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Abstract: Exploring the proofs and refutations of an abstract statement, conjecture with the aim to give
a formal syntactic treatment of its proving–refuting process, we introduce the notion of extrapolation
of a possibly unprovable statement having the form if A, then B, and propose a procedure that should
result in the new statement if A′, then B′, which is similar to the starting one, but provable. We think
that this procedure, based on the extrapolation method, can be considered a basic methodological
tool applicable to prove–refute–improve any conjecture. This new notion, extrapolation, presents a
dual counterpart of the well-known interpolation introduced in traditional logic sixty-five years ago.
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1. Introduction

Lakatos’ monumental play ’Proofs and Refutations’ (see [1]) can be considered a
demonstration of applying the proof–refutation (or conjecture–refutation) method as a
practical realization of the falsificationism concept advocated and supported at that time,
among other authors, by [2]. At the same time, the concept of proving–refuting–improving,
demonstrated in the same play, can be used as an effective interactive class model.

Refutation, as an isolated process, plays an extremely important role in the develop-
ment of a pupil’s critical thinking and has a crucial place in each study program syllabus.
We deem that examples of finding and treating incorrectness in some reasoning and argu-
mentation are at least of equal didactic importance as those with correct derivations and
proofs. Such examples present and help incite critical thinking.

First, let us explain in brief what we mean under the term ’extrapolation’. As we know,
interpolation deals with finding statements C and D, which are in between A and B, when
A ` B; i.e., ’A implies B’, is provable, meaning that all three sequents A ` C, C ` D and
D ` B are provable. In this case, the sequent C ` D presents an interpolant for A ` B. On
the other side, if A ` B is refutable, i.e., A 6` B, then we are looking for two statements C
and D, such that C ` A, B ` D and C ` D are all provable; in this case, the sequent C ` D
will be an extrapolant for A 6` B.

In this paper, we extend the proving–refuting method by its immediate result—
improving—and place it in a wider logical context relating it with the well-known concept
of interpolation, with a new concept, extrapolation, as its dual. Both these notions, extrapo-
lation and interpolation, are closely connected with many aspects of abductive reasoning [3].
The improving process, based deeply on the extrapolation method, is presented through
several examples. Let me repeat here that once, a long time ago, my teacher Aleksan-
dar Kron told me: ‘Oh, how many times I fell asleep with a proof, and woke up with a
counterexample’. This was the essence of the proving–refuting–improving process, during
the daily journey of any scientist from a conjecture to the truth (see [4]). This process,
consisting of proving and refuting attempts producing an improvement of the starting
conjecture, is presented formally as an methodological procedure for discovering better
statements. In fact, this can be considered a kind of Hegelian–Marxist dialectic scheme:
thesis–antithesis–synthesis. However, the crucial cognition is that the essential step of this
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procedure is based on extrapolation, which is a dual to the well-known logical feature
of reasoning—the interpolation property. We introduce the notion of extrapolation as a
counterpart of interpolation. We do this in general form, independently of the basic logic.
Namely, our definition depends neither on language—we do not use connectives—nor on
logic—we suppose that our deduction relation is not necessarily linked to classical logic.
Pure propositional logics open the problem of existence of a minimal extrapolant, which
seems particularly interesting in case of infinitely valued systems.

2. Interpolation and Extrapolation—A General Idea

A typical form of a scientific statement is that ’B follows from A’, denoted by A ` B,
expressing a causal relationship between A and B. Refutation of such a statement consists
of argumentation presenting at least one example (interpretation) where A is satisfied, but
B is not.

The turnstyle symbol will be used in an informal way, not connected to any particular
logical system, but assuming its rudimentary structural properties such as identity (A ` A),
weakening (A ` B implies A, C ` B), permutation (A, B ` C implies B, A ` C), contraction
(A, A ` B implies A ` B) and transitivity (A ` B and B ` C imply A ` C).

Establishing a statement A ` B as a conjecture means that we believe that A ` B holds,
but also that this is partly under question; does A ` B? In order to obtain a final conclusion
regarding the truthfulness of our conjecture, we try to prove and to refute it. This process
implies finding examples supporting A ` B and counterexamples refuting A ` B, as well
as looking for similar statements A′ ` B′ that are, by their nature, weaker than A ` B in
cases when A ` B is refutable, and stronger than A ` B in cases when A ` B is provable.

