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Abstract: Some systems of univariate orthogonal polynomials can be mapped into other families
by the Fourier transform. The most-studied example is related to the Hermite functions, which are
eigenfunctions of the Fourier transform. For the multivariate case, by using the Fourier transform
and Parseval’s identity, very recently, some examples of orthogonal systems of this type have been
introduced and orthogonality relations have been discussed. In the present paper, this method
is applied for multivariate orthogonal polynomials on the unit ball. The Fourier transform of
these orthogonal polynomials on the unit ball is obtained. By Parseval’s identity, a new family of
multivariate orthogonal functions is introduced. The results are expressed in terms of the continuous
Hahn polynomials.
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1. Introduction

From a historical point of view, mathematical transforms started with some works of
L. Euler within the context of second-order differential equation problems [1]. Since then,
due to their interesting mathematical properties, as well as their applications, integral trans-
forms have attracted research interests in many areas of engineering, mathematics, physics,
as well as several other scientific branches. Just to give an idea, without the intention of
completeness, integral transforms such as the Fourier, Laplace, Beta, Hankel, Mellin, and
Whittaker transforms with various special functions as kernels play an important role in
various problems of physics [2,3], mathematics [4–13], and in vibration analysis [14], sound
engineering [15,16], communication [17], data processing [18], automatization [18], etc.

As for the relation between orthogonal polynomials and integral transforms, by the
Fourier transform or other integral transforms, it is shown that some systems of univariate
orthogonal polynomials are mapped into other families [7]. For example, Hermite functions,
which are Hermite polynomials Hn(x) multiplied by exp

(
−x2/2

)
, are eigenfunctions of

the Fourier transform [9–11,19]. Some other interesting works are related to families of
classical discrete orthogonal polynomials [20]. In [11], by the Fourier–Jacobi transform, it
was investigated that classical Jacobi polynomials can be mapped onto Wilson polynomials.
Furthermore, the Fourier transform of Jacobi polynomials and their close relation with
continuous Hahn polynomials were discussed by Koelink [9].

Recently, in the univariate case, the Fourier transforms of finite classical orthogonal
polynomials by Koepf and Masjed-Jamei [10], generalized ultraspherical and generalized
Hermite polynomials, and symmetric sequences of finite orthogonal polynomials [12,21,22]
have been studied. As for the multivariate case, Tratnik [23,24] presented a multivariable
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generalization both of all continuous and discrete families of the Askey tableau, pro-
viding hypergeometric representation, the orthogonality weight function, which applies
with respect to subspaces of lower degree, and biorthogonality within a given subspace.
A non-trivial interaction for multivariable continuous Hahn polynomials was presented
by Koelink et al. [25]. Moreover, in [26–28], Fourier transforms of multivariate orthogonal
polynomials and their applications were investigated, obtaining some families of orthogo-
nal functions in terms of continuous Hahn polynomials. In particular, in [26], a new family
of orthogonal functions was derived by using Fourier transforms of bivariate orthogonal
polynomials on the unit disc and Parseval’s identity.

The main aims of this investigation are to find the Fourier transformation of the classi-
cal orthogonal polynomials on the unit ball Br and to obtain a new family of multivariate
orthogonal functions in terms of multivariable Hahn polynomials. We first state the results
for r = 1, r = 2 and r = 3 to illustrate the results and illuminate how the results on Br are
obtained, then we give the results on the unit ball Br by induction.

The work is organized as follows. In Section 2, the basic definitions and notations are
introduced. The main results are stated and proven in Section 3. Finally, the discussion and
conclusions are given.

2. Preliminaries

In this section, we state background materials on orthogonal polynomials that we shall
need. The first subsection recalls the properties of two families of (univariate) orthogonal
polynomials, namely the Gegenbauer polynomials and the continuous Hahn polynomials,
as well as some definitions. In the second subsection, we recall the basic results on the
(multivariate) classical orthogonal polynomials on the unit ball. The notations and nomen-
clature followed are that of the the book of Koekoek, Lesky, and Swarttouw [29] for the
univariate case and of the book of Dunkl and Xu [30] for the multivariate case.

2.1. The Classical Univariate Gegenbauer Polynomials

Let

P(α,β)
n (x) = 2−n

n

∑
k=0

(
n + α

k

)(
n + β

n− k

)
(x + 1)k(x− 1)n−k (1)

be the univariate Jacobi polynomial of degree n, orthogonal with respect to the weight
function [31] (p. 68, Equation (4.3.2)):

w(x) = (1− x)α(1 + x)β, α, β > −1, x ∈ [−1, 1]. (2)

The univariate Gegenbauer polynomials are a special case of the Jacobi polynomial, defined
by [32] (p. 277, Equation (4))

C(λ)
n (x) =

(2λ)n(
λ + 1

2

)
n

P(
λ− 1

2 ,λ− 1
2 )

n (x), (3)

where for n ≥ 1, (α)n = α(α + 1) · · · (α + n− 1), which denotes the Pochhammer sym-
bol with the convention (α)0 = 1. These polynomials can also be written in terms of
hypergeometric series as

C(λ)
n (x) =

(2λ)n
n! 2F1

(
−n, n + 2λ

λ + 1
2
| 1− x

2

)
, (4)

where [32] (p. 73, Equation (2))

pFq

(
a1, a2, . . . , ap

b1, b2, . . . , bq
| x
)
=

∞

∑
n=0

(a1)n(a2)n . . .
(
ap
)

n
(b1)n(b2)n . . .

