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Abstract: There are many routines developed for solving ordinary differential Equations (ODEs) of
different types. In the case of an nth-order ODE that admits an r-parameter Lie group (3 ≤ r ≤ n),
there is a powerful method of Lie symmetry analysis by which the ODE is reduced to an (n− r)th-
order ODE plus r quadratures provided that the Lie algebra formed by the infinitesimal generators
of the group is solvable. It would seem this method is not widely appreciated and/or used as it
is not mentioned in many related articles centred around integration of higher order ODEs. In the
interest of mainstreaming the method, we describe the method in detail and provide four illustrative
examples. We use the case of a third-order ODE that admits a three-dimensional solvable Lie algebra
to present the gist of the integration algorithm.

Keywords: ordinary differential equation; lie symmetry analysis; solvable lie algebra; differential
invariant; reduction of order
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1. Introduction

The study of ODEs poses significant challenges, especially in cases involving equations
of higher order that are nonlinear. As a result, various methods have been proposed for
investigating different types of ODEs. Chandrasekar et al. [1], for example, propose a
method that unifies and generalises known linearising transformations for finding general
solutions of third-order nonlinear ODEs. Related work is done by Mohanasubha et al. [2]
who propose a method of solution that involves deriving linearising transformations for
a class of second-order nonlinear ordinary differential equations. In [3], conditions are
provided for the linearisation of third-order ODEs by tangent transformations (see also
the references in [3] for related work on the problem of transforming a given differential
equation into a linear equation). It turns out that “symmetry properties”, which are
central in Lie symmetry analysis of differential equations, by and large, provide a basis
for systematically solving the majority of ordinary differential equations for which exact
solutions can be found [3–13].

There are several ways in which the symmetry group associated with a differential
equation can be used to analyse the equation. For a given differential equation, the sym-
metry group may be used to derive new solutions of the equation from old ones [5,7], to
reduce the order of the equation [5,7,8] or to establish whether or not the equation can
be linearised, and to construct explicit linearisations when such exist [14–16]. Other uses
include the derivation of conserved quantities [7].

Many symmetry-based approaches for solving ODEs involve reduction of order,
whereby for a given ODE of order n, the problem is reduced to that of solving one or more
ODEs of order at most n− 1. Lie symmetry analysis has well-established algorithms for
solution methods based on reduction of order. It is well known, in particular, that if an
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nth-order ODE admits a one-parameter Lie symmetry group, then the order of the equation
can be reduced by one. The method of differential invariants extends this in that an ODE
of order n is reduced to an ODE of order n − 1 plus r quadratures (where 3 ≤ r ≤ n)
provided that the ODE is invariant under an r-parameter Lie group whose infinitesimal
generators form an r-dimensional solvable Lie algebra [5,12,17]. The method is essentially
a general integration procedure for solving (or, at least, reduction of order of) any higher
order ODE that admits a solvable lie algebra of the right dimension. It consists of a number
of successive iterations that reduce the problem to integration of a number of first-order
ODEs each of which has an admitted Lie point symmetry. Therefore, each of the first-order
ODEs may be integrated routinely using the admitted Lie point symmetry [4–9]. It seems
that the method of differential invariants has not been used widely to study higher order
ODEs as we could not find many applications in the literature.

In this paper, we describe the method of differential invariants and provide four
instructive examples involving nonlinear third-order ODEs that arise in different contexts.

The rest of the article is organised as follows: In Section 2, we present the algorithm
of the method of differential invariants in the case where a third-order ODE admits a
three-dimensional solvable Lie algebra. In Section 3, we provide four illustrative examples.
We give concluding remarks in Section 4.

2. Reduction Algorithm for an nth-Order ODE (n ≥ 3) with a Solvable Lie Algebra

Let us assume that an nth-order ODE admits an r-parameter Lie group of transforma-
tions. There is a reduction algorithm [5] by means of which the ODE can be reduced to an
(n− 1)th-order ODE plus r quadratures provided that the infinitesimal generators of the
admitted Lie group form an r-dimensional solvable Lie algebra. We present the reduction
algorithm in the simplified case involving a third-order ODE that admits a 3-parameter
solvable Lie algebra. In this case, the reduction algorithm results in the general solution of
the ODE.