Let us consider the two apparently simplest cases of causal connection: (i) A ` B is not
proven and (ii) A ` B is proven, where A and B are two arbitrary sentences. In the second
case (ii), we can assert that there are two propositions C and D such that the following
statements are provable: A ` C, C ` D and D ` B. If C and D are logically equivalent, then
we recognize here a form of the well-known Craig interpolation theorem (see [5]), pointing
out that the form presented here can be considered as its slight generalization. In a similar
way, we will deal with the first case (i) and suppose that there are two propositions C and
D such that the following statements are provable: C ` A, B ` D and C ` D, obtaining a
form that is somehow dual to interpolation (ii) and which could be treated as a kind of
extrapolation.

We point out that the term ’duality’ is used here in a quite different meaning than in
classical two-valued logic. For each statement of the form A ` B, provable or unprovable,
we consider a provable statement C ` D. If A ` C and D ` B are provable, then C ` D
is called an interpolant, while when C ` A and B ` D are provable, then C ` D is called
an extrapolant. Consequently, C and D as parts of an interpolant are in consequent of A
and antecedent of B, respectively, but as parts of an extrapolant, they have ’dually’ just the
opposite roles; C is in antecedent of A and D is in consequent of B.

More accurately, if we suppose that A ` B is any statement, provable or not, then (i)
C ` D is its extrapolant if all statements C ` A, B ` D and C ` D are provable; (ii) C ` D is
its interpolant if all statements A ` C, D ` B and C ` D are provable. We omit here more
formal details such as variable sharing and the context of a particular logical system for the
deduction relation.

Note that in the case that an interpolant exists, the original statement A ` B is provable.
However, in the case that an extrapolant exists, we can conclude nothing regarding the
provability of A ` B. The most interesting cases in the sequel of this paper will be exactly
those (i) when A 6` B, i.e., A ` B is unprovable. The challenges before us here are how to
find some ’good’ extrapolants for A 6` B and (ii) when A ` B is provable, how to find its
’good’ interpolants. This is because in both these cases, the statement C ` D should present
an improvement of A ` B, which will be explained below.

The term ’interpolation’ is justified by the simple fact that we insert a new statement
C ` D in between A and B, with an obvious possibility to infer A ` B from A ` C,
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C ` D and D ` B. Similarly, the extrapolation process involves looking for a statement C
’before’ A, because C ` A, and a statement D ’after’ B, because B ` D. Both requirements,
interpolation and extrapolation, have some trivial solutions. If A ` B is proven, then both
forms A ` A and B ` B present possible interpolants. Furthermore, for any A ` B, all
statements ⊥ ` >, ⊥ ` A and B ` > present its extrapolants, where we use the symbols
> and ⊥, respectively, to denote truth and absurdity constants. Later, after sharpening
both notions, extrapolation and interpolation, following the spirit of Craig’s interpolation
theorem and practical applications of extrapolation, we will see that trivial solutions have
no importance (as usual).

Example 1 (Lakatos’ Proofs and Refutations). In his famous work, by giving a picturesque
presentation of the proving–refuting process, Lakatos (see [1]) begins with an incorrect and refutable
formulation of Euler’s Polyhedral Theorem. The dialog between a teacher and his pupils starts
with the teacher’s provocation: “In our last lesson we arrived at a conjecture concerning polyhedra,
namely, that for all polyhedra V − E + F = 2, where V is the number of vertices, E the number
of edges and F the number of faces. We tested it by various methods. But we have not yet proven
it. Has anybody found a proof?” After that, through a few iterations, the teacher, together with
his pupils, by using a proving–refuting–improving method, obtains and proves the correct form of
Euler’s Polyhedral Theorem: for all convex polyhedra, V − E + F = 2.

Example 2 (Elementary Geometry). Let RTr(a, b, c) denote any right triangle with sides a, b, c,
where c is its hypothenuse, and Tr(a, b, c) denotes any triangle with sides a, b, c. Some of the known
elementary geometric facts can be formulated by means of a deduction relation as follows:

Triangle Inequality: Tr(a, b, c) ` a + b > c.
Pythagorean Theorem: RTr(a, b, c) ` a2 + b2 = c2 and a2 + b2 = c2 ` RTr(a, b, c).