(
bq
)

n

xn

n!
. (5)
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The Gegenbauer polynomials satisfy the orthogonality relation [32] (p. 281, Equation (28)):

1∫
−1

(
1− x2

)λ− 1
2 C(λ)

n (x)C(λ)
m (x)dx = hλ

n δn,m, (m, n ∈ N0 := N∪ {0}), (6)

where hλ
n is given by

hλ
n =

(2λ)nΓ
(

λ + 1
2

)
Γ
(

1
2

)
n!(n + λ)Γ(λ)

, (7)

δn,m is the Kronecker delta, and the Gamma function Γ(x) is defined by [33] (p. 254, (6.1.1))

Γ(x) =
∞∫

0

tx−1e−tdt, <(x) > 0. (8)

The beta function is given by [33] (p. 258, (6.2.1))

B(a, b) =
1∫

0

xa−1(1− x)b−1dx =
Γ(a)Γ(b)
Γ(a + b)

, <(a),<(b) > 0. (9)

For our purposes, we also need to introduce the continuous Hahn polynomials [34]:

pn(x; a, b, c, d) = in (a + c)n(a + d)n
n! 3F2

(
−n, n + a + b + c + d− 1, a + ix

a + c, a + d

∣∣∣ 1
)

. (10)

which can also be written as a limiting case of the Wilson polynomials [34].

2.2. Orthogonal Polynomials on the Unit Ball

Let ‖x‖ :=
(

x2
1 + · · ·+ x2

r
)1/2 for x = (x1, . . . , xr) ∈ Rr. The unit ball in Rr is denoted

by Br := {x ∈ Rr : ‖x‖ ≤ 1}. Let Wµ be the weight function defined by

Wµ(x) =
(

1− ‖x‖2
)µ−1/2

, µ > −1/2. (11)

We shall consider orthogonal polynomials on the unit ball, by considering the inner product:

〈 f , g〉µ =
∫
Br

Wµ(x) f (x)g(x)dx, (12)

where dx = dx1 · · · dxr.
Let Πr denote the space of polynomials in r real variables. Let Πr

n denote the linear
space of polynomials in several variables of (total) degree at most n for n = 0, 1, 2, . . . . Let
V r

n
(
Wµ

)
be the space of orthogonal polynomials of total degree n with respect to Wµ(x).

Then, dimV r
n
(
Wµ

)
=

(
n + r− 1

n

)
. The elements of the space V r

n
(
Wµ

)
are eigenfunctions

of a second-order partial differential equation [30] (p. 141, Equation (5.2.3)):

r

∑
i=1

∂2P
∂x2

i
−

r

∑
j=1

∂

∂xj
xj

[
2µ− 1 +

r

∑
i=1

xi
∂

∂xi

]
P = −(n + r)(n + 2µ− 1)P. (13)
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The space V r
n has several different bases. One orthogonal basis of the space V r

n can be
expressed in terms of the Gegenbauer polynomials (4) as [30] (p. 143)

Pµ
n (x) =

r

∏
j=1

(
1−

∥∥xj−1
∥∥2
) nj

2 C(
λj)

nj

 xj√
1−

∥∥xj−1
∥∥2

, (14)

where λj = µ +
∣∣nj+1

∣∣+ r−j
2 ,

x0 = 0, xj =
(

x1, . . . , xj
)
,

n = (n1, . . . , nr), |n| = n1 + · · ·+ nr = n,
nj =

(
nj, . . . , nr

)
,
∣∣nj
∣∣ = nj + · · ·+ nr, 1 ≤ j ≤ r,

(15)

and nr+1 := 0. More precisely,∫
Br

Wµ(x)Pµ
n (x)Pµ

m(x)dx = hµ
nδn,m, (16)

where δn,m = δn1,m1 . . . δnr ,mr and hµ
n is given by [30]

hµ
n =

πr/2Γ
(

µ + 1
2

)(
µ + r

2
)
|n|

Γ
(

µ + r+1
2 + |n|

) r

∏
j=1

(
µ + r−j

2

)
|nj|
(
2µ + 2

∣∣nj+1
∣∣+ r− j

)
nj

nj!
(

µ + r−j+1
2

)
|nj|

. (17)

3. Main Results

In this section, we define Fourier transforms of functions in terms of orthogonal
polynomials on the unit ball and obtain a new family of multivariate orthogonal functions
by a similar method applied in [26] for bivariate Koornwinder polynomials. While doing
these, firstly, we define specific special functions so that they are determined with the
motivation to use the orthogonality relation of orthogonal polynomials on the ball in
Parseval’s identity created with the help of the Fourier transform.