Consider a third-order
f (x, y, y′, y′′, y′′′) = 0 (1)

that admits a 3-parameter Lie group of point transformations, and for which the associated
infinitesimal generators Y1, Y2, Y3 form a solvable Lie algebra. Without loss of generality,
we can assume that the infinitesimal generators have the following commutation relations:

[Yi, Yj] =
j−1

∑
k=1

Ck
ijYk, 1 ≤ i < j, j = 2, 3. (2)

for some real structure constants Ck
ij [5].

Let r1(x, y), v1(x, y, y′) be such that

Y1r1 = 0, Y(1)
1 v1 = 0,

so that
w1 =

dv1

dr1
(3)

is a differential invariant, i.e., Y(2)
1 w1 = 0. In terms of the invariants r1 and v1, and the

differential invariant w1, (1) is reduced to a second-order ODE

w1 = ψ1(r1, v1), (4)

for some function ψ1. Writing Y(1)
2 in terms of r1 and v1, we obtain

Y(1)
2 = α1(r1)

∂

∂r1
+ β1(r1, v1)

∂

∂v1
, (5)
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with the first extension given by

Y(2)
2 = Y(1)

2 + γ1(r1, v1, w1)
∂

∂w1
, (6)

where
α1(r1) = Y2r1, β1(r1, v1) = Y(1)

2 v1, γ1(r1, v1, w1) = Y(2)
2 w1,

for some functions α1, β1 and γ1. It is noteworthy that (5) is admitted by Equation (4).
Let r2(r1, v1), v2(r1, v1, w1) be such that

Y(1)
2 r2 = 0, Y(2)

2 v2 = 0,

so that
w2 =

dv2

dr2
(7)

is a differential invariant, i.e., Y(3)
2 w2 = 0. In terms of the invariants r2, v2 and w2, the

ODE (1) reduces to a first-order ODE

w2 = ψ2(r2, v2), (8)

for some function ψ2. Writing Y(2)
3 in terms of r2 and v2, we obtain

Y(2)
3 = α2(r2)

∂

∂r2
+ β2(r2, v2)

∂

∂v2
, (9)

with the first extension given by

Y(3)
3 = Y(2)

3 + γ2(r2, v2, w2)
∂

∂w2
, (10)

where
α2(r2) = Y(1)

3 r2, β2(r2, v2) = Y(2)
3 v2, γ2(r2, v2, w2) = Y(3)

3 w2,

for some functions α2, β2 and γ2. Here also (9) is admitted by Equation (8).
In light of the admitted symmetry (10), the first-order Equation (8) can be integrated

routinely to give a solution of the form

v2 = ω2(r2) (11)

for some function ω2. Expressing (11) in terms of v1 and r1, we obtain a first-order ODE

dv1

dr1
= ψ1(v1, r1), (12)

i.e., we determine the hitherto unknown function ψ1 in (4). Solving Equation (12), we
obtain a solution of the form

v1 = ω1(r1) (13)

for some function ω1. Again, the solution (13) can be expressed in terms of x and y to
obtain the last first-order ODE in the form

dy
dx

= ψ0(x, y), (14)

for some function ψ0. Equation (14) admits Y1 and, when solved, provides the general
solution of Equation (1).
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3. Illustrative Examples

In this section, we use the method of differential invariants to find general solutions
of four third-order ODEs, each of which admits a symmetry Lie algebra of order greater
than three. In each case, we identify a three-dimensional solvable subalgebra and use it to
perform complete integration of the ODE.