We also have two obvious facts: RTr(a, b, c) ` Tr(a, b, c); i.e., each right triangle is a triangle
and, in elementary algebra, a2 + b2 = c2 ` a + b > c for any positive reals a, b, c (see [6]). In
order to illustrate the extrapolation phenomenon in this context, we consider the following negative
statement:

Tr(a, b, c) 6` a2 + b2 = c2

By the extrapolation approach, bearing in mind that RTr(a, b, c) ` Tr(a, b, c) and a2 + b2 = c2 `
a + b > c, we can infer the following statements: RTr(a, b, c) ` a2 + b2 = c2, Tr(a, b, c) `
a + b > c and RTr(a, b, c) ` a + b > c, as possible extrapolants. Deeming the proving–refuting–
improving process one of the most important methods of knowledge growth, the author of this
text, with a group of his brilliant students (Aleksanra Djoković, Bojana Tujković, Ivana Čekrdžić,
Aleksandar Elezović, Doroteja Djordjević and Milan Perić), during the spring semester 2014, set
up a musical performance under the title ’Proofs and refutations: devoted to the glorious triangle’,
at the Faculty of Economics, University of Belgrade. That performance was deeply inspired by [1]
but, for the sake of better understanding the basic message, instead of Euler’s Polyhedral Theorem,
considered in the original Lakatos’ play, we dealt with proofs and refutations of the Pythagorean
Theorem.

Example 3 (Propositional Calculus). Here, we present some more subtle examples of interpolants
and extrapolants. Let ∧ and ∨ denote the conjunction and disjunction connectives, respectively. (i)
The form p ∨ q ` p ∧ q is unprovable, i.e., p ∨ q 6` p ∧ q, and it can be improved by the following
forms: p ` p, q ` q, p ` p ∨ q, q ` p ∨ q and p ∧ q ` p ∨ q; this is not a complete list of its
extrapolants. (ii) The form p ∧ q ` p ∨ q is provable and it can be improved by the following
interpolants: p ∧ q ` p, p ` p ∨ q, p ` p and q ` q; this is not a complete list of its interpolants.
Let us note that the examples of extrapolants and interpolants considered here are compatible not
only with classical, but also with many non-classical propositional logics.

Example 4 (Set-Theoretic Interpretation). Due to the immediate link between the set-theoretic
inclusion relation and the classical implication connective, the interpolation and extrapolation have
a rough illustrative and a quite simple set-theoretic interpretation. Namely, if for two sets A and B
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we have A ⊆ B, then the sets C and D, such that A ⊆ C ⊆ D ⊆ B, can be considered as the basic
constituents of an interpolant C ⊆ D for A ⊆ B. On the other side, if A 6⊆ B, then the sets C and
D, such that C ⊆ A, B ⊆ D and C ⊆ D, define an extrapolant C ⊆ D for A 6⊆ B.

Example 5 (Impossibility Tradition). In spite of their great methodological and logical importance
(see [7,8]), impossibility theorems raise a natural question: how they can be transformed into the
corresponding relevant possibility results? Each such transformation is based on some proving–
refuting–improving process that starts with the improving, i.e., with an extrapolation step. Let us
discuss two simple cases of impossibility theorems.

Incommensurability of the diagonal and the side of a square: if a is the side of a square and d is
its diagonal, then a = 1 ` d /∈ N, i.e., a = 1 6` d ∈ N, where N is the set of natural numbers. By
replacing (weakening) d ∈ N with d ∈ Q, bearing in mind that d ∈ N ` d ∈ Q where Q is the
set of rational numbers, we also obtain by extrapolation an invalid statement a = 1 ` d ∈ Q. The
next iteration is finding an appropriate extrapolant for the statement a = 1 6` d ∈ Q. Obviously,
by replacing d ∈ Q with d ∈ R, bearing in mind that d ∈ Q ` d ∈ R where R is the set of reals,
we obtain a valid positive statement a = 1 ` d ∈ R, i.e., a possibility result.

Unsolvability of the equation x2 + a = 0, a ∈ R, in the field of reals: a ∈ R ∧ x2 + a = 0 6`
x ∈ R leads to two simple positive possibilities. By antecedent weakening, from a ≤ 0 ` a ∈ R, we
obtain a ≤ 0 ∧ x2 + a = 0 ` x ∈ R, or, by consequent weakening, from x ∈ R ` x ∈ C where
C is the set of complex numbers, we have a ∈ R ∧ x2 + a = 0 ` x ∈ C, i.e., solvability of that
equation in the field of complex numbers.

