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Abstract: Demand side management initiatives have gained attention recently because of the de-
velopment of the smart grid and consumer-focused regulations. The demand side management
programme has numerous goals. One of the main goals is to control energy demand by altering
customer demand. This can be done in several ways, including financial discounts and behaviour
changes brought about by providing knowledge to support the grid’s stressed conditions. In this
study, demand side management techniques for future smart grids are presented, including load
shifting and strategic conservation. There are many controlled devices on the grid. The load shifting
and day before strategic conservation approaches mentioned in this study are derived analytically for
the minimization problem. For resolving this minimization issue, the RUNge Kutta optimizer (RUN)
was developed. On a test smart grid with two service zones, one with residential consumers and the
other with commercial consumers, simulations are performed. By contrasting the outcomes with the
slime mould algorithm (SMA), Sine Cosine Algorithm (SCA), moth–flame optimization (MFO), and
whale optimization algorithm (WOA), RUN demonstrates its effectiveness. The simulation findings
demonstrate that the suggested demand side management solutions produce significant cost savings
while lowering the smart grid’s peak load demand.

Keywords: demand side management; demand response; slime mould algorithm (SMA); sine cosine
algorithm (SCA); moth–flame optimization (MFO); and whale optimization algorithm (WOA); load
shifting; strategic conservation

MSC: 90C26

1. Introduction

Smart Grids [? ? ] are concepts for the next-generation power systems connected to
various control and sensing technologies, with efficient transmission and distribution side
communication to reliably meet demand. Consumer friendliness, fool proof healing ability,
resistance ability during faulty conditions, the potential to use generation options with
storage, market dependent well organised operations, and a better power calibre in optimal
ways are among the important features [? ] of modern grids. This advanced grid is driven
by several technological, socioeconomic, and economic benefits linked to environmental
advantages. Demand response (DR) is the term used to describe how end users modify
their usual daily electricity usage in response to changes in the price of electricity at the
time. The advance definition of DR is provided by “creating the incentive payments to

Axioms 2022, 11, 538. https://doi.org/10.3390/axioms11100538 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11100538
https://doi.org/10.3390/axioms11100538
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-3569-5047
https://orcid.org/0000-0001-7103-8872
https://orcid.org/0000-0001-5760-0216
https://orcid.org/0000-0003-4492-1082
https://orcid.org/0000-0002-1820-8024
https://orcid.org/0000-0002-5895-2632
https://doi.org/10.3390/axioms11100538
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11100538?type=check_update&version=2


Axioms 2022, 11, 538 2 of ??

encourage low consumption of electricity at the same time as market prices are high or
system reliability is under jeopardy” [? ].

Consumers have three options [? ? ? ? ? ] for responding: to reduce their consumption,
shift their consumption, and use on-site generation.

For an efficient operation, the supply and demand in the electricity system must be
perfectly synchronised in real time. However, this is not always the case because of the
complexity of the system and the fact that supply and demand levels frequently change
because of a variety of factors, such as the failure of a generation unit, a transmission or
distribution line, or a sudden change in load. DR is one of the least expensive resources
available for the system’s best operation because the infrastructure of the power system
is substantially capital accelerated [? ]. The decrease in price volatility in the wholesale
market is another significant market gain. As illustrated in Figure ??, a slight decrease in
demand would cause a significant decrease in the cost of production and the price of power
in real time.
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Figure 1. Electricity market with and without DSM.

Classifications and Benefits of Demand Response Program

Various DR applications are displayed in Figure ??. Incentive-based programmes (IBP)
and price-based programmes (PBP) are the two basic types into which DR programmes
can be categorised [? ? ]. IBP can also be broken down into two categories: traditional
and market based. Direct load control (DLC) and interruptible or curtailable services
(I/Cs) are examples of traditional applications. Emergency disaster relief initiatives (EDRP),
demand bidding (DB), capacity market programmes (CMP), and ancillary services market
programmes are the four categories for market-based programmes (ASMP).

PBP plans are based on spirited pricing rates, which means that electricity costs do
not follow a flat rate pattern but instead vary hourly. Time of use (TOU) pricing, real
time pricing (RTP), and the critical peak price (CPP), which is further separated into two
categories: extreme day price (EDP), extreme CPP, are the three basic categories in which
these rates are categorised (ED-CPP).