Let us introduce

fr(x; n, a, µ) := fr(x1, . . . , xr; n1, . . . , nr, a, µ) =
r

∏
j=1

(
1− tanh2 xj

)a+ r−j
4 Pµ

n (υ1, . . . , υr), (18)

namely

fr(x1, ..., xr; n1, ..., nr, a, µ) =
r

∏
j=1

(
1− tanh2 xj

)a+ r−j
4

r−1

∏
j=1

(
1− tanh2 xj

) nj+1+...+nr
2

r

∏
j=1

C(
λj)

nj

(
tanh xj

)
for r ≥ 1, where a, µ are real parameters and

υ1(x1) = υ1 = tanh x1, (19)

υj
(

x1, . . . , xj
)
= υj = tanh xj

√(
1− tanh2 x1

)(
1− tanh2 x2

)
· · ·
(

1− tanh2 xj−1

)
, (20)

for j = 2, . . . , r. Note that
√

1− tanh2 x = 1
coshx for every real number x . From the latter

expression, we can write fr defined in (18) in terms of fr−1 in the following forms:
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fr(x1, . . . , xr; n1, . . . , nr, a, µ) =
(

1− tanh2 x1

)a+ n2+···+nr
2 + r−1

4 C(
n2+···+nr+µ+ r−1

2 )
n1 (tanh x1)

× fr−1(x2, . . . , xr; n2, . . . , nr, a, µ), (21)

and

fr(x1, . . . , xr; n1, . . . , nr, a, µ) =
(

1− tanh2 xr

)a
C(µ)

nr (tanh xr)

× fr−1

(
x1, . . . , xr−1; n1, . . . , nr−1, a +

nr

2
+

1
4

, µ + nr +
1
2

)
, (22)

for r ≥ 1, where the univariate Gegenbauer polynomials C(λ)
n (x) are defined in (3). For

r = 1,
f1(x1; n1, a, µ) =

(
1− tanh2 x1

)a
C(µ)

n1 (tanh x1). (23)

3.1. The Fourier Transform of Orthogonal Polynomials on the Unit Ball

The Fourier transform of a given univariate function f (x) is defined by [6] (p. 111,
Equation (7.1))

F ( f (x)) =
∞∫
−∞

e−iξx f (x)dx. (24)

In the r-variable case, the Fourier transform of a given multivariate function f (x1, . . . , xr) is
defined by ([6], p. 182, Equation (11.1a))

F ( f (x1, . . . , xr)) =

∞∫
−∞

· · ·
∞∫
−∞

e−i(ξ1x1+···+ξr xr) f (x1, . . . , xr)dx1 · · · dxr. (25)

Next, we calculate the Fourier transform of the function fr(x; n, a, µ) defined in (18)
by using the induction method. In doing so, we first start with the following theorem.

Theorem 1. Let fr(x; n, a, µ) be defined in (18). The following result holds true:

F ( fr(x; n, a, µ)) = F ( fr(x1, . . . , xr ; n1, . . . , nr , a, µ)) =
2|n2|+2a+ r−3

2
(

2
(∣∣n2

∣∣+ µ + r−1
2

))
n1

n1!

× B

(
a +

∣∣n2
∣∣+ iξ1

2
+

r− 1
4

, a +

∣∣n2
∣∣− iξ1

2
+

r− 1
4

)
3F2

−n1, n1 + 2
(∣∣n2

∣∣+ µ + r−1
2

)
, a + |n

2|+iξ1
2 + r−1

4

|n2|+ 2a + r−1
2 , |n2|+ µ + r

2

| 1


×F ( fr−1(x2, . . . , xr ; n2, . . . , nr , a, µ)), (26)

and

F ( fr(x; n, a, µ)) = F ( fr(x1, . . . , xr ; n1, . . . , nr , a, µ)) =
22a−1(2µ)nr

nr !
B
(

a +
iξr

2
, a− iξr

2

)
3F2

(
−nr , nr + 2µ, a + iξr

2

2a, µ + 1
2

| 1

)

×F
(

fr−1

(
x1, . . . , xr−1; n1, . . . , nr−1, a +

nr

2
+

1
4

, µ + nr +
1
2

))
. (27)

Proof. By using (21), the Fourier transform of the function fr defined in (18) can be calcu-
lated as follows by using Relation (4):
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F ( fr(x1, . . . , xr; n1, . . . , nr, a, µ)) =

∞∫
−∞

· · ·
∞∫
−∞

e−i(ξ1x1+···+ξr xr)
(

1− tanh2 x1

)a+ n2+···+nr
2 + r−1

4

× C(
µ+n2+···+nr+

r−1
2 )

n1 (tanh x1) fr−1(x2, . . . , xr; n2, . . . , nr, a, µ)dxr · · · dx1

=

∞∫
−∞

e−iξ1x1
(

1− tanh2 x1

)a+ n2+···+nr
2 + r−1

4 C(
µ+n2+···+nr+

r−1
2 )

n1 (tanh x1)dx1

×
∞∫
−∞

· · ·
∞∫
−∞

e−i(ξ2x2+···+ξr xr) fr−1(x2, . . . , xr; n2, . . . , nr, a, µ)dxr · · · dx2

= F ( fr−1(x2, . . . , xr; n2, . . . , nr, a, µ))