In a similar way, but with more complex argumentation and context, Arrow’s Impossibility
Theorem (see [7–9]), the most popular and important result in Social Choice Theory during the last
century, has generated a number of possibility results. Variations of the corresponding possibility
theorems (see [10]), obtained by weakening the antecedent or consequent of Arrow’s original theorem,
can be considered as effective examples of applying the proving–refuting–improving process as well.

Here, we will explain why we do believe that both interpolants and extrapolants
present improvements of our initial statement A ` B. (i) If A ` B is not provable, then its
extrapolant C ` D, which is provable, obtained from an unprovable statement, presents
its improvement, bearing in mind that from the initial statement A ` B of low quality
(unprovable), we obtain its extrapolant C ` D, a statement of higher quality (provable). (ii)
If A ` B is provable, then its interpolant C ` D, which is provable together with A ` C and
C ` B, can be used as a sufficient condition to infer the initial statement A ` B, and from
this point of view it can be considered as its essence—its improvement—enabling us to
prove and better understand the meaning of the initial statement A ` B.

3. Extrapolation—More Formally

Let us discuss a more subtle aspect of extrapolation including some views of relevance
logic. A deduction of B from hypothesis A is acceptable relevance logic if this deduction
employs every element of A. Another syntactic relevance principle, known as variable
sharing condition, is that if A entails B, then AtA ∩AtB 6= ∅, where AtA denotes the set of
all atomic formulae, i.e., propositional letters, occurring in A (see [11]). Variable sharing is
not sufficient, but it is a necessary condition for relevance.

Now, we can formulate more ambitious expectations, including some kind of variable
sharing principle.

Interpolation property: If AtA ∩AtB 6= ∅ and A ` B, then there exist C and D such
that AtC ∪AtD ⊆ AtA ∩AtB, A ` C, D ` B and C ` D.

Extrapolation property: If AtA ∩AtB 6= ∅ and A 6` B, then there exist C and D such
that AtC ∪AtD ⊆ AtA ∩AtB, C ` A, B ` D and C ` D.

The interpolation property is defined in accordance with Craig’s well-known approach
(see [5]). The extrapolation property tends to find relevant, non-trivial and, in some sense,
minimal statements C and D establishing an extrapolant.
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Let us note here that Craig’s original definition deals with only one formula C, such
that A ` C and C ` B, as an interpolant for A ` B. In this spirit, it would be possible to
redefine our notion of extrapolant C for A 6` B so that C ` A and B ` C. It is not difficult to
see that this approach with one formula playing the role of interpolant (or extrapolant) is
logically equivalent to our definition employing two formulae in both cases.

The logical, methodological, philosophical and, even algebraic aspects of interpolation
have been analyzed, discussed and explained in detail as a necessary part of most textbooks
in logic (see [12,13]). Here, we will attempt to elucidate the logical sense of extrapolation.
Bearing in mind the following derivation:

C ` A
A ` B

C, A ` B, D
weakening × 2

B ` D
C, C ` D, D

C ` D
contraction × 2

cut × 2

the extrapolation can be considered to be a weakening of the antecedent and the consequent
of A ` B, respectively, by special statements C and D, such that C ` A and B ` D (Instead
of {A, B} ` {C, D}, we will write simply A, B ` C, D, which, according to the traditional
classical logic proof-theoretic interpretation, can be understood as A ∧ B ` C ∨ D). The
procedure will be satisfiable when, from an unprovable statement, we obtain a provable one,
i.e., when, in fact, from A 6` B, we obtain C ` D, where C and D are in the corresponding
causal connections with A and B, respectively. In practice, when we search for an adequate
statement, instead of reasoning starting with the explicit application of weakening rules, as
above, the pure derivation with the cut rules

C ` A A ` B B ` D
C ` D

cut × 2

hides the presence of weakening. On the other side, we have to emphasize that it would
be wrong to understand the extrapolation just as a simple weakening, because it is a very
restricted and specific weakening in order to find the relevant extrapolant.

Extrapolation is formally, in the context of classical logic, equivalent to the left and the
right side weakening rules, bearing in mind the following derivations

C, A ` A A ` B
C, A ` B

and
A ` B B ` B, D

A ` B, D

Nevertheless, the extrapolation, as defined, seems more restrictive and suggests some
kind of ’relevant’ weakening. Namely, the above two derivations are classically, and even
intuitionistically, admissible, but not from the point of view of relevance logic. This is the
reason why the extrapolation can be essentially considered as a process partly supported
by relevant logic principles, bearing in mind that variable sharing conditions for C with A
and B with D are satisfied, but not necessary for C with D.