Example 1. Consider the ODE(
y′
)2y′′ − 2y

(
y′′
)2

+ yy′y′′′ = 0, (15)

which arises in the context of group classification of the 1 + 1 Fokker–Planck diffusion-convection
equation [18]

θt = [D(θ)θz]z − K′(θ)θz, (16)

where t is time, z is the depth, θ(t, z) is the volumetric soil water content, D(θ) is the soil water
diffusivity and K(θ) is the hydraulic conductivity, with K′(θ) = dK

dθ 6= 0.
Besides the translation symmetries

X1 =
∂

∂z
and X2 =

∂

∂t
, (17)

which are clearly admitted by (16), additional symmetries are possible only if D solves this third-
order nonlinear ODE [19]

D′(θ)2D′′(θ)− 2D(θ)D′′(θ)2 + D(θ)D′(θ)D′′′(θ) = 0, (18)

which is Equation (15) with θ and D replaced with x and y, respectively.
Equation (15) admits a four-dimensional symmetry Lie algebra spanned by the operators

X1 =
∂

∂x
, X2 = x

∂

∂x
, X3 = y

∂

∂y
, X4 = y ln y

∂

∂y
. (19)

We use the solvable algebra 〈X1, X3, X4〉, for which

[X3, X4] = X3 (20)

is the only nonzero Lie bracket. We relabel the symmetries as follows:

X3 → Y1, X4 → Y2, X1 → Y3,

to ensure that the commutation relations of the operators Y1, Y2 and Y3 satisfy (2).
To carry out the reduction algorithm, we first need the following extended infinitesimal

generators:

Y(1)
1 = y ∂

∂y + y′ ∂
∂y′

Y(2)
2 = y ln y ∂

∂y + y′(1 + ln y) ∂
∂y′ +

(
y′2

y + y′′ + y′′ ln y
)

∂
∂y′′

Y(3)
3 = ∂

∂x .

 (21)

Starting with Y(1)
1 , we solve the corresponding characteristic equations

dx
0

=
dy
y

=
dy′

y′
(22)

to obtain invariants

r1 = x, v1 =
y′

y
, (23)
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and derive the differential invariant

w1 =
dv1

dr1
=

yy′′ − (y′)2

y2 . (24)

Writing Y(2)
2 in terms of r1, v1 and w1, we obtain

Y(2)
2 = v1

∂

∂v1
+ w1

∂

∂w1
. (25)

From the corresponding characteristic equation

dr1

0
=

dv1

v1
=

dw1

w1
, (26)

we obtain invariants
r2 = r1 and v2 =

w1

v1
, (27)

which, in view of (23), can be written in terms of x, y, y′ and y′′ as follows:

r2 = x and v2 =
yy′′ − (y′)2

yy′
. (28)

From (28) we derive the differential invariant

w2 =
dv2

dr2
=

(y′)2

y2 −
y′′

y
+

y′y′′′ − (y′′)2

(y′)2 . (29)

Equation (15) can now be reduced into a first-order ODE of the form

dv2

dr2
= ψ2(r2, v2)

for some function ψ2. To find ψ2, we express Equation (15) as

y′′′ =
2y(y′′)2 − (y′)2y′′

yy′
. (30)

and replace y′′′ in (29) by the right hand-side of (30). We obtain

dv2

dr2
=

[
yy′′ − (y′)2

yy′

]2

= v2
2, (31)

which is a first-order ODE that admits Y(2)
3 written in terms of r2 and v2, i.e.,

Y(2)
3 =

∂

∂r2
. (32)

Solving (31) we obtain

v2 = − 1
r2 + κ1

, (33)

where κ1 is an arbitrary constant. In terms of r1 and v1, Equation (33) is transformed, via (27), into
another first-order ODE,

dv1

dr1
= − v1

r1 + κ1
, (34)
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which admits symmetry (25). Equation (34) is another simple ODE, the solution of which is

v1 =
κ2

r1 + κ1
, (35)

where κ2 is another arbitrary constant. Using (23), we write (35) as a first-order ODE in the
variables x and y, namely

y′ =
κ2y

x + κ1
, (36)

which admits symmetry Y1 from (21). Equation (36) is the last first-order ODE in the series of
iterations and is also a simple variables-separable equation. The solution of (36) is

y = κ3(x + κ1)
κ2 , (37)

where κ3 is a further arbitrary constant. This is in fact the general solution of Equation (15).