×
1∫
−1

(1 + u)a+ n2+···+nr−iξ1
2 + r−5

4 (1− u)a+ n2+···+nr+iξ1
2 + r−5

4 C(
µ+n2+···+nr+

r−1
2 )

n1 (u)du

=
2n2+···+nr+2a+ r−3

2

(
2
(

µ + n2 + · · ·+ nr +
r−1

2

))
n1

n1!
F ( fr−1(x2, . . . , xr; n2, . . . , nr, a, µ))

×
n1

∑
l=0

(−n1)l(n1 + 2(µ + n2 + · · ·+ nr) + r− 1)l
l!
(
µ + n2 + · · ·+ nr +

r
2
)

l

×
1∫

0

(1− t)a+ n2+···+nr−iξ1
2 + r−5

4 ta+ n2+···+nr+iξ1
2 + r−5

4 +ldt =
2n2+···+nr+2a+ r−3

2

(
2
(

µ + n2 + · · ·+ nr +
r−1

2

))
n1

n1!

×F ( fr−1(x2, . . . , xr; n2, . . . , nr, a, µ))B
(

a +
n2 + · · ·+ nr + iξ1

2
+

r− 1
4

, a +
n2 + · · ·+ nr − iξ1

2
+

r− 1
4

)
× 3F2

(
−n1, n1 + 2(µ + n2 + · · ·+ nr) + r− 1, a + n2+···+nr+iξ1

2 + r−1
4

µ + n2 + · · ·+ nr +
r
2 , 2a + n2 + · · ·+ nr +

r−1
2

| 1

)
, (28)

which proves (26). Similarly, when we repeat this process by using the Equation (22),
it follows that

F ( fr(x1, . . . , xr; n1, . . . , nr, a, µ)) =

1∫
−1

(1− u)a+ iξr
2 −1(1 + u)a− iξr

2 −1C(µ)
nr (u)du

×F
(

fr−1

(
x1, . . . , xr−1; n1, . . . , nr−1, a +

nr

2
+

1
4

, µ + nr +
1
2

))
=

22a−1(2µ)nr

nr!
B
(

a +
iξr

2
, a− iξr

2

)
3F2

(
−nr, nr + 2µ, a + iξr

2
µ + 1/2, 2a

| 1

)

×F
(

fr−1

(
x1, . . . , xr−1; n1, . . . , nr−1, a +

nr

2
+

1
4

, µ + nr +
1
2

))
. (29)

By applying Theorem 1 consecutively, we can give the next theorem.
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Theorem 2. The Fourier transform of the function fr(x; n, a, µ) defined in (18) is explicitly given
as follows:

F ( fr(x; n, a, µ)) = F ( fr(x1, . . . , xr; n1, . . . , nr, a, µ))

= 2
2ra+ r(r−5)

4 +
r−1
∑

j=1
jnj+1 r

∏
j=1


(

2
(∣∣nj+1

∣∣+ µ + r−j
2

))
nj

nj!
Θr

j
(
a, µ, n; ξ j

), (30)

where

Θr
j
(
a, µ, n; ξ j

)
= B

(
a +

∣∣nj+1
∣∣+ iξ j

2
+

r− j
4

, a +

∣∣nj+1
∣∣− iξ j

2
+

r− j
4

)

× 3F2

−nj, nj + 2
(∣∣nj+1

∣∣+ µ + r−j
2

)
, a + |n

j+1|+iξ j
2 + r−j

4∣∣nj+1
∣∣+ µ + r−j+1

2 ,
∣∣nj+1

∣∣+ 2a + r−j
2

| 1

, (31)

which can be also expressed in terms of the continuous Hahn polynomials defined in (10):

Θr
j
(
a, µ, n; ξ j

)
=

nj!

inj
(∣∣nj+1

∣∣+ µ + r−j+1
2

)
nj

(∣∣nj+1
∣∣+ 2a + r−j

2

)
nj

× B

(
a +

∣∣nj+1
∣∣+ iξ j

2
+

r− j
4

, a +

∣∣nj+1
∣∣− iξ j

2
+

r− j
4

)

× pnj

(
ξ j

2
; a +

∣∣nj+1
∣∣

2
+

r− j
4

, µ− a +

∣∣nj+1
∣∣+ 1

2
+

r− j
4

, µ− a +

∣∣nj+1
∣∣+ 1

2
+

r− j
4

, a +

∣∣nj+1
∣∣

2
+

r− j
4

)
. (32)

Proof. The proof follows by induction on r by applying Theorem 1 successively. In order
to give the results on Br, we first discuss the results for r = 1, r = 2, and r = 3.