In case of an unprovable statement A ` B, when we look for some of its improvements
C ` D, in order to avoid trivial solutions and to find the best one, if possible, we define the
notion of minimal sentences:

Minimal extrapolants: Suppose A ` B is not proven and C ` D is its extrapolant. C
will be called a minimal sentence for A, B and D, in this order, if for each C′, such that C ` C′

is provable and C′ ` C is unprovable, one of the statements C′ ` A or C′ ` D is unprovable.
In a dual way, D will be called a minimal sentence for A, B and C, in this order, if for each D′,
such that D ` D′ is unprovable and D′ ` D is provable, one of the statements B ` D′ or
C ` D′ is unprovable. In cases when both hold, C is a minimal sentence for A, B and D,
and D is a minimal sentence for A, B and C; then, the statement C ` D is called a minimal
extrapolant for A ` B.

The central question now is the following one: does a minimal extrapolant exist (and
when)? It depends on the logical context, clearly. For instance, in m-valued propositional
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logics, due to the existence of finitely many nonequivalent formulae over any finite set
of atomic formulae (propositional letters), we always have the possibility to choose the
minimal sentences. The next question is: does the minimal nontrivial extrapolant exist (and
when)? Moreover, how could a nontrivial statement be characterized?

Example 6. Obviously, for any two sentences A and B, such that A 6` B and p ∈ AtA ∩AtB, the
statement p ∧ ¬p ` p→ p presents an extrapolant. This is a trivial example.

Example 7. Let us consider again some extrapolants p ∧ q ` p ∨ q, p ` p ∨ q, p ∧ q ` p and
p ` p of the statement p ∨ q ` p ∧ q. In the case of extrapolant p ∧ q ` p ∨ q, the statement p ∧ q
is not minimal for p ∨ q, p ∧ q and p ∨ q because there is a statement, p such that p ∧ q ` p, and
both p ` p ∨ q and p ∧ q ` p are provable. On the other hand, the statement p is a minimal one for
p∨ q, p∧ q and p∨ q, and this is a way to find a new and ’better’ extrapolant p ` p∨ q. In the case
of this extrapolant p ` p ∨ q, although p is a minimal for p ∨ q, p ∧ q and p ∨ q, the proposition
p ∨ q is not minimal for p ∨ q, p ∧ q and p because, for the statement p, we have that p ` p ∨ q
and both p ` p ∨ q and p ` p are provable, while p is a minimal statement for p ∨ q, p ∧ q and p.
Let us note also that the examples considered here have a general character and are compatible with
both classical and intuitionistic propositional logics.

Example 8. In set-theoretic interpretation, when A 6⊆ B, the parts of minimal extrapolants will
be the sets in between C = A ∩ B and D = A ∪ B with respect to the inclusion relation. In
general, C = A ∩ B ⊆ B = D will be a minimal extrapolant for C = A ∩ B(⊆ A), A( 6⊆ B)
and B ⊆ D = B, and C = A(⊆ D = A ∪ B) will be a minimal extrapolant for A = C(⊆ A),
A( 6⊆ B) and B(⊆ D = A ∪ B).

4. More Examples

The importance of propositional language is founded, inter alia, on its simplicity.
Propositional context is usually suitable for explaining and understanding the differences
between various philosophical concepts for the foundations of mathematics. For instance,
the spirit of essential variations between Platonism, intuitionism and relevance is already
visible on the level of classical, intuitionistic and relevant propositional logics. On the
other side, the founding of any serious mathematical theory needs much more than a
propositional language. Here, we will try to present the idea of extrapolation in the context
of the first-order predicate language.

The general symbolic form of an Impossibility Theorem stating that ’there does not
exist an object x such that A implies B’, is

¬∃x(A→ B)

The first-order sentence ¬∃x(A(x) → B(x)) can be presented in a classically equiv-
alent way as ¬(∀xA(x) → ∃xB(x)), or a bit more informally as “∀xA(x) does not imply
∃xB(x)”, i.e., ∀xA(x) 6` ∃xB(x). Here, we want to describe an application of extrapolation
method on

∀xA(x) 6` ∃xB(x)

Namely, we are looking for sentences C and D such that C ` ∀xA(x), ∃xB(x) ` D
and C ` D, where the last statement presents an extrapolant and, simultaneously, a
transformation of an ’impossibility’ result into a ’possibility’ one.