Example 2. Consider the nonlinear ODE

y′′′ =
3
2

y′′2
y′

, (38)

which is the canonical form of every third ODE that admits a transitive fiber-preserving six-
dimensional point symmetry group [20].

Equation (38) admits a six-dimensional symmetry Lie algebra L6 spanned by the operators

X1 = ∂
∂x X2 = x ∂

∂x X3 = x2 ∂
∂x

X4 = ∂
∂y X5 = y ∂

∂y X6 = y2 ∂
∂y .

}
(39)

The symmetries X2, X3 and X4 span a solvable Lie algebra which has

[X2, X3] = X3 (40)

as the only nonzero Lie bracket. With relabelling

X3 → Y1, X2 → Y2, X4 → Y3,

the commutation relations of the operators Y1, Y2 and Y3 satisfy (2).
We extend the identified infinitesimal generators:

Y(1)
1 = x2 ∂

∂x − 2xy′ ∂
∂y′

Y(2)
2 = x ∂

∂x − y′ ∂
∂y′ − 2y′′ ∂

∂y′′

Y(3)
3 = ∂

∂y .

 (41)

Solving the characteristic equations

dx
x2 =

dy
0

=
dy′

−2xy′
(42)

arising from Y(1)
1 , we obtain invariants

r1 = y, v1 = x2y′, (43)

and derive the differential invariant

w1 =
dv1

dr1
= x

(
xy′′

y′
+ 2
)

. (44)
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In terms of r1, v1 and w1, Y(2)
2 becomes

Y(2)
2 = v1

∂

∂v1
+ w1

∂

∂w1
. (45)

From the corresponding characteristic equation

dr1

0
=

dv1

v1
=

dw1

w1
, (46)

we obtain the next set of invariants

r2 = r1 and v2 =
w1

v1
, (47)

which, in view of (43), can be written in terms of x, y, y′ and y′′ as follows:

r2 = y and v2 =
2y′ + xy′′

x(y′)2 . (48)

From (48) we derive the differential invariant

w2 =
dv2

dr2
=

y′′′

(y′)3 −
2(y′′)2

(y′)4 −
2y′′

x(y′)3 −
2

x2(y′)2 . (49)

Equation (38) can now be reduced into a first-order ODE of the form

dv2

dr2
= ψ2(r2, v2)

for some function ψ2. To find ψ2, substitute out y′′′ from (49) using (38) and then use (48) to write
the resulting equation in terms of r2 and v2. We obtain the first-order ODE

dv2

dr2
= −

v2
2

2
, (50)

which admits Y(2)
3 , written in terms of r2 and v2, i.e.,

Y(2)
3 =

∂

∂r2
. (51)

The solution of (50) is

v2 =
2

r2 − κ1
, (52)

where κ1 is an arbitrary constant. In terms of r1 and v1, Equation (52) is transformed, using (47),
into the next first-order ODE

dv1

dr1
=

2v1

r1 − κ1
, (53)

which admits symmetry (45). Equation (53) is solved easily. We obtain

v1 = κ2(κ1 − r1)
2, (54)

where κ2 is another arbitrary constant. Using (43) we write (54) as a first-order ODE in the
variables x and y, namely

y′ =
κ2(y− κ1)

2

x2 . (55)



Axioms 2022, 11, 555 8 of 12

Equation (55) admits Y1, i.e., the symmetry X4 from (39) and is the last ODE in the series of
iterations. Furthermore, it is a variables-separable ODE, the solution of which is

y =
x

κ2 − κ3x
+ κ1, (56)

where κ3 is another arbitrary constant. This is the general solution of Equation (38).

