
and Xc,center to generate a new individual X′c,best. Here, Xc,center is the elephant individual
whose fitness value is closest to the mean fitness of the clan c. If the new individual X′c,best
is better than Xc,best, Xc,best ← X′c,best . Otherwise, the crossover operator is then performed
between Xc,best and Xg,best to obtain X′′ c,best. If X′′ c,best is superior to Xc,best, Xc,best is replaced
by X′′ c,best, else Xc,best is unchanged.

In this work, two different crossover operations are adopted for operation permuta-
tion and machine assignment, respectively. For the machine assignment, the multi-point
crossover (MPX) [25] can be directly adopted. For the operation permutation, an operation
is first randomly selected, which has precedent operations in product tree. For example, in
Figure 5, O251 is selected from the operation permutation. Then the precedent operations
of O251 are O231, O241, O221, O222, O211. When performing the crossover operation, all the
precedent operations O231, O241, O221, O222, O211of the selected operation in the two parent
individuals are swapped to obtain two child individuals. The better one is selected as the
new individual of the clan updating operator.

Axioms 2022, 11, x FOR PEER REVIEW 11 of 25

For the matriarch in each clan, the crossover operator is first performed between
,c bestX and ,c centerX to generate a new individual ,c best′X . Here, ,c centerX is the elephant

individual whose fitness value is closest to the mean fitness of the clan c . If the new in-
dividual ,c best′X is better than ,c bestX , , ,c best c best′←X X . Otherwise, the crossover operator
is then performed between ,c bestX and ,g bestX to obtain ,c best′′X . If ,c best′′X is superior to

,c bestX , ,c bestX is replaced by ,c best′′X , else ,c bestX is unchanged.
In this work, two different crossover operations are adopted for operation permuta-

tion and machine assignment, respectively. For the machine assignment, the multi-point
crossover (MPX) [25] can be directly adopted. For the operation permutation, an opera-
tion is first randomly selected, which has precedent operations in product tree. For ex-
ample, in Figure 5, 251O is selected from the operation permutation. Then the precedent
operations of 251O are 231 241 221 222 211, , , ,O O O O O . When performing the crossover opera-
tion, all the precedent operations 231 241 221 222 211, , , ,O O O O O of the selected operation in the
two parent individuals are swapped to obtain two child individuals. The better one is
selected as the new individual of the clan updating operator.

(1,1) (2,3)(2,2)(2,2)(1,3)(2,4)(1,1)(2,1)(1,2) (1,5)(1,3)(2,5)(1,4)(2,5)

(1,1) (2,4)(2,3)(2,2)(1,3)(2,2)(1,1)(2,1)(1,2) (1,5)(1,3)(2,5)(1,4)(2,5)

(1,2) (2,3)(2,2)(2,2)(1,3)(2,4)(2,1)(1,1)(1,1) (1,5)(1,4)(1,3)(2,5)(2,5)

(1,2) (2,4)(2,3)(2,2)(1,3)(2,2)(2,1)(1,1)(1,1) (1,5)(1,4)(1,3)(2,5)(2,5)

Parent 1

Parent 2

Child 1

Child 2

Figure 5. The crossover operation of the operation permutation.

4.5. Separating Operator
In the basic EHO algorithm, the worst elephant in each clan will be randomly re-

placed, as expressed in Equation (20). However, the original separation operator ignores
the evaluation of the newborn calf, by which an inferior solution might join the clan.
Therefore, a new separation method proposed by Li et al. [35] is employed in this sec-
tion. In this method, if it is better than the original one, it can be accepted. Otherwise, a
probability value bp is employed to determine whether the original elephant should be
replaced. To this end, a random number rand is randomly generated. If rand is
greater than bp , the original elephant will be replaced.

To implement the separating strategy, two types of neighborhood structures are
proposed for the operation permutation and the machine assignment, respectively.
When performing the separating operator, a neighborhood structure is randomly se-
lected from each of Type 1 and Type 2 to acquire a new individual.

Type 1: Neighborhood structures for machine assignment
NMS1: Randomly select an operation, and then a different machine is randomly se-

lected from the eligible machine set of the selected operation to replace the original one.
NMS2: Randomly select an operation, and then the machine with the shortest pro-

cessing time is selected from the eligible machine set of the selected operation to replace
the original one.

NMS3: Randomly select an operation, and then the machine with the smallest pro-
cessing energy consumption coefficient is selected from the eligible machine set of the
selected operation to replace the original one.

Type 2: Neighborhood structures for operation permutation
NOP1: Randomly select two elements with different values in the OP segment, and

then swap the positions of the selected elements. Perform the repair mechanism to en-
sure the feasibility of the scheduling solution.

Figure 5. The crossover operation of the operation permutation.

4.5. Separating Operator

In the basic EHO algorithm, the worst elephant in each clan will be randomly replaced,
as expressed in Equation (20). However, the original separation operator ignores the
evaluation of the newborn calf, by which an inferior solution might join the clan. Therefore,
a new separation method proposed by Li et al. [35] is employed in this section. In this
method, if it is better than the original one, it can be accepted. Otherwise, a probability
value pb is employed to determine whether the original elephant should be replaced. To

Axioms 2022, 11, 561 11 of 23

this end, a random number rand is randomly generated. If rand is greater than pb, the
original elephant will be replaced.

To implement the separating strategy, two types of neighborhood structures are pro-
posed for the operation permutation and the machine assignment, respectively. When
performing the separating operator, a neighborhood structure is randomly selected from
each of Type 1 and Type 2 to acquire a new individual.

Type 1: Neighborhood structures for machine assignment
NMS1: Randomly select an operation, and then a different machine is randomly

selected from the eligible machine set of the selected operation to replace the original one.
NMS2: Randomly select an operation, and then the machine with the shortest process-

ing time is selected from the eligible machine set of the selected operation to replace the
original one.

NMS3: Randomly select an operation, and then the machine with the smallest process-
ing energy consumption coefficient is selected from the eligible machine set of the selected
operation to replace the original one.

Type 2: Neighborhood structures for operation permutation
NOP1: Randomly select two elements with different values in the OP segment, and

then swap the positions of the selected elements. Perform the repair mechanism to ensure
the feasibility of the scheduling solution.

NOP2: Randomly select two elements with different values in the OP segment, and
then insert the second element to the front of the first one. Perform the repair mechanism
to ensure the feasibility of the scheduling solution.

NOP3: Randomly select two elements with different values in the OP segment, and
then invert the original order of the elements between the selected two elements. Perform
the repair mechanism to ensure the feasibility of the scheduling solution.

4.6. Steps of the IEHO

The steps of the IEHO algorithm can be summarized as below.
Step 1. Generate the initial population following the method in Section 3.4, and set

some related parameters, such as the population size popsize, the number of clans nclan,
the number of the saved elephants nKEL, the maximum generation maxiter, the crossover
rate pc and the acceptance probability pb.

Step 2. Evaluate the fitness of each elephant individual.
Step 3. Sort all the individuals in the population according to the fitness, save the

nKEL best elephants, and then split the population into nclan clans with the same size.
Step 4. Perform the clan updating operation in Section 4.4.
Step 5. Perform the separating operation based on the neighborhood structure in

Section 4.5.
Step 6. Merge the individuals of each clan into the population, and evaluate the fitness

of all individuals.
Step 7. Perform the elitism strategy to replace the worst individuals with the nKEL

saved ones.
Step 8. Judge whether the maximum iteration number is met. If yes, go to Step 9,

otherwise, go to Step 3.
Step 9. Terminate the algorithm.

4.7. Time Complexity

The time complexity of the IEHO algorithm is analyzed following the above steps.
Obviously, evaluate the fitness of each elephant individual in Step 2 with time complex-
ity O(popsize). Sort all the individuals in the population in Step 3 with time complexity
O(popsize). In Step 4, execute the clan-updating operator for all clans with time complexity
O(popsize× 2len). In Step 5, perform the separating operator for all clans with time com-
plexity O(popsize). In Step 6, evaluate the fitness of all individuals with time complexity
O(popsize). Perform the elitism strategy to replace the worst individuals in Step 7 with

Axioms 2022, 11, 561 12 of 23

time complexity O(nKEL). After omitting the low-order terms, the total time complexity of
the IEHO algorithm is O(maxiter× popsize× l), which is only related to maxiter, popsize,
and len. lenis the total number of operations in the workshop.