When r = 1, the unit ball Br becomes the interval [−1, 1], and the corresponding
orthogonal polynomials are Gegenbauer polynomials C(λ)

n (x) on the interval [−1, 1], which
are the special case of Jacobi polynomials P(α,β)

n (x). The Fourier transform of the specific
function in terms of Jacobi polynomials P(α,β)

n (x) was obtained in terms of continuous
Hahn polynomials in [9]. In fact, for r = 1, the Fourier transform of

f1(x1; n1, a, µ) =
(

1− tanh2 x1

)a
C(µ)

n1 (tanh x1) (33)

follows from (4) (see [9])

F ( f1(x1; n1, a, µ)) =

∞∫
−∞

e−iξ1x1
(

1− tanh2 x1

)a
C(µ)

n1 (tanh x1)dx1

=
22a−1(2µ)n1

n1!
Θ1

1(a, µ, n1; ξ1), (34)

where

Θ1
1(a, µ, n1; ξ1) = 3F2

(
−n1, n1 + 2µ, a + iξ1

2
2a, µ + 1/2

| 1

)
B
(

a +
iξ1

2
, a− iξ1

2

)
. (35)
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It can be rewritten [9] in terms of the continuous Hahn polynomials pn(x; a, b, c, d) from
(10) as

F ( f1(x1; n1, a, µ)) =
22a−1(2µ)n1

in1(2a)n1
(µ + 1/2)n1

B
(

a +
iξ1

2
, a− iξ1

2

)
× pn1

(
ξ1

2
; a, µ− a + 1/2, µ− a + 1/2, a

)
. (36)

For the case r = 2, in view of (21), we can write

f2(x1, x2; n1, n2, a, µ) =
(

1− tanh2 x1

)a+ n2
2 + 1

4 C(
n2+µ+ 1

2 )
n1 (tanh x1) f1(x2; n2, a, µ). (37)

By using now (26), it yields

F ( f2(x1, x2; n1, n2, a, µ)) =
2n2+2a− 1

2

(
2
(

n2 + µ + 1
2

))
n1

n1!
F ( f1(x2; n2, a, µ))

× B
(

a +
n2 + iξ1

2
+

1
4

, a +
n2 − iξ1

2
+

1
4

)

× 3F2

−n1, n1 + 2
(

n2 + µ + 1
2

)
, a + n2+iξ1

2 + 1
4

n2 + 2a + 1
2 , n2 + µ + 1

| 1

. (38)

From (34), we can write

F ( f2(x1, x2; n1, n2, a, µ))

=
2n2+4a− 3

2 (2µ)n2

(
2
(

n2 + µ + 1
2

))
n1

n1!n2!
B
(

a +
n2 + iξ1

2
+

1
4

, a +
n2 − iξ1

2
+

1
4

)

× 3F2

−n1, n1 + 2
(

n2 + µ + 1
2

)
, a + n2+iξ1

2 + 1
4

n2 + 2a + 1
2 , n2 + µ + 1

| 1


× B

(
a +

iξ2

2
, a− iξ2

2

)
3F2

(
−n2, n2 + 2µ, a + iξ2

2
2a, µ + 1/2

| 1

)

=
2n2+4a− 3

2 (2µ)n2

(
2
(

n2 + µ + 1
2

))
n1

n1!n2!
Θ2

1(a, µ, n1, n2; ξ1)Θ2
2(a, µ, n1, n2; ξ2), (39)

where

Θ2
1(a, µ, n1, n2; ξ1) = B

(
a +

n2 + iξ1

2
+

1
4

, a +
n2 − iξ1

2
+

1
4

)

×3 F2

−n1, n1 + 2
(

n2 + µ + 1
2

)
, a + n2+iξ1

2 + 1
4

n2 + 2a + 1
2 , n2 + µ + 1

| 1

, (40)

and

Θ2
2(a, µ, n1, n2; ξ2) = B

(
a +

iξ2

2
, a− iξ2

2

)
3F2

(
−n2, n2 + 2µ, a + iξ2

2
2a, µ + 1/2

| 1

)
. (41)



Axioms 2022, 11, 558 9 of 15

Since the latter 3F2 hypergeometric function can be expressed in terms of the continuous
Hahn polynomials given by (10), both expressions above can be written again in terms of
the continuous Hahn polynomials as

Θ2
1(a, µ, n1, n2; ξ1) =

n1!

in1(n2 + µ + 1)n1

(
n2 + 2a + 1

2

)
n1

× B
(

a +
n2 + iξ1

2
+

1
4

, a +
n2 − iξ1

2
+

1
4

)
× pn1

(
ξ1

2
; a +

n2

2
+

1
4

, µ− a +
2n2 + 3

4
, µ− a +

2n2 + 3
4

, a +
n2

2
+

1
4

)
, (42)

and

Θ2
2(a, µ, n1, n2; ξ2) =

n2!

in2

(
µ + 1

2

)
n2
(2a)n2

B
(

a +
iξ2

2
, a− iξ2

2

)

× pn2

(
ξ2

2
; a, µ− a +

1
2

, µ− a +
1
2

, a
)

. (43)

For the case r = 3, in view of (21), we can write

f3(x1, x2, x3; n1, n2, n3, a, µ) =
(

1− tanh2 x1

)a+ n2+n3
2 + 1

2 C(n2+n3+µ+1)
n1 (tanh x1)

× f2(x2, x3; n2, n3, a, µ),

from which it follows from (26):

F ( f3(x1, x2, x3; n1, n2, n3, a, µ)) =
2n2+n3+2a(2(n2 + n3 + µ + 1))n1

n1!