Figure ?? displays the advantages of DR. They were classified into four groups: market
side, participant side, dependability side, and market fulfilment.
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The benefits of DR programmes do not just benefit the members’ wellbeing, some
of them are also market focused. For instance, a decrease in the total demand lowers the
cost of newly installed generating units. Because they have an impact on all programme
participants, reliability assets might be regarded as one type of market-focused help [? ].

The final DR programme category is enhancing electricity market fulfilment [? ].
Using market-based programmes and spirited pricing strategies, consumers can manage
the power of the market [? ? ].

Due to the increasing demand, simple remedies to the issue include the construction
of new transmission corridors and the bolstering of current power assets. However, they
are pricey, take a while to produce, and may not be achievable because of space limitations.
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Before new or improved grids are available, renewable power plants, such as wind turbines
and solar panels, can be quickly commissioned and made ready for electricity generation.
Due to this mismatch, newly constructed renewable plants may experience full or partial
curtailments, which may have unfavourable technical and economic effects [? ? ].

This conundrum can be resolved by utilising one of the numerous options provided by
the “smart grid” concept to operate current grids with an enhanced flexibility. The dynamic
thermal rating (DTR) technique, which safely establishes the thermal limits of power
components based on ambient variables, is the subject of this study. DTR is sometimes
referred to as real-time thermal rating (RTTR) or flexible thermal rating because the power
rating of this system fluctuates over time and appears flexible (FTR) [? ? ]. Demand
response, the dynamic thermal rating system, and battery energy storage systems (BESS)
have all become more significant components of global power grids. Without impairing
network dependability, DTR and DR lower the requirements for BESS sizing [? ]. The
integration of the wind and demand response for the optimum generation reliability, cost,
and carbon emissions is given in [? ]. To lessen the network congestion, operating costs,
and wind curtailment, the dynamic thermal rating (DTR) system and the battery storage
system (BSS) is used. The improved wind penetration and dependability through network
topology optimization based on the dynamic thermal rating and battery storage systems is
given in [? ].

This paper has certain benefits:
In this paper, load shifting, and strategic conservation techniques have been employed.

The residential and commercial sectors have served as test datasets for various DSM
techniques:

I. Using a unique population-based meta-heuristic optimization technique known as
the RUNge Kutta optimizer (RUN), the control of the switching of multiple devices
of different classes in each test smart grid has been achieved.

II. Calculated the decrease in operational costs and peak demand and contrasted
the output from the RUNge Kutta optimizer (RUN) with the whale optimization
algorithm (WOA), slime mould algorithm (SMA), Sine Cosine Algorithm (SCA),
and moth–flame optimization (MFO).

III. Proved the efficacy of RUN over WOA, SMA, SCA, and MFO.

The other sections of the paper are organised as follows: Section ?? discusses DR
approaches, Section ?? discusses problem formulation and RUN, Section ?? provides infor-
mation on the smart grid, and Section ?? reports the simulation results. The research’s key
findings are finally presented in the form of a conclusion.

2. Techniques in Demand Response

To produce the desired changes in the load contour at the distribution side, DSM
modifies the power consumption. DSM focuses [? ] on energy-saving techniques, electricity
tariffs, financial incentives, and user- and environmentally friendly government policies to
prevent the peak demand. Due to an increase in electricity demand, the system becomes
unstable. To prevent these instabilities, demand side management has established a worthy
objective that could be used to change the load curve’s configuration by reducing and
shifting the total load demand at the distribution side during peak load periods to lower
the electricity’s final tariff. Peak clipping, load shifting, valley filling, load growth, strategic
conservation, and the flexible load curve are six broad techniques that can be used to alter
the load configurations that depict the daily electric demands of residential, commercial,
and industrial consumers between peak and off-peak times [? ? ]. Figure ?? depicts these
six demand side management topologies. To reduce the fear of smart grid insecurity, peak
clipping and valley filling strategies focused on levelling the peak and valley load levels.
Direct load control (DLC) is a technique used in the peak clip approach [? ? ]. Load shifting,
which involves moving loads from peak consumption times to off-peak consumption times,
is a load management approach that is successfully used throughout the world [? ? ].
To achieve load shape optimization, strategic conservation [? ] seeks to directly deploy
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demand curtailment techniques at client residences. Strategic load expansion [? ? ] is
employed in cases of high demand to optimise the daily response, and it roughly equates
to the valley fill strategy. Flexible load shape is primarily related to the dependability of the
smart grid [? ? ].
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Figure 4. DSM techniques.