5. Numerical Experiments

This section aims to verify the performance of the proposed IEHO by conducting
extensive experiments. In the following subsections, experimental instances and parameter
settings are first elaborately designed. Then, the effectiveness of improvement strategies
including population initialization strategy and energy-saving decoding approach are vali-
dated. Subsequently, IEHO is compared with some published algorithms. Finally, statistical
analysis experiments are conducted to ensure the comparison results more convincingly.
All algorithms were coded in Fortran language and compiled using Compaq Visual Fortran
6.6 on VMware Workstation with 6 GB RAM under Windows XP. Each experiment was
conducted 10 independent times on each experimental instance for each algorithm.

5.1. Test Instance

Four types of different products need to be processed in a workshop, whose tree-like
structures are shown in Figure 6. Thirty-two different instances are designed based on
different product mixtures and the number of machines in Table 2. For each instance,
some related parameters are randomly generated in a given range following a uniform
distribution as follows: nop ∈ [2, m], pijqk ∈ [10, 20], PEijqk ∈ [10, 15], IEk ∈ [6, 10],
AE ∈ [12, 18], TE ∈ [5, 10] and TTijqw,P(ijq)k ∈ [5, 15]. nop represents the size of the eligible
machine set for each operation.

Axioms 2022, 11, x FOR PEER REVIEW 13 of 25

Four types of different products need to be processed in a workshop, whose
tree-like structures are shown in Figure 6. Thirty-two different instances are designed
based on different product mixtures and the number of machines in Table 2. For each
instance, some related parameters are randomly generated in a given range following
a uniform distribution as follows: nop∈ [2, m], ijqkp ∈ [10, 20], ijqkPE ∈ [10, 15],

kIE ∈ [6, 10], AE∈ [12, 18], TE∈ [5, 10] and ,P()ijqw ijq kTT ∈ [5, 15]. nop represents the
size of the eligible machine set for each operation.

1-25-2 1-26-1

1-31-1

1-30-1 1-27-21-28-21-29-1

1-19-21-23-11-24-1

1-20-11-21-11-22-2

1-17-11-18-1

1-13-1 1-12-11-15-11-16-1 1-14-1

1-11-1

1-9-2 1-8-3 1-7-3 1-5-3

1-10-1

1-3-31-4-2 1-1-21-6-1 1-2-1

1-8-2

1-8-1

1-19-1

1-25-1

1-7-2

1-7-1

1-4-1 1-1-1

1-27-1

1-5-2

1-5-1

1-28-1

1-3-2

1-3-1

1-9-1

1-22-1

(a)

2-27-1 2-26-1

2-33-1

2-32-1 2-28-12-29-12-30-32-31-1

2-24-3 2-23-2 2-22-4

2-19-12-20-12-21-3

2-16-12-17-12-18-1

2-9-2

2-13-12-14-22-15-1

2-11-1 2-10-2 2-8-3

2-5-1 2-4-1

2-1-12-2-12-3-1

2-12-1

2-6-22-7-2

2-25-2

2-22-32-25-1

2-30-2

2-9-1

2-6-1

2-21-2

2-14-1

2-22-2

2-8-2

2-7-1

2-10-1

2-23-12-24-2

2-24-1

2-22-1

2-8-1

2-21-1

2-30-1

(b)

Figure 6. Cont.

Axioms 2022, 11, 561 13 of 23
Axioms 2022, 11, x FOR PEER REVIEW 14 of 25

3-17-1 3-16-1

3-21-1

3-20-1 3-18-33-19-1

3-14-13-15-1

3-11-13-12-13-13-2

3-8-23-10-1

3-6-1

3-5-1 3-4-2

3-1-13-2-13-3-1

3-9-1

3-7-1

3-4-1

3-8-1

3-13-1

3-18-2

3-18-1

(c)

4-27-1 4-26-1

4-33-1

4-32-1 4-28-14-29-14-30-34-31-1

4-24-2 4-23-1 4-22-5

4-19-14-20-14-21-3

4-16-14-17-14-18-1

4-9-2

4-13-14-14-14-15-1

4-11-1 4-10-1 4-8-3

4-5-1 4-4-1

4-1-14-2-14-3-1

4-12-1

4-6-24-7-2

4-25-3

4-8-2

4-7-1

4-21-2

4-22-44-24-1

4-30-2

4-25-2

4-6-1

4-30-1

4-9-1

4-22-3

4-22-2

4-8-1

4-21-1

4-25-1

4-22-1

(d)

Figure 6. The tree-like structure of the four products. (a) Product 1; (b) Product 2; (c) Product 3; (d)
Product 4.

Table 2. Experimental instance.

Instance
Product Mixture

m Instance
Product Mixture m P1 P2 P3 P4 P1 P2 P3 P4

RM01

4 0 0 0

10 RM17

1 1 1 1

10
RM02 15 RM18 15
RM03 20 RM19 20
RM04 25 RM20 25
RM05

0 4 0 0

10 RM21

2 0 1 1

10
RM06 15 RM22 15
RM07 20 RM23 20
RM08 25 RM24 25
RM09

0 0 4 0

10 RM25

3 0 1 0

10
RM10 15 RM26 15
RM11 20 RM27 20
RM12 25 RM28 25
RM13

0 0 0 4
10 RM29

1 1 2 0
10

RM14 15 RM30 15
RM15 20 RM31 20

Figure 6. The tree-like structure of the four products. (a) Product 1; (b) Product 2; (c) Product 3;
(d) Product 4.

Table 2. Experimental instance.

Instance
Product Mixture

m Instance
Product Mixture

m
P1 P2 P3 P4 P1 P2 P3 P4

RM01

4 0 0 0

10 RM17

1 1 1 1

10
RM02 15 RM18 15
RM03 20 RM19 20
RM04 25 RM20 25
RM05

0 4 0 0

10 RM21

2 0 1 1

10
RM06 15 RM22 15
RM07 20 RM23 20
RM08 25 RM24 25
RM09

0 0 4 0

10 RM25

3 0 1 0

10
RM10 15 RM26 15
RM11 20 RM27 20
RM12 25 RM28 25
RM13

0 0 0 4

10 RM29

1 1 2 0

10
RM14 15 RM30 15
RM15 20 RM31 20
RM16 25 RM32 25

5.2. Parameter Setting

It is well-known that parameter settings impact the performance of intelligence algo-
rithms. To set the parameters, the famous Taguchi designed experiment (DOE) method is
adopted in this section. In the proposed IEHO, there are six key parameters to be set as
factors, i.e., the size of the whole elephant population popsize, the number of clans nclan,
the number of the saved elephants nKEL, the maximum generation maxiter, the crossover
rate pc, and the acceptance probability pb. For each factor, five levels are considered as

Axioms 2022, 11, 561 14 of 23

reported in Table 3. Then, the orthogonal array L25(56) is constructed based on the instance
RM17 in Table 4, where Avg represents the mean value of TEC in ten independent runs.
The response value and the significance rank are reported in Table 5. According to the
simulation data, the six parameters are set following the trend of factor level in Figure 7,
i.e., PS = 300, nclan = 4, maxiter = 500, nKEL = 6, pc = 0.9, pb = 0.7.

Table 3. Parameter levels.

Factor 1~6 Level 1~5

PS 60 120 180 240 300
nclan 1 2 3 4 5

maxiter 100 200 300 400 500
nKEL 2 4 6 8 10

pc 0.5 0.6 0.7 0.8 0.9
pb 0.5 0.6 0.7 0.8 0.9

Table 4. Orthogonal array and Avg values.

Combination
Number

Factor 1~6
Avg

PS nclan maxiter nKEL pc pb

1 1 1 1 1 1 1 40,038.4
2 1 2 2 2 2 2 39,729.9
3 1 3 3 3 3 3 39,374.9
4 1 4 4 4 4 4 39,306.3
5 1 5 5 5 5 5 39,205.4
6 2 1 2 3 4 5 39,630.0
7 2 2 3 4 5 1 39,408.6
8 2 3 4 5 1 2 39,446.1
9 2 4 5 1 2 3 38,991.9
10 2 5 1 2 3 4 39,404.1
11 3 1 3 5 2 4 39,477.2
12 3 2 4 1 3 5 39,276.1
13 3 3 5 2 4 1 39,516.0
14 3 4 1 3 5 2 39,258.7
15 3 5 2 4 1 3 39,191.6
16 4 1 4 2 5 3 39,405.4
17 4 2 5 3 1 4 39,224.4
18 4 3 1 4 2 5 39,356.0
19 4 4 2 5 3 1 39,088.5
20 4 5 3 1 4 2 39,111.3
21 5 1 5 4 3 2 39,460.8
22 5 2 1 5 4 3 39,336.3
23 5 3 2 1 5 4 39,155.5
24 5 4 3 2 1 5 39,057.1
25 5 5 4 3 2 1 39,027.3

Table 5. Response value and significance rank.