× B
(

a +
n2 + n3 + iξ1

2
+

1
2

, a +
n2 + n3 − iξ1

2
+

1
2

)
× 3F2

(
−n1, n1 + 2(n2 + n3 + µ + 1), a + n2+n3+iξ1

2 + 1
2

n2 + n3 + 2a + 1, n2 + n3 + µ + 3
2

| 1

)
×F ( f2(x2, x3; n2, n3, a, µ)). (44)

From (39), we can write

F ( f3(x1, x2, x3; n1, n2, n3, a, µ))

= 26a− 3
2+n2+2n3

(2(n2 + n3 + µ + 1))n1

(
2
(

n3 + µ + 1
2

))
n2
(2µ)n3

n1!n2!n3!
×Θ3

1(a, µ, n1, n2, n3; ξ1)Θ3
2(a, µ, n1, n2, n3; ξ2)Θ3

3(a, µ, n1, n2, n3; ξ3), (45)

where

Θ3
1(a, µ, n1, n2, n3; ξ1) = B

(
a +

n2 + n3 + iξ1

2
+

1
2

, a +
n2 + n3 − iξ1

2
+

1
2

)
× 3F2

(
−n1, n1 + 2(n2 + n3 + µ + 1), a + n2+n3+iξ1

2 + 1
2

n2 + n3 + µ + 3
2 , n2 + n3 + 2a + 1

| 1

)
, (46)
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Θ3
2(a, µ, n1, n2, n3; ξ2) = B

(
a +

n3 + iξ2

2
+

1
4

, a +
n3 − iξ2

2
+

1
4

)

× 3F2

−n2, n2 + 2
(

n3 + µ + 1
2

)
, a + n3+iξ2

2 + 1
4

n3 + µ + 1, n3 + 2a + 1
2

| 1

, (47)

Θ3
3(a, µ, n1, n2, n3; ξ3) = B

(
a +

iξ3

2
, a− iξ3

2

)
3F2

(
−n3, n3 + 2µ, a + iξ3

2

µ + 1
2 , 2a

| 1

)
. (48)

If we write the 3F2 hypergeometric function in terms of the continuous Hahn polynomials
pn(x; a, b, c, d) from (10), the expressions above can be written as in (32) for r = 3.

The proof follows now by induction on r.

3.2. The Class of Special Functions Using the Fourier Transform of the Orthogonal Polynomials on
the Unit Ball

The Parseval identity corresponding to (24) is given by [6] (p. 118, Equation (7.17))

∞∫
−∞

f (x)g(x)dx =
1

2π

∞∫
−∞

F ( f (x))F (g(x))dξ, (49)

and in the r-variable case, Parseval’s identity corresponding to (25) is [6] (p. 183, (iv))

∞∫
−∞

· · ·
∞∫
−∞

f (x1, . . . , xr)g(x1, . . . , xr)dx1 · · · dxr

=
1

(2π)r

∞∫
−∞

· · ·
∞∫
−∞

F ( f (x1, . . . , xr))F (g(x1, . . . , xr))dξ1 · · · dξr. (50)

By substituting the results in Theorem 2 in Parseval’s identity, we have the next
theorem. The proof is included in Appendix A.

Theorem 3. Let n and nj be defined as in (15), and let a =(a1, a2) and |a| = a1 + a2. Then,
the following equality is satisfied:

∞∫
−∞

· · ·
∞∫
−∞

rDn(ix; a1, a2) rDm(−ix; a2, a1)dx = (2π)r2−2r|a|+r+1h(
a1+a2− 1

2 )
n

×
r

∏
j=1

(
nj!
)2Γ
(∣∣nj+1

∣∣+ 2a1 +
r−j

2

)
Γ
(∣∣nj+1

∣∣+ 2a2 +
r−j

2

)
22|nj+1|

((
2
∣∣nj+1

∣∣+ 2|a|+ r− j− 1
)

nj

)2 δnj ,mj , (51)

for a1, a2 > 0, where h(
a1+a2− 1

2 )
n is given in (17) and

rDn(x; a1, a2) =
r

∏
j=1

{
Γ

(
a1 +

∣∣nj+1
∣∣− xj

2
+

r− j
4

)
Γ

(
a1 +

∣∣nj+1
∣∣+ xj

2
+

r− j
4

)

× 3F2

−nj, nj + 2
(∣∣nj+1

∣∣+ |a|+ r−j−1
2

)
, a1 +

|nj+1|+xj
2 + r−j

4∣∣nj+1
∣∣+ |a|+ r−j

2 ,
∣∣nj+1

∣∣+ 2a1 +
r−j

2

| 1


, (52)
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which can be expressed in terms of the continuous Hahn polynomials (10) by

rDn(x; a1, a2) =
r

∏
j=1


nj!i
−nj(∣∣nj+1

∣∣+ 2a1 +
r− j

2

)
nj

(∣∣nj+1
∣∣+ |a|+ r− j

2

)
nj

× Γ

(
a1 +

∣∣nj+1
∣∣− xj

2
+

r− j
4

)
Γ

(
a1 +

∣∣nj+1
∣∣+ xj

2
+

r− j
4

)

× pnj

(
−

ixj

2
; a1 +

∣∣nj+1
∣∣

2
+

r− j
4

, a2 +

∣∣nj+1
∣∣

2
+

r− j
4

, a2 +

∣∣nj+1
∣∣

2
+

r− j
4

, a1 +

∣∣nj+1
∣∣

2
+

r− j
4

)}
, (53)

for r ≥ 1.