On the level of general first-order languages examples, we analyze an ’impossibility case’.

Example 9. Let us consider the following statement: ∀x(A ∨ B) 6` ∃x(A ∧ B), having exactly the
form of an impossibility theorem. If we try to weaken the antecedent ∀x(A ∨ B) by (1) ∀xA ∨ ∀xB
or by (2) ∀xA, and the consequent ∃x(A ∧ B) by (3) ∃xA ∧ ∃xB or by (4) ∃xA, we do not obtain
extrapolants by combining (1) with (3), (1) with (4) or (2) with (3); only the combination (2) with
(4) gives an extrapolant, because ∀xA ` ∀x(A ∨ B), ∃x(A ∧ B) ` ∃xA, and ∀xA ` ∃xA.
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We also consider some relationships between binary relations properties.

Example 10. The logic of preferences is usually based on axioms concerning some properties
of a binary relation P, called a preference relation. For instance, the list of axioms contains
irreflexivity (Ir), ∀x¬P(y, x), asymmetry (As), ∀x∀y(P(x, y) → ¬P(y, x)), transitivity (Tr),
∀x∀y∀z(P(x, y) ∧ P(y, z) → P(x, z)) and connectivity (Cn), ∀x∀y∀z(P(x, y) → P(x, z) ∨
P(z, y)). It is an easy exercise to show that Cn 6` Tr, but, bearing in mind that As ∧ Cn ` Cn,
As ∧ Cn ` Tr and Tr ` Tr, we conclude that As ∧ Cn ` Tr presents an extrapolant and an
improvement of the initial statement. In a similar way, we can find that the same statement,
As∧Cn ` Tr is an extrapolant for both Ir∧Cn 6` Tr and As∧ Tr 6` Cn.

5. A Proving–Refuting–Improving Procedure

Each theorem, or more generally, each scientific statement, can be expressed in the
following form: if Γ, then ∆. Γ presents a set of hypotheses (given context or a theory) and
∆ is a consequence (conclusion). This is the reason why the basic form we use in this part
of the paper is Γ ` ∆, an informal deduction relation (entailment) ` between two finite
sets of sentences Γ (antecedent) and ∆ (consequent), with the intended meaning that it
is possible to infer a conclusion ∆, interpreted as a disjunction of all elements of ∆, from
the hypotheses set Γ, interpreted as a conjunction of all elements of Γ. The Greek capitals
Γ, ∆, . . . , with or without subscripts or superscripts, will be used as metavariables over
finite sets of sentences denoted by Latin capitals A, B, C, D, . . . We also use Γ |= ∆ with the
usual model theoretic, meaning that if all elements of Γ are true, then at least one element
of ∆ is true. This will be the context enabling us to express that Γ ` ∆, or A ` B, is provable
or unprovable, and that Γ |= ∆, or A |= B, is refutable or irrefutable.

The idea of a proving–refuting–improving procedure has been hinted at by [4]. Here,
we will develop it further. In both cases when Γ ` ∆ is provable or unprovable, i.e., when
Γ |= ∆ is valid or refutable, we define the following four sets: Γ-antecedent, Γ-consequent, ∆-
antecedent and ∆-consequent, respectively, as Γant = {Aa

1, . . . , Aa
m}, Γcon = {Ac

1, . . . , Ac
m},

∆ant = {Ba
1, . . . , Ba

n} and ∆con = {Bc
1, . . . , Bc

n}, corresponding to the sets Γ = {A1, . . . , Am}
and ∆ = {B1, . . . , Bn}, such that, for each i (1 ≤ i ≤ m), Aa

i ` Ai and Ai ` Ac
i are provable,

and for each j (1 ≤ j ≤ n), Ba
j ` Bj and Bj ` Bc

j are provable.
The main problem here is to define concrete content of sets Γant, Γcon, ∆ant and ∆con

in this general case, because the condition that Aa
i ` Ai is provable has infinitely many

solutions for Aa
i . On the other hand, each particular problem in some specific part of

mathematics gives the researcher a freedom to use his intuition during the process of
’looking for a better theorem’.