Level
Factor 1~6

PS nclan maxiter nKEL pc pb

1 39,531.0 39,602.4 39,478.7 39,314.6 39,391.5 39,415.8
2 39,376.1 39,395.1 39,359.1 39,422.5 39,316.5 39,401.4
3 39,343.9 39,369.7 39,285.8 39,303.1 39,320.9 39,260.0
4 39,237.1 39,140.5 39,292.2 39,344.7 39,380.0 39,313.5
5 39,207.4 39,187.9 39,279.7 39,310.7 39,286.7 39,304.9

Delta 323.6 461.9 199.0 119.4 104.8 155.8
Rank 1 2 3 5 6 4

Axioms 2022, 11, 561 15 of 23

Axioms 2022, 11, x FOR PEER REVIEW 16 of 25

23 5 3 2 1 5 4 39,155.5
24 5 4 3 2 1 5 39,057.1
25 5 5 4 3 2 1 39,027.3

Table 5. Response value and significance rank.

Level
Factor 1~6

PS nclan itermax nKEL cp bp
1 39,531.0 39,602.4 39,478.7 39,314.6 39,391.5 39,415.8
2 39,376.1 39,395.1 39,359.1 39,422.5 39,316.5 39,401.4
3 39,343.9 39,369.7 39,285.8 39,303.1 39,320.9 39,260.0
4 39,237.1 39,140.5 39,292.2 39,344.7 39,380.0 39,313.5
5 39,207.4 39,187.9 39,279.7 39,310.7 39,286.7 39,304.9

Delta 323.6 461.9 199.0 119.4 104.8 155.8
Rank 1 2 3 5 6 4

39,150.0

39,200.0

39,250.0

39,300.0

39,350.0

39,400.0

39,450.0

39,500.0

1 2 3 4 5

Factor 3

39,000.0

39,100.0

39,200.0

39,300.0

39,400.0

39,500.0

39,600.0

1 2 3 4 5

Factor 1

38,900.0

39,000.0

39,100.0

39,200.0

39,300.0

39,400.0

39,500.0

39,600.0

39,700.0

1 2 3 4 5

Factor 2

39,240.0

39,260.0

39,280.0

39,300.0

39,320.0

39,340.0

39,360.0

39,380.0

39,400.0

39,420.0

39,440.0

1 2 3 4 5

Factor 4

39,220.0

39,240.0

39,260.0

39,280.0

39,300.0

39,320.0

39,340.0

39,360.0

39,380.0

39,400.0

1 2 3 4 5

Factor 5

39,150.0

39,200.0

39,250.0

39,300.0

39,350.0

39,400.0

39,450.0

1 2 3 4 5

Factor 6

Figure 7. Factor level trend of parameters.

5.3. Comparison Results of Different Algorithms
To verify the effectiveness of the proposed algorithm, seven algorithms are com-

pared with the IEHO algorithm, i.e., IEHONL, IEHORR, GA [24], PSO-GA [26], VNS
[36], DABO [37], and CosSDCSO [8]. IEHONL and IEHORR are the abbreviated versions
of the proposed IEHO. In IEHONL, the left-shift rule is not applied in the decoding ap-
proach. In IEHORR, the initial population is generated at random. The GA and the VNS
were designed for the AJSP without the consideration of job transportation times and
energy-related metrics. The PSO-GA was proposed for a two-stage energy-saving AJSP
without the consideration of job transportation times. The DABO and the CosSDCSO
were proposed for the energy-saving FJSP without considering the transportation times
and the hierarchical job precedence constraints. All the compared algorithms are easily
modified to adjust to the considered problem.

5.3.1. Effectiveness of the Proposed Population Initialization Approach
To validate the effectiveness of the proposed population initialization approach,

IEHORR is first compared with the IEHO algorithm in this section. For IEHORR, the
parameters are the same as those of IEHO. The comparison results are reported in Table
6, where the first column shows the instance names, and the following columns show the
experimental data of the compared algorithms. In Table 6, ‘Best’ is the best objective value

Figure 7. Factor level trend of parameters.

5.3. Comparison Results of Different Algorithms

To verify the effectiveness of the proposed algorithm, seven algorithms are com-
pared with the IEHO algorithm, i.e., IEHONL, IEHORR, GA [24], PSO-GA [26], VNS [36],
DABO [37], and CosSDCSO [8]. IEHONL and IEHORR are the abbreviated versions of the
proposed IEHO. In IEHONL, the left-shift rule is not applied in the decoding approach.
In IEHORR, the initial population is generated at random. The GA and the VNS were
designed for the AJSP without the consideration of job transportation times and energy-
related metrics. The PSO-GA was proposed for a two-stage energy-saving AJSP without the
consideration of job transportation times. The DABO and the CosSDCSO were proposed for
the energy-saving FJSP without considering the transportation times and the hierarchical
job precedence constraints. All the compared algorithms are easily modified to adjust to
the considered problem.

5.3.1. Effectiveness of the Proposed Population Initialization Approach

To validate the effectiveness of the proposed population initialization approach,
IEHORR is first compared with the IEHO algorithm in this section. For IEHORR, the
parameters are the same as those of IEHO. The comparison results are reported in Table 6,
where the first column shows the instance names, and the following columns show the
experimental data of the compared algorithms. In Table 6, ‘Best’ is the best objective value
collected by each algorithm in ten runs. ‘Avg’ denotes the average results in ten runs. ‘Std’
is the standard deviation of objective value. ‘Time’ is the average running time (in seconds)
of each algorithm. ‘Mean’ represents the average value of the corresponding indicator in the
same column. It can be easily observed from Table 6 that: (1) In comparisons of Best, Avg
and Std, IEHO outperforms IEHORR in all the instances, which indicates that IEHO has a
stronger search ability and performs more stably than IEHORR. (2) In the comparison of
Time value, there is little difference between the two algorithms. (3) The Mean value in the
last line also demonstrates the superior performance of the IEHO algorithm. In summary,
the proposed population initialization approach is effective for the considered problem.

Axioms 2022, 11, 561 16 of 23

Table 6. Comparison results of IEHO and IEHRR.

Instance
IEHO IEHORR

Best Avg Std Time Best Avg Std Time

RM01 38,929 39,172.4 115.9 1862.5 44,053 44,812.8 499.9 1870.6
RM02 40,938 41,165.4 152.9 1492.7 45,537 46,484.6 518.5 1508.7
RM03 39,021 39,457.5 312.4 1311.2 43,776 44,800.8 619.2 1328.1
RM04 37,085 37,572.7 319.0 1222.2 41,930 42,945.8 845.8 1225.6
RM05 48,178 48,414.5 171.8 2270.8 52,044 52,890.9 604.3 2233.2
RM06 45,182 45,721.7 326.0 1712.9 49,957 50,879.6 593.0 1736.3
RM07 42,720 42,993.5 238.3 1510.9 47,451 48,358.9 689.0 1497.9
RM08 43,474 44,206.5 334.1 1390.9 47,763 49,031.5 861.0 1411.0
RM09 25,671 25,998.4 197.4 687.2 27,232 27,752.2 335.9 694.0
RM10 23,450 24,069.2 439.0 556.2 24,170 25,294.4 727.1 584.9
RM11 23,792 24,228.6 252.5 521.7 24,800 25,606.3 448.9 519.7
RM12 19,690 20,282.5 334.6 515.5 20,828 21,635.4 484.0 490.3
RM13 46,292 46,694.4 243.8 2131.4 49,686 50,442.5 542.7 2064.2
RM14 44,993 45,225.7 285.9 1692.3 48,954 49,990.5 691.5 1642.3
RM15 37,352 37,949.8 301.9 1498.4 42,381 43,409.8 538.5 1466.8
RM16 43,152 43,633.7 277.8 1383.4 47,816 49,153.2 717.7 1369.6
RM17 38,890 39,135.1 172.0 1684.8 41,828 43,376.0 874.9 1722.8
RM18 40,335 41,227.0 377.0 1376.8 44,402 45,568.8 769.9 1393.2
RM19 37,171 38,024.0 432.4 1132.0 42,053 43,114.5 1013.1 1182.3
RM20 35,477 36,044.8 405.7 1172.8 38,543 40,040.8 1366.9 1155.2
RM21 36,173 36,408.0 199.3 1739.3 39,569 40,192.7 421.5 1746.3
RM22 36,315 36,869.1 263.4 1392.5 40,141 41,240.2 643.3 1425.7
RM23 36,598 36,912.5 185.9 1233.9 38,992 40,178.5 628.0 1239.9
RM24 33,225 33,736.7 195.9 1148.3 36,353 37,070.1 645.7 1147.6
RM25 38,923 39,080.6 106.9 1517.1 42,196 43,121.5 586.5 1572.7
RM26 36,294 36,713.6 193.4 1239.6 39,881 40,688.6 648.7 1299.1
RM27 33,863 34,251.4 210.3 1086.5 37,304 38,392.9 722.6 1106.4
RM28 31,620 32,246.0 307.4 1013.7 34,585 35,832.5 829.3 1003.6
RM29 32,118 32,467.2 181.0 1349.9 34,572 35,448.2 502.4 1334.2
RM30 32,523 32,832.1 208.0 1099.0 35,808 36,608.1 523.3 1095.3
RM31 32,485 32,863.8 278.3 918.6 35,136 35,750.2 350.1 897.8
RM32 31,072 31,746.7 385.7 849.9 33,430 34,500.9 547.2 851.1
Mean 36,343.8 36,792.0 262.7 1305.1 39,786.6 40,769.2 649.7 1306.8