4. Discussion and Conclusions

In [9], the author derived the Fourier transform of Jacobi polynomials on the interval
[−1, 1] in terms of continuous Hahn polynomials and discussed some applications. Mo-
tivated by this investigation, the Fourier transforms of bivariate orthogonal polynomials
were studied in [26]. In our recent study, we introduced and dealt with the Fourier trans-
form of a family of multivariate orthogonal polynomials. In such a framework, we defined
specific functions in terms of the orthogonal polynomials on the unit ball. We applied the
Fourier transform to the corresponding functions. By Parseval’s identity, the class of the
resulting orthogonal functions in terms of continuous Hahn polynomials was discussed.

In the future, integral transforms of other families of multivariate orthogonal polyno-
mials could be obtained by similar methods used in this paper, and further relationships
with some other well-known orthogonal polynomials such as Wilson polynomials could
be investigated.
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Appendix A

In this Appendix, we give a proof of Theorem 3.
The proof follows by using induction on r. For r = 1, we obtain the specific functions

from (33):
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 f1(x1; n1, a1, µ1) =
(

1− tanh2 x1

)a1
Pµ1

n1 (υ1) =
(

1− tanh2 x1

)a1
C(µ1)

n1 (tanh x1),

g1(x1; m1, a2, µ2) =
(

1− tanh2 x1

)a2
Pµ2

m1(υ1) =
(

1− tanh2 x1

)a2
C(µ2)

m1 (tanh x1),
(A1)

where υ1 = tanh x1. According to (A1) and (34), we use Parseval’s identity to obtain

2π

∞∫
−∞

(
1− tanh2 x1

)a1+a2
C(µ1)

n1 (tanh x1)C
(µ2)
m1 (tanh x1)dx1

= 2π

1∫
−1

(
1− u2

)a1+a2−1
C(µ1)

n1 (u)C(µ2)
m1 (u)du =

22(a1+a2−1)(2µ1)n1
(2µ2)m1

n1!m1!Γ(2a1)Γ(2a2)

×
∞∫
−∞

Γ
(

a1 +
iξ1

2

)
Γ
(

a1 −
iξ1

2

)
Γ
(

a2 +
iξ1

2

)
Γ
(

a2 −
iξ1

2

)

× 3F2

(
−n1, n1 + 2µ1, a1 +

iξ1
2

2a1, µ1 + 1/2
| 1

)
3F2

(
−m1, m1 + 2µ2, a2 +

iξ1
2

2a2, µ2 + 1/2
| 1

)
dξ1. (A2)

By assuming

µ1 = µ2 = a1 + a2 −
1
2

, (A3)

and considering the orthogonality relation (6), we obtain that the special function:

1Dn1(x1; a1, a2) = Γ
(

a1 −
x1

2

)
Γ
(

a1 +
x1

2

)
3F2

(
−n1, n1 + 2(a1 + a2)− 1, a1 +

x1
2

a1 + a2, 2a1
| 1
)

=
n1!i−n1

(2a1)n1
(a1 + a2)n1

Γ
(

a1 −
x1

2

)
Γ
(

a1 +
x1

2

)
pn1

(
−ix1

2
; a1, a2, a2, a1

)
(A4)

has the orthogonality relation:

∞∫
−∞

1Dn1(ix1; a1, a2) 1Dm1(−ix1; a2, a1)dx1

=
2πn1!Γ(2a1)Γ(2a2)Γ2(a1 + a2)(

n1 + a1 + a2 − 1
2

)
Γ(2a1 + 2a2 + n1 − 1)

δn1,m1

=
2π(n1!)2Γ(2a1)Γ(2a2)

22(a1+a2−1)
(
(2a1 + 2a2 − 1)n1

)2 h(
a1+a2− 1

2 )
n1 δn1,m1 , (A5)

where h(
a1+a2− 1

2 )
n1 is given in (7). As a consequence, it follows that

∞∫
−∞

Γ(a1 + ix1)Γ(a1 − ix1)Γ(a2 − ix1)Γ(a2 + ix1)

× pn1(x1; a1, a2, a2, a1)pm1(x1; a1, a2, a2, a1)dx1

=
πΓ(2a1 + n1)Γ(2a2 + n1)Γ2(a1 + a2 + n1)

n1!
(

n1 + a1 + a2 − 1
2

)
Γ(2a1 + 2a2 + n1 − 1)

δn1,m1 , (A6)

for a1, a2 > 0, which gives the orthogonality relation for continuous Hahn polynomials
pn1(x1; a1, a2, a2, a1), which was proven by Koelink [9].
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For r = 2, we consider the specific functions from (18): f2(x1, x2; n1, n2, a1, µ1) =
(