A singular approach to achieving the best result, given the constraints, is optimization.
The objective of the optimization procedures should be to maximise profit and reduce loss
or effort. In this research, optimization algorithms have been used to minimise the load
and lower operational costs. In the context of meta-heuristic algorithms, a useful literature
review is provided in the following methods to comprehend the fundamentals of DSM
with applications.

In recent years, meta-heuristic algorithms have gained attention thanks to their special
ability to apply derivative-free techniques to problems in the actual world. These algo-
rithms’ structures are very simple to apply to actual problems and are based on ideas about
life, phenomena, and particle activity.

The adaptability of these algorithms demonstrates their suitability for the application
portion. There have been numerous meta-heuristic optimization approaches reported in
the literature to solve DSM problems.

The widely accepted Darwinian theory is the foundation of the genetic algorithm
(GA), which is utilised all over the world [? ? ? ? ? ]. To improve the overall efficiency of
the smart grid, authors in [? ] minimised the peak to average ratio (PAR), [? ] developed a
DSM system for buildings using the GA, [? ] solved the economic load dispatch problem
under demand response, and [? ] and [? ] held the energy consumption scheduling
which gave the demand response optimization model for home appliances. Evolutionary
algorithms [? ? ] and biogeography-based optimization algorithms [? ? ] are other
examples of these methods. Evolutionary algorithms are employed for residential energy
management in [? ] and evolutionary game theory has been used to investigate the various
aspects influencing user demand participation in [? ]. To address energy scheduling issues,
biogeography-based optimization has been used to smart homes [? ], smart grids [? ], and
to achieve countable cost reductions while reducing the peak load [? ]. When discussing
these algorithms, the flow begins with the initial solution set and progresses through
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runs as various operators are incorporated. Particle swarm optimization was used for
hourly grid scheduling [? ], an optimal battery energy storage schedule [? ], the demand
response for residential consumers [? ], and an economic load dispatch problem [? ].
The cuckoo search optimization algorithm was used for the optimal scheduling of time-
shiftable loads [? ? ], spider monkey optimization (SMO) was used for DG allocation for
demand side management [? ], the bat algorithm was used to optimise the cost in the
HEM system [? ], firefly optimization used to construct the efficient DSM system [? ], and
in this flow, fruit fly optimization was used for the load balancing of the applications of
EHR [? ], and the grasshopper optimization algorithm [? ] was used to design an efficient
energy management in office. The gravitational search algorithm was used to solve the unit
commitment problem for electric vehicles in [? ] and the optimal scheduling of building
users’ electricity consumption in [? ]. A hybrid BBBO was used to address the economic
load dispatch (ELD) problem [? ] and the Lyapunov optimization strategy was used to
explore power efficiency for residential consumers [? ].

In this paper, many shiftable and programmable devices with new load patterns were
used. In the same way, this issue is viewed as an optimization issue and a novel population-
based metaheuristic optimization algorithm based on the RUNge Kutta method have been
applied to solve this kind of challenging issue. In this research, optimization algorithms
have been used to minimise the load and operational costs.

3. Used Demand Response Technique

Strategic conservation and load shifting strategies, an advanced DSM methodology,
have been applied in this work to govern a future smart grid. Utilized DSM approaches
should aim to always reduce peak demand and energy costs. Future smart grid engineers
are always working to create an effective load curve optimization to achieve the DSM
programmes’ primary objective.