5.3.2. Effectiveness of the Energy-Saving Decoding Approach

To evaluate the performance of the proposed energy-saving decoding approach,
IEHONL is compared with the proposed IEHO algorithm. For IEHONL, the parame-
ters are also the same as those of IEHO. From the results in Table 7, it can be easily observed
that: (1) IEHO performs better than IEHONL in comparisons of the values of Best, Avg,
and Std, which means that IEHO has a stronger search ability and performs more stably
than IEHONL. (2) For the Time value, IEHO takes more time than IEHONL due to the
introduction of the left-shift rule in the energy-saving decoding approach. (3) The last line
in Table 7 also demonstrates the superior performance of the IEHO algorithm except for the
computational time. In summary, the proposed energy-saving decoding approach increases
the computational time, but it can significantly improve the solution quality.

Axioms 2022, 11, 561 17 of 23

Table 7. Comparison results of IEHO and IEHNL.

Instance
IEHO IEHONL

Best Avg Std Time Best Avg Std Time

RM01 38,929 39,172.4 115.9 1862.5 41,085 41,597.4 370.4 255.1
RM02 40,938 41,165.4 152.9 1492.7 43,521 44,097.2 351.8 262.3
RM03 39,021 39,457.5 312.4 1311.2 42,512 42,909.3 215.1 274.0
RM04 37,085 37,572.7 319.0 1222.2 41,370 42,558.3 519.0 281.8
RM05 48,178 48,414.5 171.8 2270.8 49,394 50,292.5 439.5 289.9
RM06 45,182 45,721.7 326.0 1712.9 48,433 49,339.7 720.2 299.0
RM07 42,720 42,993.5 238.3 1510.9 45,786 46,938.4 766.8 310.8
RM08 43,474 44,206.5 334.1 1390.9 46,220 47,890.9 729.6 323.3
RM09 25,671 25,998.4 197.4 687.2 26,882 27,926.2 656.6 110.8
RM10 23,450 24,069.2 439.0 556.2 25,131 26,177.2 491.9 115.8
RM11 23,792 24,228.6 252.5 521.7 25,351 26,453.3 456.5 120.8
RM12 19,690 20,282.5 334.6 515.5 21,540 22,459.3 529.3 127.0
RM13 46,292 46,694.4 243.8 2131.4 48,206 49,282.4 686.6 282.6
RM14 44,993 45,225.7 285.9 1692.3 47,637 48,988.9 942.4 290.6
RM15 37,352 37,949.8 301.9 1498.4 40,899 42,152.9 596.0 302.7
RM16 43,152 43,633.7 277.8 1383.4 47,581 48,627.9 723.4 312.3
RM17 38,890 39,135.1 172.0 1684.8 41,023 42,289.7 1060.1 254.8
RM18 40,335 41,227.0 377.0 1376.8 44,703 45,733.8 767.2 259.4
RM19 37,171 38,024.0 432.4 1132.0 43,276 43,727.7 300.8 274.2
RM20 35,477 36,044.8 405.7 1172.8 40,155 41,292.4 708.3 282.0
RM21 36,173 36,408.0 199.3 1739.3 38,687 39,253.0 344.7 241.3
RM22 36,315 36,869.1 263.4 1392.5 39,427 40,627.8 542.9 249.7
RM23 36,598 36,912.5 185.9 1233.9 39,684 40,779.8 727.8 260.8
RM24 33,225 33,736.7 195.9 1148.3 36,946 37,891.2 668.9 271.6
RM25 38,923 39,080.6 106.9 1517.1 40,165 40,883.5 423.4 210.0
RM26 36,294 36,713.6 193.4 1239.6 38,529 39,460.1 577.8 217.3
RM27 33,863 34,251.4 210.3 1086.5 36,974 37,974.2 576.7 228.0
RM28 31,620 32,246.0 307.4 1013.7 34,440 35,573.4 670.9 236.2
RM29 32,118 32,467.2 181.0 1349.9 34,660 35,461.6 479.4 177.9
RM30 32,523 32,832.1 208.0 1099.0 36,476 37,397.8 388.3 184.6
RM31 32,485 32,863.8 278.3 918.6 36,384 36,872.8 413.7 194.4
RM32 31,072 31,746.7 385.7 849.9 34,634 35,420.4 543.2 200.6
Mean 36,343.8 36,792.0 262.7 1305.1 39,303.5 40,260.3 574.7 240.7

5.3.3. Comparison with Other Algorithms

To further demonstrate the advantage of the proposed IEHO algorithm in solving the
considered problem, we compared IEHO with five published algorithms, namely, GA [24],
PSO-GA [26], VNS [36], DABO [37], and CosSDCSO [8]. The parameters of these algorithms
are as follows: In GA, the population size is 300, the crossover rate is 0.8, and the mutate
rate is 0.1. In PSO-GA, the population size is 300, the crossover rate is 0.9, and the mutation
rate is 0.1. In DABO, the population size is 300, the lifespan of the population is 5, the
crossover rate is 0.8, and the mutation rate is 0.1. In CosSDCSO, the population size is
300, the crossover rate is 0.7, the size of memory pool is 15. To make a fair comparison,
the termination conditions of the compared algorithms are set to the same running time
as the IEHO algorithm in Tables 6 and 7. According to the comparison results in Table 8,
the following observations can be obtained: (1) Comparison of the values of Best and Avg
shows that IEHO outperforms other algorithms in all instances, which demonstrates that
IEHO has a stronger search ability than others. (2) In the comparison of the value of Std,
IEHO performs best in 22 out of 32 instances, which demonstrates that IEHO is more
stable than other algorithms. The second best algorithm is CosSDCSO, which obtains the
best values of Std in 10 out of 32 instances. (3) The last row suggests that, on average,
the proposed algorithm performs better than the other algorithms. In addition, Figure 8
shows the convergence curve of each algorithm for 12 different instances. It can be easily
observed that the convergence speed of IEHO is faster than that of the other compared
algorithms. Meanwhile, the search capabilities of IEHO are stronger than those of the
others. In summary, the proposed IEHO is significantly superior to other algorithms for
solving the considered problem.

Axioms 2022, 11, 561 18 of 23

Table 8. Comparison results of IEHO and other algorithms.