The two elementary steps in our proving–refuting–improving procedure as follows:
Step (i): if Γ ` ∆ is not proven or Γ |= ∆ is refuted, we are looking for some Aa

i ∈ Γant
or some Bc

j ∈ ∆con for which the provability of Γ′ ` ∆′ can be reconsidered, where Γ′ ∪ ∆′

is obtained from Γ ∪ ∆ by substituting at least one occurrence of Ai by Aa
i in Γ or at least

one occurrence of Bj by Bc
j in ∆;

Step (ii): if Γ ` ∆ is proven, or Γ |= ∆ is not refuted, we are looking for some Ac
i ∈ Γcon

or Ba
j ∈ ∆ant for which the provability of Γ′ ` ∆′ can be reconsidered, where Γ′ ∪ ∆′ is

obtained from Γ ∪ ∆ by substituting at least one occurrence of Ai by Ac
i in Γ or at least one

occurrence of Bj by Ba
j in ∆.

In both cases (i) and (ii), the result will be a statement Γ′ ` ∆′. If Γ′ ` ∆′ is provable,
then the procedure can be stopped and Γ′ ` ∆′ will present a generalized extrapolant or
interpolant for Γ ` ∆ in cases (i) and (ii), respectively. Otherwise, if we cannot decide if
Γ′ ` ∆′ is provable or if Γ′ ` ∆′ is refutable, then we proceed with step (i) on Γ′ ` ∆′.

Finally, in the sequel, we apply the same procedure on Γ′ ` ∆′; i.e., firstly, we try
to prove Γ′ ` ∆′ or to falsify Γ′ |= ∆′. If Γ′ ` ∆′ is not proven or Γ′ |= ∆′ is falsifiable,
then we apply the procedure (i) on Γ′ ` ∆′ in order to obtain a new statement Γ′′ ` ∆′′. If
Γ′ ` ∆′ is provable or Γ′ |= ∆′ is not refuted, then we apply the procedure (ii) on Γ′ ` ∆′
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in order to obtain a new statement Γ′′ ` ∆′′. This process is called the proving–refuting–
improving procedure.

Let us point out that a similar form of a generalized interpolant appears in S. Maehara’s
approach to interpolation in the context of sequent calculi (see [13]).

Note that the sentence ’Γ ` ∆ is not proven’ does not exclude the case that Γ ` ∆ can
be provable, and sentence ’Γ |= ∆ is not refuted’ does not exclude the case that Γ |= ∆ can
be refutable. Namely, if some fact is not proven, maybe, in the future, it could be proven,
and if some fact has not been refuted up to now, it could be refuted later.

The above procedure, part (i), proving–refuting–improving, was based on methodological
ideas promoted by Popper–Lakatos’ proof–refutation (also known as conjecture–refutation)
falsificationism (see [1,2]). Furthermore, the transformation of Γ ` ∆ into Γ′ ` ∆′, generally,
can be considered a kind of Hegelian–Marxist dialectic scheme: thesis–antithesis–synthesis,
which is obviously parallel with our scheme consisting of (i) and (ii), defining the process
of proving–refuting–improving.

The statement Γ′ ` ∆′ presents an improvement of Γ ` ∆ in case (i), in a sense that from
an unprovable statement Γ ` ∆, we obtain a statement Γ′ ` ∆′, which may be provable;
but if Γ ` ∆ is provable, then Γ′ ` ∆′ is provable as well. On the other hand, the statement
Γ′ ` ∆′ presents an improvement of Γ ` ∆ in case (ii), in the sense that from a provable
statement Γ ` ∆, we obtain a provable statement Γ′ ` ∆′ from which Γ ` ∆ can be derived;
i.e., Γ′ ` ∆′ is more general than Γ ` ∆. These are the reasons to treat Γ′ ` ∆′ as an
improvement of Γ ` ∆ in both cases. This also means that any possible application of our
procedure to a provable statement cannot produce an unprovable statement.

If reconsideration of Γ ` ∆ provides a statement Γ′ ` ∆′, consisting of some new
elements of Γant ∪ Γcon ∪ ∆ant ∪ ∆con, then, obviously, Γ′ ` ∆′ presents an improvement of
Γ ` ∆. More accurately, we can justify our procedure by some kind of soundness statement:

Theorem 1.