3.1. DSM Problem Formulation

There are so many optimization techniques in the past literatures which may be used
to solve complex DR problem [? ]. DSM techniques always tried to bring the load curve as
near to the objective curve as possible and optimization algorithms are trying to overlap
both to achieve better results [? ]. The mathematical formulation for strategic conservation
and the load shifting technique are given below:

Minimization objective:

∑n
i=1 (C Load (t)−Objective (t))2 (1)

where abbreviations are:
t = time period
objective (t) = objectives value at time t.
C Load (t) = exact utilization at given time t.
At any instance for strategic conservation, exact utilization, and C Load (t) can be

drawn by Equation (2):

∑N
i=1 ∑D

j=1 ZiZj + ∑N
i=1 ∑D

j=1 (1− Zi) (Z−Zj) (2)

where abbreviations are:
On-off status of any devices ranging from= i to N,
Specific class of any device given by= j to D.
Z = summation of devices in a specific class.
At any instance for load shifting, exact utilization and C Load (t) is given by

Equation (3):

C Load (t) = Forecasted load (t) + Connected load (t)− Disconnected load (t) (3)
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where abbreviations are:
Forecasted load (t) = forecast load at time t.
Connected load(t) and Disconnected load(t)= amount of loads Connect and Disconnect

at time t.

3.2. Overview of RUNge Kutta Method

To solve ordinary differential equations, the RUNge Kutta method (RKM) is broadly
used [? ? ]. By employing functions without requiring their high-order derivatives, the
RKM can be used to produce a high-precision numerical approach [? ]. The following is a
description of the RKMs fundamental formulation.

Consider the following first-order ordinary differential equation for an initial value
problem:

dy
dt

= f (x, y), y(xo) = yo (4)

To define f (x, y) as the slope (S) of the best straight line fitted to the graph at the point,
(x, y) is the primary concept behind the RKM. Using the slope at point (xo, yo), another
point can be obtained by using the best fitted straight line: (x1, y1) = (xo + ∆x, yo + So∆x),
where So = f (xo, yo). Similarly, (x2, y2) = (x1 + ∆x, y1 + S1∆x). This process can be
repeated m times, which yields an approximate solution in the range of [xo, xo + m∆x].

The RKM is derived from the Taylor series, which is provided by:

y(x + ∆x) = y(x) + y(x)∆x + y′′ (x)
(∆x)2

2!
+ . . . (5)

The following approximation equation can be produced by removing the higher-order
terms.

y(x + ∆x) ≈ y(x) + y′(x)∆x (6)

The first order RUNge Kutta formula, sometimes known as the Euler formula, can be
written as follows:

y(x + ∆x) = y(x) + k1∆x (7)

where k1 = y′(x) = f (x, y) and ∆x = xn+1 − xn The central differencing formula shown
below can be used to approximate the first-order derivative (y′(x)) [? ]:

y′(x) =
y(x + ∆x)− y(x− ∆x)

2∆x
(8)

Thus, Equation (7) can be rewritten as:

y(x + ∆x) = y(x) +
y(x + ∆x)− y(x− ∆x)

2
(9)

The fourth order RUNge Kutta (RK4) [? ] was employed in this work to construct
the suggested optimization approach. The RK4 method’s formula, which is based on the
weighted average of four increments (as depicted in Figure ??) is as follows:

y(x + ∆x) = y(x) + 1
6 (k1 + 2 ∗ k2 + 2 ∗ k3 + k4)∆x (10)

k1, k2, k3, k4 are the four weighted factors and their relative values are as follows:

k1 = y′(x) = f (x, y)
k2 = f (x + ∆x

2 , y + ∆x
2 ∗ k1)

k3 = f (x + ∆x
2 , y + ∆x

2 ∗ k2)
k4 = f (x + ∆x, y + ∆x ∗ k3)

 (11)
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where k1 is the first increment and uses y to calculate the slope at the start of the range
[x, x + ∆x]. In the second increment, k2, the slope at the midpoint is specified using y and
k1, in the third increment, k3, the slope at the midpoint is defined using y and k2, and in the
fourth increment, k4, the slope at the end of the interval is specified using y and k3. The
next value, y(x + ∆x) is defined by the current value, y(x) plus the weighted average of
the previous four increments, according to RK4.
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3.3. Introducing the RUNge Kutta Optimizer (RUN)

Meta-heuristic algorithms (MAs) avoid the contingencies of all local optima and allow
algorithms to search for optimal solutions in each search area, in contrast to deterministic
algorithms which follow the rituals of a lack of randomness that drag into local optima
sinking. Some gradient descent methods perform better than MAs in linear optimization
issues in terms of efficiency and convergence rate. When there is no need for gradient
information, MAs can successfully produce random solutions to real problems in non-linear
problems. Among the actual problems, the main one is the potential for the solution space
to grow infinitely and become indefinable, making it difficult to identify the top answer
in the available search space. In this case, MAs randomly sample the solution space to
find the upcoming best solution while adhering to resource limitations or minimising
computational complexity. The finest solutions are generated by MAs using physical
principles or biological events. These algorithms are based on concepts of life, phenomena,
and behaviour particular to that setting and keep relatively simple structures that are
straightforward to apply to actual situations without affecting their structure. Because of
their versatility, MAs are clearly effective in the application sector.