Instance
IEHO GA PSO-GA

Best Avg Std Best Avg Std Best Avg Std

RM01 38,929 39,172.4 115.9 49,330 50,458.9 648.0 41,191 42,117.0 553.0
RM02 40,938 41,165.4 152.9 52,828 54,209.4 812.0 43,947 44,893.1 544.1
RM03 39,021 39,457.5 312.4 52,547 54,272.8 1094.3 42,936 43,953.9 573.9
RM04 37,085 37,572.7 319.0 53,084 54,452.8 798.2 43,602 44,681.5 872.6
RM05 48,178 48,414.5 171.8 58,173 59,267.7 737.6 49,256 50,479.8 694.3
RM06 45,182 45,721.7 326.0 57,317 59,842.7 1118.6 48,038 49,742.3 885.4
RM07 42,720 42,993.5 238.3 57,509 59,016.5 948.4 46,737 47,948.7 989.5
RM08 43,474 44,206.5 334.1 59,880 61,491.2 1149.7 48,100 49,029.9 654.8
RM09 25,671 25,998.4 197.4 30,296 31,301.2 666.5 27,569 27,877.2 221.1
RM10 23,450 24,069.2 439.0 28,592 29,329.7 628.8 24,979 25,769.3 498.5
RM11 23,792 24,228.6 252.5 29,893 30,682.4 572.6 26,150 27,012.4 347.1
RM12 19,690 20,282.5 334.6 25,468 26,509.5 605.2 21,548 22,266.1 413.4
RM13 46,292 46,694.4 243.8 56,112 57,357.0 731.7 48,322 50,423.0 1027.9
RM14 44,993 45,225.7 285.9 57,275 58,955.2 768.1 47,984 49,781.1 999.3
RM15 37,352 37,949.8 301.9 52,166 52,892.1 575.8 41,189 42,635.5 921.6
RM16 43,152 43,633.7 277.8 59,797 60,488.4 671.8 48,845 49,851.1 697.7
RM17 38,890 39,135.1 172.0 47,304 48,435.2 619.5 40,714 41,847.2 654.6
RM18 40,335 41,227.0 377.0 50,502 51,942.8 770.7 44,690 45,254.2 408.4
RM19 37,171 38,024.0 432.4 50,024 50,930.3 524.0 43,393 44,197.3 704.1
RM20 35,477 36,044.8 405.7 48,632 49,927.9 944.3 40,511 41,757.8 699.7
RM21 36,173 36,408.0 199.3 44,323 45,503.8 714.3 38,278 39,368.9 578.8
RM22 36,315 36,869.1 263.4 46,342 48,305.9 947.0 40,609 41,513.9 545.5
RM23 36,598 36,912.5 185.9 47,079 48,190.4 878.8 40,916 42,042.5 632.9
RM24 33,225 33,736.7 195.9 44,398 45,835.1 832.1 37,848 39,833.9 1038.4
RM25 38,923 39,080.6 106.9 46,743 47,979.5 543.6 40,586 41,224.7 437.2
RM26 36,294 36,713.6 193.4 46,425 47,661.2 753.4 38,570 39,488.2 482.0
RM27 33,863 34,251.4 210.3 44,001 45,568.7 813.4 37,321 39,175.9 808.0
RM28 31,620 32,246.0 307.4 42,558 44,609.2 1189.7 35,238 36,911.3 1234.1
RM29 32,118 32,467.2 181.0 39,093 40,306.6 651.4 34,381 35,055.6 538.1
RM30 32,523 32,832.1 208.0 42,444 43,104.5 433.1 36,222 37,637.3 734.8
RM31 32,485 32,863.8 278.3 41,772 43,221.7 771.3 36,118 37,642.0 1058.4
RM32 31,072 31,746.7 385.7 42,089 43,859.5 727.0 35,249 37,208.3 905.0
Mean 36,343.8 36,792.0 262.7 46,999.9 48,309.7 770.0 39,719.9 40,894.4 698.6

Instance
VNS DABO CosSDCSO

Best Avg Std Best Avg Std Best Avg Std

RM01 43,113 44,196.2 531.2 41,615 42,590.7 764.1 42,212 42,727.4 336.0
RM02 46,437 47,802.9 1027.7 43,190 44,237.2 626.9 45,621 45,858.7 175.7
RM03 45,315 46,358.9 882.9 43,187 43,937.6 710.4 44,825 45,817.7 414.7
RM04 45,475 47,845.6 1088.4 41,314 42,685.7 1458.9 45,909 46,837.3 413.9
RM05 50,919 52,157.6 672.9 48,335 50,294.7 768.2 50,326 50,698.1 228.2
RM06 50,608 51,792.5 732.4 47,433 48,142.2 386.6 49,082 49,695.6 284.0
RM07 49,030 50,332.7 761.7 44,342 44,823.7 480.5 46,735 47,269.8 327.8
RM08 50,388 51,097.9 525.1 45,316 46,151.8 475.7 48,939 49,306.9 258.3
RM09 27,779 29,083.6 684.0 26,774 27,305.5 247.6 27,832 28,133.3 137.3
RM10 26,701 27,730.7 404.7 24,559 25,137.5 410.4 27,222 27,600.0 210.4
RM11 27,433 28,282.6 545.0 24,540 25,367.1 375.1 27,935 28,454.4 196.9
RM12 23,822 24,462.0 356.2 20,811 21,439.4 334.9 24,678 25,024.6 199.3
RM13 47,785 50,326.8 1013.2 48,322 49,288.8 804.3 48,485 48,945.3 282.8
RM14 49,125 50,029.2 592.9 45,952 47,004.3 634.2 48,552 48,667.1 105.6
RM15 44,059 45,047.7 890.2 39,943 40,391.3 305.5 42,242 42,998.9 303.5
RM16 51,414 52,258.1 561.6 44,970 45,807.1 614.3 49,031 49,693.3 388.6

Axioms 2022, 11, 561 19 of 23

Table 8. Cont.

Instance
VNS DABO CosSDCSO

Best Avg Std Best Avg Std Best Avg Std

RM17 41,499 42,629.9 714.8 39,113 39,866.2 391.7 40,082 40,677.9 267.0
RM18 44,923 45,723.5 632.8 41,460 42,150.1 402.0 43,662 44,248.4 285.1
RM19 44,436 45,539.8 436.0 39,489 40,529.1 977.5 43,564 44,078.9 276.3
RM20 42,234 43,549.8 931.2 37,696 38,273.9 436.2 40,316 40,876.5 296.3
RM21 39,260 40,371.0 741.2 38,172 38,586.9 259.9 38,818 39,299.2 292.9
RM22 41,781 43,212.3 902.8 38,089 38,927.2 702.1 39,832 41,070.4 618.1
RM23 41,437 43,120.1 876.8 37,812 38,547.4 483.8 41,427 41,794.5 222.4
RM24 40,095 40,889.6 484.0 35,237 36,062.9 446.6 39,120 39,609.9 295.2
RM25 42,369 43,235.1 662.9 40,583 41,872.9 987.3 41,639 42,007.9 222.7
RM26 40,065 41,932.3 812.9 38,363 39,250.1 402.3 40,336 40,766 272.9
RM27 40,536 41,638.8 842.9 36,164 37,154.8 600.3 39,859 40,447.8 309.3
RM28 36,859 39,121.6 1157.7 33,377 34,315.6 598.4 38,017 38,847.3 517.0
RM29 35,651 36,568.5 661.8 33,608 34,155.0 428.8 34,676 35,019.2 191.0
RM30 37,455 38,629.6 848.8 34,954 35,409.9 313.6 37,244 37,783.7 297.3
RM31 38,069 39,372.2 1020.7 33,737 34,368.0 282.8 37,462 38,119.3 330.8
RM32 37,484 38,543.6 904.1 32,681 33,386.2 574.8 36,199 36,850.2 418.0
Mean 41,361.1 42,590.1 746.9 38,160.6 38,983.2 552.7 40,683.7 41,225.8 293.0Axioms 2022, 11, x FOR PEER REVIEW 21 of 25