Example 3. Consider the nonlinear ODE

y′′′ + x
(
y′′
)2

+ 1
x y′′ = 0, (57)

an example of third-order ODEs that are equivalent to linear second-order ODEs via tangent
transformations [3]. Equation (57) admits a four-dimensional symmetry Lie algebra spanned by the
operators

X1 = x2 ∂
∂x + x(y + ln x− 1) ∂

∂y , X2 = x ∂
∂x , X3 = ∂

∂y , X4 = x ∂
∂y . (58)

The commutator relations of X2, X3 and X4 are such that

[X2, X4] = X4 (59)

is the only nonzero Lie bracket. This means that X1, X2 and X4 span a solvable Lie algebra and
satisfy (2), with the following labelling:

X4 → Y1, X2 → Y2, X3 → Y3.

The extensions of the identified infinitesimal generators are:

Y(1)
1 = x ∂

∂y + ∂
∂y′

Y(2)
2 = x ∂

∂x − y′ ∂
∂y′ − 2y′′ ∂

∂y′′

Y(3)
3 = ∂

∂y .

 (60)

We solve characteristic equations

dx
0

=
dy
x

=
dy′

1
(61)

associated with Y(1)
1 , we obtain invariants

r1 = x, v1 = y′ − y
x

, (62)

and derive the differential invariant

w1 =
dv1

dr1
=

y
x2 −

y′

x
+ y′′. (63)

Writing Y(2)
2 in terms of r1, v1 and w1, we obtain

Y(2)
2 = r1

∂

∂r1
− v1

∂

∂v1
− 2w1

∂

∂w1
, (64)

for which the corresponding characteristic equations are

dr1

r1
=

dv1

−v1
=

dw1

−2w1
. (65)
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We obtain from the solution of (65) invariants

r2 = r1v1 and v2 =
w1

v2
1

, (66)

which, in view of (62), can be written in terms of x, y, y′ and y′′ as follows:

r2 = xy′ − y and v2 =
y + x(xy′′ − y′)

(y− xy′)2 . (67)

From (67) we derive the differential invariant

w2 =
dv2

dr2
=

x(yy′′′ − 3y′y′′) + 3yy′′ + x2
(

2(y′′)2 − y′y′′′
)

y′′(y− xy′)3 . (68)

Equation (57) can now be reduced into a first-order ODE of the form

dv2

dr2
= ψ2(r2, v2)

for some function ψ2. To find ψ2, we use (57) to substitute out y′′′ from (68) and then use (67) to
write the resulting equation in terms of r2 and v2. We obtain the first-order ODE

dv2

dr2
= − (r2 + 2)v2 + 1

r2
, (69)

that admits Y(2)
3 written in terms of r2 and v2, i.e.,

Y(2)
3 = − ∂

∂r2
+

2r2v2 + 1
r2

2

∂

∂v2
. (70)

The solution of (69) is

v2 =
κ1e−r2 − r2 + 1

r2
2

, (71)

where κ1 is an arbitrary constant. In terms of r1 and v1, Equation (71) is transformed, using (66),
into another first-order ODE

dv1

dr1
=

κ1e−r1v1 − r1v1 + 1
r2

1
, (72)

which admits symmetry (64). The solution of (72) is

er1v1 = κ2r1 − κ1, (73)

where κ2 is another arbitrary constant. Finally, we use (62) to write (73) as an ODE in the variables
x and y. We obtain

exy′−y = xκ2 − κ1, (74)

which admits Y1, i.e., the symmetry X4 from (58). The solution of (74), namely

y = x ln
[(κ1

x
− κ2

)κ2/κ1
(κ2x− κ1)

−1/x
]
+ κ3x, κ1 6= 0, (75)

where κ3 is another arbitrary constant is the general solution of Equation (57).