MAs have the following notable characteristics:

I. MAs are algorithms that use natural laws to solve challenging real-world issues.
They are inspired by nature.

II. MAs acquire a stochastic nature when random components are added.
III. Because the algorithm does not use derivatives, it takes less time.
IV. With the help of many control parameters, MAs are customised to the nature of

the issue.

This study develops a new swarm-based model with stochastic elements for opti-
mization. With emphasis on the mathematical core as some sets of active rules at the
appropriate time, this model removes the cliche inspiration attachment with itself and the
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recommended RUN technique. Metaphors are not allowed in population-based models
since they simply serve to conceal the true nature of the equations used in the optimizers.

RUN explains the fundamental reasoning behind the RK method as well as the
population-based evolution of a group of agents. To calculate the slope and resolve the
ordinary differential equations, the RK use a particular formulation (the RK4 method) [? ? ].
The fundamental concept of RUN is the RK method’s recommended estimated slope. The
RUN builds a set of rules for the evolution of a population set in accordance with the logic
of the swarm-based optimization algorithm by using the calculated slope as a searching
logic to explore the potential area in the search space. The next subsections go into more
detail into the RUNs mathematical formulation.

3.3.1. Initialization Step

The logic in this step is to select an initial swarm and let it evolve within the permitted
number of iterations. For a population of size N, the N locations are produced at random
in RUN. Everyone in the population xn(n = 1, 2, . . . , N) is a D-dimensional solution to
an optimization problem. Generally, the following concept creates the initial positions at
random:

xn, l = Ll + rand.(Ul − Ll) (12)

where rand is a random number between [0, 1] and Ll and Ul are the lower and upper
limits of the problem’s Ith variable (l = 1, 2,..., D). This rule merely produces a limited
number of solutions.

3.3.2. Root of Search Mechanism

Any optimizer’s ability to generate the exploration and exploitation patterns iteratively
depends on its iterative cores. In the exploration core, an optimization algorithm explores
the promising regions of the feasible space using a collection of random solutions with
a high unpredictability rate. The exploitation of core solutions and random behaviours
exhibit considerably smaller and more gradual fluctuations than the exploration process [?
]. The RK approach is used in this work to conduct a proper global and local search while
searching the decision space using a collection of random solutions.

The proposed RUN’s search mechanism was determined using the RK4 approach.
The coefficient k1, derived by Equation (8), was defined using the first-order derivative.
Therefore, k1 is defined as:

k1 =
xw − xb

2∆x
(13)

where xr1, xr2, and xr3 are three randomly selected solutions taken from the population,
(r1 6= r2 6= r3 6= n), and xw and xb are the worst and best solutions acquired at each
iteration. Equation (13) can be changed as follows to improve the exploration search and
provide a random behaviour:

k1 =
1

2∆x
(rand ∗ xw − u ∗ xb) (13a)

u = round(1 + rand) ∗ (1− rand) (13b)

Overall, finding promising regions and progressing toward the overall best solution
are greatly aided by the best solution xb. Therefore, in this study, the best solution xb is
given more weight during the optimization process by using a random parameter u. To
specify ∆x in Equation (13), use the formulas:

∆x = 2 ∗ rand ∗ |Stp| (14a)

Stp = rand ∗ ((xb − rand ∗ xavg) + γ) (14b)