39,000

44,000

49,000

54,000

59,000

64,000

1 101 201 301 401

TO
E

Iteration

RM01

IEHO DABO PSO-GA GA
CosSDCSO VNS IEHORR IEHONL

37,000
42,000
47,000
52,000
57,000
62,000
67,000
72,000
77,000

1 101 201 301 401

TO
E

Iteration

RM04

IEHO DABO PSO-GA GA
CosSDCSO VNS IEHORR IEHONL

42,000
47,000
52,000
57,000
62,000
67,000
72,000
77,000

1 101 201 301 401

TO
E

Iteration

RM07

IEHO DABO PSO-GA GA
CosSDCSO VNS IEHORR IEHONL

25,000

30,000

35,000

40,000

45,000

1 101 201 301 401

TO
E

Iteration

RM09

IEHO DABO PSO-GA GA
CosSDCSO VNS IEHORR IEHONL

19,000

24,000

29,000

34,000

39,000

44,000

1 101 201 301 401

TO
E

Iteration

RM12

IEHO DABO PSO-GA GA
CosSDCSO VNS IEHORR IEHONL

42,000
47,000
52,000
57,000
62,000
67,000
72,000
77,000

1 101 201 301 401

TO
E

Iteration

RM14

IEHO DABO PSO-GA GA
CosSDCSO VNS IEHORR IEHONL

40,000

50,000

60,000

70,000

80,000

90,000

1 101 201 301 401

TO
E

Iteration

RM16

IEHO DABO PSO-GA GA
CosSDCSO VNS IEHORR IEHONL

35,000
40,000
45,000
50,000
55,000
60,000
65,000
70,000

1 101 201 301 401

TO
E

Iteration

RM20

IEHO DABO PSO-GA GA
CosSDCSO VNS IEHORR IEHONL

35,000
40,000
45,000
50,000
55,000
60,000
65,000
70,000

1 101 201 301 401

TO
E

Iteration

RM22

IEHO DABO PSO-GA
GA CosSDCSO VNS
IEHORR IEHONL

30,000
35,000
40,000
45,000
50,000
55,000
60,000
65,000

1 101 201 301 401

TO
E

Iteration

RM28

IEHO DABO PSO-GA GA
CosSDCSO VNS IEHORR IEHONL

30,000

35,000

40,000

45,000

50,000

55,000

1 101 201 301 401

TO
E

Iteration

RM29

IEHO DABO PSO-GA GA
CosSDCSO VNS IEHORR IEHONL

30,000
35,000
40,000
45,000
50,000
55,000
60,000
65,000

1 101 201 301 401

TO
E

Iteration

RM32

IEHO DABO PSO-GA GA
CosSDCSO VNS IEHORR IEHONL

Figure 8. Convergence curves of different algorithms.

5.3.4. Statistical Analysis of the Computational Results
To ensure the comparison results are statistically more convincing, this section

conducts the paired-sample t-test to test the performance of the algorithms. Before con-
ducting the statistical analysis, the values of ‘BRPD’ and ‘ARPD’ are calculated in Table

9, i.e., 100 ()Best GbestBRPD
Gbest

× −
= , 100 ()Avg GbestARPD

Gbest
× −

= . ‘Gbest’ is the best value

collected by all the compared algorithms. As seen from the data in Table 9, the proposed
IEHO is obviously superior to other algorithms. In Table 10, t-test (A,B) represents the
paired t-test between algorithm A and algorithm B. If the p-value is less than 0.05, A
performs better than B. As observed from Table 10, all the p-values are smaller than 0.05.
This indicates that the performance of our IEHO is superior to that of other algorithms,
which is consistent with the previous analyses.

Table 9. Comparison results of the values of RPDs.

Instance Gbest
IEHO IEHORR IEHONL GA

BRPD APRD BRPD APRD BRPD APRD BRPD APRD
RM01 38,929 0.00 0.63 13.16 15.11 5.54 6.85 26.72 29.62

Figure 8. Convergence curves of different algorithms.

Axioms 2022, 11, 561 20 of 23

5.3.4. Statistical Analysis of the Computational Results

To ensure the comparison results are statistically more convincing, this section con-
ducts the paired-sample t-test to test the performance of the algorithms. Before conducting
the statistical analysis, the values of ‘BRPD’ and ‘ARPD’ are calculated in Table 9, i.e.,
BRPD = 100×(Best−Gbest)

Gbest , ARPD = 100×(Avg−Gbest)
Gbest . ‘Gbest’ is the best value collected by all

the compared algorithms. As seen from the data in Table 9, the proposed IEHO is obviously
superior to other algorithms. In Table 10, t-test (A,B) represents the paired t-test between
algorithm A and algorithm B. If the p-value is less than 0.05, A performs better than B.
As observed from Table 10, all the p-values are smaller than 0.05. This indicates that the
performance of our IEHO is superior to that of other algorithms, which is consistent with
the previous analyses.

Table 9. Comparison results of the values of RPDs.

Instance Gbest
IEHO IEHORR IEHONL GA

BRPD APRD BRPD APRD BRPD APRD BRPD APRD

RM01 38,929 0.00 0.63 13.16 15.11 5.54 6.85 26.72 29.62
RM02 40,938 0.00 0.56 11.23 13.55 6.31 7.72 29.04 32.42
RM03 39,021 0.00 1.12 12.19 14.81 8.95 9.96 34.66 39.09
RM04 37,085 0.00 1.32 13.06 15.80 11.55 14.76 43.14 46.83
RM05 48,178 0.00 0.49 8.02 9.78 2.52 4.39 20.75 23.02
RM06 45,182 0.00 1.19 10.57 12.61 7.20 9.20 26.86 32.45
RM07 42,720 0.00 0.64 11.07 13.20 7.18 9.87 34.62 38.15
RM08 43,474 0.00 1.68 9.87 12.78 6.32 10.16 37.74 41.44
RM09 25,671 0.00 1.28 6.08 8.11 4.72 8.79 18.02 21.93
RM10 23,450 0.00 2.64 3.07 7.87 7.17 11.63 21.93 25.07
RM11 23,792 0.00 1.84 4.24 7.63 6.55 11.19 25.64 28.96
RM12 19,690 0.00 3.01 5.78 9.88 9.40 14.06 29.34 34.63
RM13 46,292 0.00 0.87 7.33 8.97 4.13 6.46 21.21 23.90
RM14 44,993 0.00 0.52 8.80 11.11 5.88 8.88 27.30 31.03
RM15 37,352 0.00 1.60 13.46 16.22 9.50 12.85 39.66 41.60
RM16 43,152 0.00 1.12 10.81 13.91 10.26 12.69 38.57 40.18
RM17 38,890 0.00 0.63 7.55 11.54 5.48 8.74 21.64 24.54
RM18 40,335 0.00 2.21 10.08 12.98 10.83 13.38 25.21 28.78
RM19 37,171 0.00 2.29 13.13 15.99 16.42 17.64 34.58 37.02
RM20 35,477 0.00 1.60 8.64 12.86 13.19 16.39 37.08 40.73
RM21 36,173 0.00 0.65 9.39 11.11 6.95 8.51 22.53 25.79
RM22 36,315 0.00 1.53 10.54 13.56 8.57 11.88 27.61 33.02
RM23 36,598 0.00 0.86 6.54 9.78 8.43 11.43 28.64 31.67
RM24 33,225 0.00 1.54 9.41 11.57 11.20 14.04 33.63 37.95
RM25 38,923 0.00 0.40 8.41 10.79 3.19 5.04 20.09 23.27
RM26 36,294 0.00 1.16 9.88 12.11 6.16 8.72 27.91 31.32
RM27 33,863 0.00 1.15 10.16 13.38 9.19 12.14 29.94 34.57
RM28 31,620 0.00 1.98 9.38 13.32 8.92 12.50 34.59 41.08
RM29 32,118 0.00 1.09 7.64 10.37 7.91 10.41 21.72 25.50
RM30 32,523 0.00 0.95 10.10 12.56 12.15 14.99 30.50 32.54
RM31 32,485 0.00 1.17 8.16 10.05 12.00 13.51 28.59 33.05
RM32 31,072 0.00 2.17 7.59 11.04 11.46 13.99 35.46 41.15
Mean - 0.00 1.31 9.23 12.01 8.29 11.02 29.22 33.00

Instance Gbest
PSO-GA VNS DABO CosSDCSO

BRPD APRD BRPD APRD BRPD APRD BRPD APRD

RM01 38,929 5.81 8.19 10.75 13.53 6.90 9.41 8.43 9.76
RM02 40,938 7.35 9.66 13.43 16.77 5.50 8.06 11.44 12.02
RM03 39,021 10.03 12.64 16.13 18.81 10.68 12.60 14.87 17.42
RM04 37,085 17.57 20.48 22.62 29.02 11.40 15.10 23.79 26.30

Axioms 2022, 11, 561 21 of 23

Table 9. Cont.