(i) If the statement Γ′ ` ∆′ is obtained from Γ ` ∆ by applying step (i), then Γ′ ` ∆′ can be
inferred from Γ ` ∆;

(ii) If the statement Γ′ ` ∆′ is obtained from Γ ` ∆ by applying step (ii), then Γ ` ∆ can be
inferred from Γ′ ` ∆′.

Proof. By induction on n + m—the number of statements belonging to Γ ∪ ∆: in case (i),
from both, Γ ` ∆ and Aa

i ` Ai, and Γ ` ∆ and Bj ` Bc
j , by the hypothetical syllogism rule,

we can infer Γ′ ` ∆′. In case (ii), from both pairs, Γ′ ` ∆′ and Ai ` Ac
i , and from Γ′ ` ∆′

and Ba
j ` Bj, by the hypothetical syllogism rule, we can infer Γ ` ∆.

Let us note that in the particular case when Aa
i is true or when Bc

j is a false statement,
applying step (i) of our procedure produces the effects of enthymematic reasoning (see [14]).

A rare and unexpected case, which is not covered by (i) and (ii), is when the statement
Γ ` ∆ is undecidable, i.e., the case when it is possible to show that Γ ` ∆ is neither provable
nor refutable. Such examples are connected with highly formalized concepts and will not
be our focus.

This procedure can be considered a sequence of consecutive attempts to falsify a
statement and then to save it as a supplementary conjecture or to give it a new semantic
interpretation. In this way, a progressive improvement of the initial claim is enabled.

In order to visualize the transformation process of Γ ` ∆ into Γ′ ` ∆′ with the help of
Γant, Γcon, ∆ant and ∆con, we give a 2D-presentation of relationships between elements of Γ
and ∆, with or without subscripts or superscripts:
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Aa
1 Aa

m Ba
1 Ba

n
> > > >

A1, . . . , Am ? ` B1, . . . , Bm
> > > >
Ac

1 Ac
m Bc

1 Bc
n

where, for instance, the first column
Aa

1
>
A1
>
Ac

1

of this 2D-presentation means that both Aa
1 ` A1 and A1 ` Ac

1 are provable. Consequently,
by some replacements of Ai with Aa

i or with Ac
i , (1 ≤ i ≤ m), and some replacements of

Bj with Ba
j or with Bc

j , (1 ≤ j ≤ n), we obtain this new form Γ′ ` ∆′. The symbol ’? `’,
appearing above, stands for ’ 6`’ or ’`’.

6. Concluding Remarks

An unproven statement of hypothetical character, a conjecture, is usually treated
in one of the following two ways: we try to prove it, or we try to refute it. Then, for a
proven statement, we try to find its interpolants, in order to simplify its proof and to better
understand the nature of its proof, but for a refuted, i.e., unprovable, statement, we look
for its extrapolants, trying to find a similar and relevant but provable statement.

Briefly, if we start with a statement of the form A ` B, then we have, syntactically,
two possibilities to obtain from A ` B a better statement: if A ` B is unproven, we will
look for its extrapolant presenting a provable statement relevant for A ` B, but if A ` B is
proven, then we will find its interpolant relevant for A ` B, better explaining the nature of
A ` B. Namely, the basic principle respected in the process of transforming A ` B into a
’better statement’ A′ ` B′ is that all side statements occurring in derivations, such as C ` A
and B ` D, are provable, except the principal statement A ` B, which can be, but does not
have to be, provable, and that each step in the considered derivation is made strictly in
accordance with the sound logical inference rules.

In working versions of this paper, we used the term ’algorithm’ for the proving–
refuting–improving process, but later we accepted the term ’procedure’ as the appropriate
one. Namely, it is not clear if the step transforming Γ 6` ∆ into Γ′ ` ∆′ is well defined, in
the sense that we do not know if the problem of provability of both Γ ` ∆ and Γ′ ` ∆′

is decidable.
Finally, let us note that while the phenomenon of interpolation is usually treated

as a property of an axiomatic theory or a logical system, because even some natural
propositional logics do not possess it (see [15]), extrapolation, although observed as a dual
to interpolation, presents essentially a method of transforming an unprovable statement
A ` B into a ’similar’, but provable one: A′ ` B′.

We also point out that if there is a grain of suspicion that a counterexample to our
conjecture exists, it will be of great didactic importance in developing and stirring the
critical reasoning of students and researchers. This has to find a central place in all study
programs as a basic goal of education, together with stimulating creative thinking.
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