γ = rand ∗ (xn − rand ∗ (u− l)) ∗ exp(−4 ∗ i
Maxi

) (14c)
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where Stp is a parameter and ∆x are the position increment. The step size, Stp, is established
by the difference between xb and xavg. During optimization, parameter γ, a scaling factor
dictated by the size of the solution space, decreases exponentially. The average of all
solutions at each iteration is known as xavg. The three additional coefficients (i.e., k2, k3,
and k4) can therefore be expressed as follows:

k2 =
1

2∆x
(rand.(xw + rand1 ∗ k1 ∗ ∆x)− (u ∗ xb + rand2 ∗ k1 ∗ ∆x)) (15)

k3 =
1

2∆x
(rand.(xw + rand1 ∗

k2

2
∗ ∆x)− (u ∗ xb + rand2 ∗

k2

2
∗ ∆x)) (16)

k2 =
1

2∆x
(rand.(xw + rand1 ∗ k3 ∗ ∆x)− (u ∗ xb + rand2 ∗ k3 ∗ ∆x)) (17)

In this study, xw and xb are determined by the following:

i f
f (xn) < f (xbi)
xb = xn
xw = xbi
else
xb = xbi
xw = xn
end

(18)

Therefore, the leading search mechanism in RUN can be defined as:

SM =
1
6
(xRK)∆x (19)

xRK = k1 + 2 ∗ k2 + 2 ∗ k3 + k4 (19a)

3.3.3. Updating Solutions

The RUN algorithm begins the optimization process with a set of random solutions.
The RK approach is used to update the solutions’ locations after each iteration. RUN uses a
solution and the search algorithm discovered by the RK technique to do this. In this study,
the following plan is put into practise to build the position at the subsequent iteration while
providing the global (exploration) and local (exploitation) search:

i f
rand < 0.5
(exploration phase)
xn+1 = (xc) + SF ∗ SM + µ ∗ xs
else
(exploitation phase)
xn+1 = (xm) + SF ∗ SM + µ ∗ xs′

end

(20)

In which, µ = 0.5 + 0.1 ∗ rand.
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Equation (20) is recast as follows to carry out the local search around the solutions xc,
xm and examine the promising regions in the search space:

i f
rand < 0.5
(exploration phase)
xn+1 = (xc + r ∗ SF ∗ g ∗ xc) + SF ∗ SM + µ ∗ xs
else
(exploitation phase)
xn+1 = (xm + r ∗ SF ∗ g ∗ xm) + SF ∗ SM + µ ∗ xs′

end

(21)

where r is an integer that might either be 1 or less than 1. This parameter alters the direction
of the search and broadens it. The value of g is a chance number between [0, 2].

3.3.4. Enhanced Solution Quality

The enhanced solution quality (ESQ) is used in the RUN algorithm to improve the
quality of the solutions and avoid local optima in each iteration. The RUN algorithm makes
sure that each solution advances toward a higher position by employing the ESQ. In the
suggested ESQ, the best position (xb) and the average of three random answers (xavg) are
merged to produce a new solution (xnew1). The solution (xnew2) is produced using the ESQ
by executing the following scheme:

i f
rand < 0.5 then
i f w < 1 then
xnew2 = xnew1 + r.w.

∣∣(xnew1 − xavg
)
+ rand

∣∣
end
end

In which w = rand(0, 2). exp(−c( i
maxi ))

xavg =
xr1 + xr2 + xr3

3
(22a)

xnew1 = β ∗ xavg + (1− β) ∗ xbest (22b)

where β is a random number between [0, 1]. The random number c in this investigation is
equal to 5 *rand. The random number w gets smaller as the number of iterations rises. r is
an integer that can only be 1, 0, or 1. The best solution explored so far is xbest. The calculated
solution (xnew2) might not be more fit than the existing solution (i.e., f (xnew2) > f (xn)).
Another new solution (xnew3) is developed to have a second opportunity at producing a
successful solution, and it is defined as follows:

i f
rand < w
xnew3 = (xnew2 − rand.xnew2) + SF.(rand.xRK + (v.xb − xnew2)
end

(23)

where v is a random number with a value of 2*rand. The pseudo-code of the standard RUN
is presented in Algorithm 1 and in Figure ??.
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Algorithm 1. The pseudo-code of RUN [? ]

Stage 1. Initialization
Initialize a and b
Generate the RUN population xn (n = 1,2, . . . , N)
Determine each population member’s objective function.
Determine the solutions xw, xb, and xbest
Stage 2. RUN operators
For i = 1 : Maxi
For n = 1 : N
For l = 1 : D
Updating solutions
Calculate position xn+1, l using Equation (18)
End for
Enhance the solution quality

i f rand < 0.5
Calculate position xn+2 using Equation (19)

i f f (x) < f (xnew2)
i f rand < w
Calculate position xn+3 using Equation (20)
End
End
End
Update positions xw and xc
End for
Update position xbest
i = i + 1
End
Stage 3. Return xbest
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Figure 6. Workflow for the RUN algorithm.