Instance Gbest
PSO-GA VNS DABO CosSDCSO

BRPD APRD BRPD APRD BRPD APRD BRPD APRD

RM05 48,178 2.24 4.78 5.69 8.26 0.33 4.39 4.46 5.23
RM06 45,182 6.32 10.09 12.01 14.63 4.98 6.55 8.63 9.99
RM07 42,720 9.40 12.24 14.77 17.82 3.80 4.92 9.40 10.65
RM08 43,474 10.64 12.78 15.90 17.54 4.24 6.16 12.57 13.42
RM09 25,671 7.39 8.59 8.21 13.29 4.30 6.37 8.42 9.59
RM10 23,450 6.52 9.89 13.86 18.25 4.73 7.20 16.09 17.70
RM11 23,792 9.91 13.54 15.30 18.87 3.14 6.62 17.41 19.60
RM12 19,690 9.44 13.08 20.99 24.24 5.69 8.88 25.33 27.09
RM13 46,292 4.39 8.92 3.23 8.72 4.39 6.47 4.74 5.73
RM14 44,993 6.65 10.64 9.18 11.19 2.13 4.47 7.91 8.17
RM15 37,352 10.27 14.15 17.96 20.60 6.94 8.14 13.09 15.12
RM16 43,152 13.19 15.52 19.15 21.10 4.21 6.15 13.62 15.16
RM17 38,890 4.69 7.60 6.71 9.62 0.57 2.51 3.07 4.60
RM18 40,335 10.80 12.20 11.37 13.36 2.79 4.50 8.25 9.70
RM19 37,171 16.74 18.90 19.54 22.51 6.24 9.03 17.20 18.58
RM20 35,477 14.19 17.70 19.05 22.76 6.25 7.88 13.64 15.22
RM21 36,173 5.82 8.84 8.53 11.61 5.53 6.67 7.31 8.64
RM22 36,315 11.82 14.32 15.05 18.99 4.89 7.19 9.68 13.09
RM23 36,598 11.80 14.88 13.22 17.82 3.32 5.33 13.19 14.20
RM24 33,225 13.91 19.89 20.68 23.07 6.06 8.54 17.74 19.22
RM25 38,923 4.27 5.91 8.85 11.08 4.26 7.58 6.98 7.93
RM26 36,294 6.27 8.80 10.39 15.54 5.70 8.14 11.14 12.32
RM27 33,863 10.21 15.69 19.71 22.96 6.80 9.72 17.71 19.45
RM28 31,620 11.44 16.73 16.57 23.72 5.56 8.52 20.23 22.86
RM29 32,118 7.05 9.15 11.00 13.86 4.64 6.34 7.96 9.03
RM30 32,523 11.37 15.73 15.16 18.78 7.47 8.88 14.52 16.18
RM31 32,485 11.18 15.88 17.19 21.20 3.85 5.80 15.32 17.34
RM32 31,072 13.44 19.75 20.64 24.05 5.18 7.45 16.50 18.60
Mean - 9.44 12.72 14.15 17.61 5.08 7.36 12.65 14.06

Table 10. The t-test results of paired samples.

t-Test p-Value (BRPD) p-Value (ARPD)

t-test(IEHO, IEHORR) 9.53407 × 10−20 2.82387 × 10−21

t-test(IEHO, IEHONL) 6.25182 × 10−16 4.34201 × 10−19

t-test(IEHO, GA) 2.44515 × 10−22 2.50859 × 10−23

t-test(IEHO, PSO-GA) 2.47955 × 10−15 6.91352 × 10−17

t-test(IEHO, VNS) 1.3474 × 10−16 1.10045 × 10−18

t-test(IEHO, DABO) 1.0809 × 10−13 2.06793 × 10−15

t-test(IEHO, CosSDCSO) 3.34591 × 10−14 1.5326 × 10−14

6. Conclusions and Future Work

Energy-saving scheduling has attracted more and more attention in recent years and
has become a hotspot in the manufacturing area. In this paper, an energy-saving assembly
job shop scheduling problem with transportation times is investigated in a manner that
is close to actual production. A mathematical model is established with the criteria to
minimize the total energy consumption of the workshop. An improved elephant herding
optimization algorithm, named IEHO, is developed according to the characteristics of the
problem. A number of experiments are conducted to test the performance of the IEHO
algorithm. The comparison results demonstrate that IEHO is very competitive in solving
the energy-saving assembly job shop scheduling problem with transportation times.

In this paper, only single-objective static scheduling is investigated, thereby restricting
the implementation of IEHO for multi-objective dynamic scheduling problems. In the next

Axioms 2022, 11, 561 22 of 23

work, some more practical factors will be considered, such as multi-objective optimization,
dynamic/uncertain manufacturing environments, transportation constraints, worker flexi-
bility, deterioration/learning effect, time-of-use electricity policy, and renewable resources.
Moreover, the left-shift decoding method in IEHO concentrates more on the improvement
in the solution quality, which leads to an increase in the computational time. Therefore, we
will further develop more efficient search strategies, improve the computational efficiency
of the algorithm, and implement an effective combination of EHO with other algorithms.

Author Contributions: Conceptualization, T.J. and L.L.; methodology, T.J. and L.L.; software, H.Z.
and Y.L.; writing—original draft preparation, T.J. and L.L.; writing—review and editing, T.J. and
L.L.; funding acquisition, T.J., L.L., H.Z. and Y.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the Fundamental Research Funds for the Central Univer-
sities, JLU; the Natural Science Foundation of Shandong Province (ZR2021MG008, ZR2020QG005,
ZR2020QG023); the Youth Entrepreneurship and Technology of Colleges and Universities in Shan-
dong Province (2019KJN002); the Yantai Science and Technology Planning Project (2021xdhz072), the
Major Innovation Projects in Shandong Province (2020CXGC010702, 2021CXGC010702), Yantai next
generation industrial robot and Intelligent Manufacturing Engineering Laboratory.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are included within
the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. EIA. International Energy Outlook 2016. Available online: https://www.eia.gov/outlooks/archive/ieo16/ (accessed on 11 May

2016).
2. Jiang, T.; Zhu, H.; Deng, G. Improved african buffalo optimization algorithm for the green flexible job shop scheduling problem

considering energy consumption. J. Intell. Fuzzy Syst. 2020, 38, 4573–4589. [CrossRef]
3. Dai, M.; Tang, D.; Giret, A.; Salido, M.A. Multi-objective optimization for energy-efficient flexible job shop scheduling problem

with transportation constraints. Robot. Comput. Integr. Manuf. 2019, 59, 143–157. [CrossRef]
4. Jiang, T.; Zhang, C. Application of grey wolf optimization for solving combinatorial problems: Job shop and flexible job shop

scheduling cases. IEEE Access 2018, 6, 26231–26240. [CrossRef]
5. Yin, L.; Li, X.; Gao, L.; Lu, C.; Zhang, Z. A novel mathematical model and multi-objective method for the low-carbon flexible job

shop scheduling problem. Sustain. Comput. Inform. Syst. 2017, 13, 15–30. [CrossRef]
6. Wu, X.; Sun, Y. A green scheduling algorithm for flexible job shop with energy-saving measures. J. Clean. Prod. 2018, 172,

3249–3264. [CrossRef]
7. Liu, L.; Jiang, T.; Zhu, H.; Shang, C. A New Interior Search Algorithm for Energy-Saving Flexible Job Shop Scheduling with

Overlapping Operations and Transportation Times. Axioms 2022, 11, 306. [CrossRef]
8. Jiang, T.; Deng, G. Optimizing the low-carbon flexible job shop scheduling problem considering energy consumption. IEEE Access

2018, 6, 46346–46355. [CrossRef]
9. Lei, D.; Li, M.; Wang, L. A two-phase meta-heuristic for multiobjective flexible job shop scheduling problem with total energy

consumption threshold. IEEE Trans. Cybern. 2018, 49, 1097–1109. [CrossRef]
10. Wu, X.; Shen, X.; Li, C. The flexible job-shop scheduling problem considering deterioration effect and energy consumption

simultaneously. Comput. Ind. Eng. 2019, 135, 1004–1024. [CrossRef]
11. Lu, Y.; Jiang, T. Bi-population based discrete bat algorithm for the low-carbon job shop scheduling problem. IEEE Access 2019, 7,

14513–14522. [CrossRef]
12. Rakovitis, N.; Li, D.; Zhang, N.; Li, J.; Zhang, L.; Xiao, X. Novel approach to energy-efficient flexible job-shop scheduling problems.