1− tanh2 x1

)a1+
1
4
(

1− tanh2 x2

)a1
Pµ1

n1,n2(υ1, υ2),

g2(x1, x2; m1, m2, a2, µ2) =
(

1− tanh2 x1

)a2+
1
4
(

1− tanh2 x2

)a2
Pµ2

m1,m2(υ1, υ2),
(A7)

where υ1 = tanh x1 and υ2 = tanh x2

√
1− tanh2 x1. According to (A7) and (39), if we use

Parseval’s identity again and apply the transforms tanh x1 = u, tanh x2 = v√
1−u2 , we obtain

∞∫
−∞

∞∫
−∞

(
1− tanh2 x1

)a1+a2+
1
2
(

1− tanh2 x2

)a1+a2
Pµ1

n1,n2 (υ1, υ2)Pµ2
m1,m2 (υ1, υ2)dx1dx2

=

1∫
−1

√
1−u2∫

−
√

1−u2

(
1− u2 − v2

)a1+a2−1
Pµ1

n1,n2 (u, v)Pµ2
m1,m2 (u, v)dvdu

=
2n2+m2+4a1+4a2−3(2µ1)n2

(2µ2)m2

(
2
(

n2 + µ1 +
1
2

))
n1

(
2
(

m2 + µ2 +
1
2

))
m1

4π2n1!n2!m1!m2!

×
∞∫
−∞

∞∫
−∞

B
(

a1 +
n2 + iξ1

2
+

1
4

, a1 +
n2 − iξ1

2
+

1
4

)
B
(

a1 +
iξ2
2

, a1 −
iξ2
2

)

× 3F2

−n1, n1 + 2
(

n2 + µ1 +
1
2

)
, a1 +

n2+iξ1
2 + 1

4

n2 + 2a1 +
1
2 , n2 + µ1 + 1

| 1


× 3F2

(
−n2, n2 + 2µ1, a1 +

iξ2
2

2a1, µ1 + 1/2
| 1

)

× B
(

a2 +
m2 + iξ1

2
+

1
4

, a2 +
m2 − iξ1

2
+

1
4

)
B
(

a2 +
iξ2
2

, a2 −
iξ2
2

)

× 3F2

−m1, m1 + 2
(

m2 + µ2 +
1
2

)
, a2 +

m2+iξ1
2 + 1

4

m2 + 2a2 +
1
2 , m2 + µ2 + 1

| 1


× 3F2

(
−m2, m2 + 2µ2, a2 +

iξ2
2

2a2, µ2 + 1/2
| 1

)
dξ1dξ2. (A8)

If we fix
µ1 = µ2 = a1 + a2 −

1
2

(A9)

and use the orthogonality relation (6), it yields

∞∫
−∞

∞∫
−∞

2Dn1,n2 (ix1, ix2; a1, a2) 2Dm1,m2 (−ix1,−ix2; a2, a1)dx1dx2

=
Γ(2a1)Γ(2a2)Γ

(
2a1 + n2 +

1
2

)
Γ
(

2a2 + n2 +
1
2

)
4π2(n1!)2(n2!)2

22n2+4a1+4a2−3(2(n2 + a1 + a2))
2
n1
(2a1 + 2a2 − 1)2

n2

× h(
a1+a2− 1

2 )
n1,n2 δn1,m1 δn2,m2 , (A10)
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where h(
a1+a2− 1

2 )
n1,n2 is given in (17) and

2Dn1,n2 (x1, x2; a1, a2) = 3F2

(
−n1, n1 + 2(n2 + a1 + a2), a1 +

x1
2 + n2

2 + 1
4

n2 + 2a1 +
1
2 , n2 + a1 + a2 +

1
2

| 1

)

× 3F2

(
−n2, n2 + 2a1 + 2a2 − 1, a1 +

x2
2

2a1, a1 + a2
| 1
)

× Γ
(

a1 +
n2 + x1

2
+

1
4

)
Γ
(

a1 +
n2 − x1

2
+

1
4

)
Γ
(

a1 −
x2
2

)
Γ
(

a1 +
x2
2

)
, (A11)

which can be expressed in terms of the continuous Hahn polynomials (10) as

2Dn1,n2 (x1, x2; a1, a2) =
n1!n2!i−n1−n2

(2a1)n2
(a1 + a2)n2

(
n2 + 2a1 +

1
2

)
n1

(
n2 + a1 + a2 +

1
2

)
n1

× pn1

(
−ix1

2
; a1 +

n2
2

+
1
4

, a2 +
n2
2

+
1
4

, a1 +
n2
2

+
1
4

, a2 +
n2
2

+
1
4

)
pn2

(
−ix2

2
; a1, a2, a2, a1

)
× Γ

(
a1 +

n2 + x1
2

+
1
4

)
Γ
(

a1 +
n2 − x1

2
+

1
4

)
Γ
(

a1 −
x2
2

)
Γ
(

a1 +
x2
2

)
. (A12)

Similar to the cases r = 1 and r = 2, if we substitute (18) and (30) in the Parseval identity (50),
the necessary calculations give the desired result.
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