Example 4. The equation we consider here

y′′′ +
3y′y′′

y
− 3y′′ − 3(y′)2

y
+ 2y′ = 0, (76)
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drawn from [1] admits a seven-dimensional symmetry Lie algebra spanned by the operators

X1 = ∂
∂x , X2 = 1

y
∂

∂y , X3 = 2 ∂
∂x + y ∂

∂y

X4 = ex ∂
∂x + ex

(
y +

1
y

)
∂

∂y , X5 = e−x ∂
∂x , X6 = ex

y
∂

∂y

X7 = e2x

y
∂

∂y .

 (77)

Using the solvable algebra 〈X1, X3, X7〉, for which nonzero Lie brackets are

[X1, X7] = 2X7 and [X3, X7] = 2X7, (78)

we relabel the symmetries as follows:

X7 → Y1, X3 → Y2, X1 → Y3,

to ensure that the commutation relations of Y1, Y2 and Y3 satisfy (2).
As in the previous examples, the following extensions of Y1, Y2 and Y3 are needed in the

calculations that follow:

Y(1)
1 = e2x

y
∂

∂y + e2x
(

2
y −

y′

y2

)
∂

∂y′

Y(2)
2 = 2 ∂

∂x + y ∂
∂y + y′ ∂

∂y′ + y′′ ∂
∂y′′

Y(3)
3 = ∂

∂x .

 (79)

We compute two invariants of Y(1)
1 ,

r1 = x, v1 = yy′ − y2, (80)

from which we derive the differential invariant

w1 =
dv1

dr1
= y(y′′ − 2y′) +

(
y′
)2. (81)

In terms of r1, v1 and w1, Y(2)
2 becomes

Y(2)
2 =

∂

∂r1
+ v1

∂

∂v1
+ w1

∂

∂w1
. (82)

Invariants of (82) are
r2 = e−r1 v1 and v2 =

w1

v1
, (83)

or, in terms of x, y and the derivatives,

r2 = ye−x(y′ − y) and v2 =
y(y′′ − 2y′) + (y′)2

y(y′ − y)
. (84)

The differential invariant derived from (84) is

w2 =
dv2

dr2
= ex

[
y3(2y′′ − y′′′)− y2

(
2
(
y′
)2

+ y′(y′′ − y′′′) +
(
y′′
)2
)
−
(
y′
)4

+ y
(
y′
)2
(2y′ + y′′)

][
y2(y− y′)2

(
y2 + y(y′′ − 3y′) +

(
y′
)2
)]−1

. (85)
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We now use Equation (76) to substitute out y′′′ from (85) and then express the resulting
equation in terms of r2 and v2 using (84). We obtain

dv2

dr2
= −v2

r2
, (86)

a first-order ODE that admits Y(2)
3 written in terms of r2 and v2, i.e.,

Y(2)
3 = r2

∂

∂r2
. (87)

The solution of (86) is
v2 =

κ1

r2
, (88)

where κ1 is an arbitrary constant. We now use (83) to express (88) in terms of r1 and v1. We obtain

dv1

dr1
= κ1er1 , (89)

which admits symmetry (82). Upon solving (89), we obtain

v1 = κ1er1 + κ2, (90)

where κ2 is another arbitrary constant. Using (80) we write (90) an order ODE in the variables x
and y,

y′ =
κ1ex + κ2 + y2

y
, (91)

which admits Y1, i.e., the symmetry X7 from (77). Equation (91) is easily solved and we obtain

y =
(

κ3e2x − 2κ1ex − κ2

)1/2
, (92)

where κ3 is another arbitrary constant. This is in fact the general solution of Equation (76).

4. Concluding Remarks

In this paper, we have provided a clear exposition of the method of differential
invariants for integrating (or, at least, reduction of order of) any higher order ODE that
admits a solvable Lie algebra. We have included in the paper four illustrative examples
that involve nonlinear ODEs of different classes and drawn from different contexts, each of
which admits a three-dimensional solvable lie algebra. The presentation of the reduction
algorithm in this paper is instructive in that the exposition is based on a third-order ODE,
which makes the method easy to appreciate. In this connection, it is our hope that this
paper will serve as an invitation to others to consider using the method of differential
invariants on ODEs that they encounter.
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