Energy 2022, 238, 121773. [CrossRef]
13. Zhang, L.; Tang, Q.; Wu, Z.; Wang, F. Mathematical modeling and evolutionary generation of rule sets for energy-efficient flexible

job shops. Energy 2017, 138, 210–227. [CrossRef]
14. Zhu, Z.; Zhou, X. An efficient evolutionary grey wolf optimizer for multi-objective flexible job shop scheduling problem with

hierarchical job precedence constraints. Comput. Ind. Eng. 2020, 140, 106280. [CrossRef]
15. Wong, T.C.; Chan FT, S.; Chan, L.Y. A resource-constrained assembly job shop scheduling problem with Lot Streaming technique.

Comput. Ind. Eng. 2009, 57, 983–995. [CrossRef]

https://www.eia.gov/outlooks/archive/ieo16/
http://doi.org/10.3233/JIFS-191370
http://doi.org/10.1016/j.rcim.2019.04.006
http://doi.org/10.1109/ACCESS.2018.2833552
http://doi.org/10.1016/j.suscom.2016.11.002
http://doi.org/10.1016/j.jclepro.2017.10.342
http://doi.org/10.3390/axioms11070306
http://doi.org/10.1109/ACCESS.2018.2866133
http://doi.org/10.1109/TCYB.2018.2796119
http://doi.org/10.1016/j.cie.2019.06.048
http://doi.org/10.1109/ACCESS.2019.2892826
http://doi.org/10.1016/j.energy.2021.121773
http://doi.org/10.1016/j.energy.2017.07.005
http://doi.org/10.1016/j.cie.2020.106280
http://doi.org/10.1016/j.cie.2009.04.002

Axioms 2022, 11, 561 23 of 23

16. Chan FT, S.; Wong, T.C.; Chan, L.Y. An evolutionary algorithm for assembly job shop with part sharing. Comput. Ind. Eng. 2009,
57, 641–651. [CrossRef]

17. Wong, T.C.; Ngan, S.C. A comparison of hybrid genetic algorithm and hybrid particle swarm optimization to minimize makespan
for assembly job shop. Appl. Soft Comput. 2013, 13, 1391–1399. [CrossRef]

18. Tian, Y.; Liu, D.; Yuan, D.; Wang, K. A discrete PSO for two-stage assembly scheduling problem. Int. J. Adv. Manuf. Technol. 2013,
66, 481–499. [CrossRef]

19. Liao, C.J.; Lee, C.H.; Lee, H.C. An efficient heuristic for a two-stage assembly scheduling problem with batch setup times to
minimize makespan. Comput. Ind. Eng. 2015, 88, 317–325. [CrossRef]

20. Zhang, S.; Wang, S. Flexible assembly job-shop scheduling with sequence-dependent setup times and part sharing in a dynamic
environment: Constraint programming model, mixed-integer programming model, and dispatching rules. IEEE Trans. Eng.
Manag. 2018, 65, 487–504. [CrossRef]

21. Pathumnakul, S.; Egbelu, P.J. An algorithm for minimizing weighted earliness penalty in assembly job shops. Int. J. Prod. Econ.
2006, 103, 230–245. [CrossRef]

22. Chen, J.C.; Chen, K.H.; Wu, J.J.; Chen, C.W. A study of the flexible job shop scheduling problem with parallel machines and
reentrant process. Int. J. Adv. Manuf. Technol. 2008, 39, 344–354. [CrossRef]

23. Na, H.; Park, J. Multi-level job scheduling in a flexible job shop environment. Int. J. Prod. Res. 2014, 52, 3877–3887. [CrossRef]
24. Jiang, T.H.; Wang, H.X. Study on the self-evolution problem of an aircraft-engine assembly workshop with uncertain number of

assembly times. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2015, 229, 1418–1428. [CrossRef]
25. Zou, P.; Rajora, M.; Liang, S.Y. A new algorithm based on evolutionary computation for hierarchically coupled constraint

optimization: Methodology and application to assembly job-shop scheduling. J. Sched. 2018, 21, 545–563. [CrossRef]
26. Ren, W.; Wen, J.; Yan, Y.; Hu, Y.; Guan, Y.; Li, J. Multi-objective optimisation for energy-aware flexible job-shop scheduling

problem with assembly operations. Int. J. Prod. Res. 2021, 59, 7216–7231. [CrossRef]
27. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
28. Wang, G.; Deb, S.; Gao, X.Z.; Coelho, L.D.S. A new metaheuristic optimisation algorithm motivated by elephant herding behaviour.

Int. J. Bio-Inspired Comput. 2017, 8, 394–409. [CrossRef]
29. Sowkarthika, B.; Tiwari, A.; Singh, U.P. Elephant herding optimization based vague association rule mining algorithm. Int. J.

Comput. Appl. 2017, 164, 15–23.
30. Jafari, M.; Salajegheh, E.; Salajegheh, J. An efficient hybrid of elephant herding optimization and cultural algorithm for optimal

design of trusses. Eng. Comput. 2019, 35, 781–801. [CrossRef]
31. Tuba, E.; Ribic, I.; Capor-Hrosik, R.; Tuba, M. Support vector machine optimized by elephant herding algorithm for erythemato-

squamous diseases detection. Procedia Comput. Sci. 2017, 122, 916–923. [CrossRef]
32. Pezzella, F.; Morganti, G.; Ciaschetti, G. A genetic algorithm for the flexible job-shop scheduling problem. Comput. Oper. Res.

2008, 35, 3202–3212. [CrossRef]
33. Ma, H.; Shen, S.; Yu, M.; Yang, Z.; Fei, M.; Zhou, H. Multi-population techniques in nature inspired optimization algorithms: A

comprehensive survey. Swarm Evol. Comput. 2019, 44, 365–387. [CrossRef]
34. Nseef, S.K.; Abdullah, S.; Turky, A.; Kendall, G. An adaptive multi-population artificial bee colony algorithm for dynamic

optimisation problems. Knowl. Based Syst. 2016, 104, 14–23. [CrossRef]
35. Li, W.; Wang, G.G.; Alavi, A.H. Learning-based elephant herding optimization algorithm for solving numerical optimization

problems. Knowl. Based Syst. 2020, 195, 105675. [CrossRef]
36. Jiang, T.H.; Yan, H.S. Self-evolution of knowledgeable manufacturing systems oriented to aero-engine assemble shop. Comput.

Integr. Manuf. Syst. 2015, 21, 3222–3230. (In Chinese)
37. Zhu, H.; Jiang, T.; Wang, Y. Discrete African buffalo optimization algorithm for the low-carbon flexible job shop scheduling

problem. J. Adv. Manuf. Syst. 2020, 19, 837–854. [CrossRef]

http://doi.org/10.1016/j.cie.2008.11.017
http://doi.org/10.1016/j.asoc.2012.04.007
http://doi.org/10.1007/s00170-012-4343-5
http://doi.org/10.1016/j.cie.2015.07.018
http://doi.org/10.1109/TEM.2017.2785774
http://doi.org/10.1016/j.ijpe.2005.08.002
http://doi.org/10.1007/s00170-007-1227-1
http://doi.org/10.1080/00207543.2013.848487
http://doi.org/10.1177/0954405414535593
http://doi.org/10.1007/s10951-018-0572-2
http://doi.org/10.1080/00207543.2020.1836421
http://doi.org/10.1109/4235.585893
http://doi.org/10.1504/IJBIC.2016.081335
http://doi.org/10.1007/s00366-018-0631-5
http://doi.org/10.1016/j.procs.2017.11.455
http://doi.org/10.1016/j.cor.2007.02.014
http://doi.org/10.1016/j.swevo.2018.04.011
http://doi.org/10.1016/j.knosys.2016.04.005
http://doi.org/10.1016/j.knosys.2020.105675
http://doi.org/10.1142/S0219686720500390

	Introduction
	Problem Description and Mathematical Model
	Problem Description
	Mathematical Model

	Overview of the Basic EHO Algorithm
	Clan Updating Operator
	Separating Operator
	Elitism Strategy
	Steps of the Basic EHO

	Implementation of the IEHO
	Encoding Approach
	Energy-Saving Decoding Approach
	Population Initialization and Splitting
	Clan Updating Operator
	Separating Operator
	Steps of the IEHO
	Time Complexity

	Numerical Experiments
	Test Instance
	Parameter Setting
	Comparison Results of Different Algorithms
	Effectiveness of the Proposed Population Initialization Approach
	Effectiveness of the Energy-Saving Decoding Approach
	Comparison with Other Algorithms
	Statistical Analysis of the Computational Results

	Conclusions and Future Work
	References