The following qualities theoretically show that the RUN is adept at resolving a range
of challenging optimization problems:

I. The randomised adaption feature of the scale factor (SF) helps RUN further en-
hance the exploration and exploitation phases. This setting guarantees a seamless
changeover from exploration to exploitation.
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II. In the initial iterations, RUNs propensity for exploration can be encouraged by
using the average position of solutions.

III. To improve both exploration and exploitation capabilities, RUN uses a search
mechanism based on the RK approach.

IV. The RUN algorithm’s improved solution quality (ESQ) feature makes use of the best
solution found so far to increase the solution quality and accelerate convergence.

V. If the new solution in the RUN algorithm does not place the current solution in a
better position, it may be able to identify a new position within the search space to
place the current solution in a better position. This method can raise the standard
of the solutions and raise the convergence rate.

VI. To highlight the significance of the best solution and progress toward the global
best solution, which may successfully balance the exploration and exploitation
processes, the search mechanism and ESQ use two randomised variables.

4. A Brief Introduction about Test Smart Grid

Consumers from both the residential and business sectors have used DR approaches
to test the reliability of the system. This simulation aims to provide both areas’ consumers
a reasonable tariff. Energy cost is taken to be inversely proportional to the objective
curve to validate the issue. Table ?? provides details on the pricing and loads for both
areas. Regarding the smart grid specifications, the network should have a resistance and
reactance of 0.003 pu and 0.01 pu, respectively, and operate at 410 V and 500 kVA ratings.
There should be a 1.5 MW and 2 MW maximum demand for each of the residential and
commercial areas, respectively [? ? ]. Details about the used devices in both areas are given
in the below section:

Table 1. Energy prices and forecasted loads [? ? ].

Time Electricity Price
(Cent/kWh)

Forecasted Load (kW)

Residential Microgrid Commercial Microgrid

8 h–9 h 12 12.2 15.4

9 h–10 h 9.19 11.9 19.2

10 h–11 h 12.3 11.9 24.1

11 h–12 h 20.7 13.5 26

12 h–13 h 26.8 13.7 27.9

13 h–14 h 27.4 12.7 27.9

14 h–15 h 13.8 12.4 27.9

15 h–16 h 17.3 11.4 26.5

16 h–17 h 16.4 11.1 26

17 h–18 h 9.83 15.9 27.9

18 h–19 h 8.63 20.3 30.3

19 h–20 h 8.87 22.2 25

20 h–21 h 8.35 22.7 21.6

21 h–22 h 16.4 20.9 18.3

22 h–23 h 16.2 17.4 15.4

23 h–24 h 8.87 12.7 9.62

24 h–1 h 8.65 7.93 6.73

1 h–2 h 8.11 6.87 6.25

2 h–3 h 8.25 6.08 6.25

3 h–4 h 8.1 5.81 6.73

4 h–5 h 8.14 4.49 7.22

5 h–6 h 8.13 4.49 7.22

6 h–7 h 8.34 6.87 7.22

7 h–8 h 9.35 8.99 11.1
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4.1. A Residential Area

Small power ratings and brief operation times can be used to identify residential areas.
Table ?? lists various gadgets along with their usage amounts. In residential areas, there
were 14 different kinds of 2604 devices, arranged by use.

Table 2. Controllable device data in the residential area.

Device Type
Hourly Load of Device (kW)

Number of Devices
I Hr II Hr III Hr

Cloth Dryer 1.2 189

Dish Washer 0.7 288

Washing Machine 0.5 0.4 268

Oven 1.3 279

Iron 1 340

Vacuum Cleaner 0.4 158

Fan 0.2 0.2 0.2 288

Kettle 2 406

Toaster 0.9 48

Rice Cooker 0.85 59

Hair Dryer 1.5 58

Blender 0.3 66

Frying Pen 1.1 101

Coffee Maker 0.8 56

Total 2604

4.2. A Commercial Area

Compared to residential areas, commercial areas feature devices with higher ratings
and longer operational lifespans. Table ?? provides the device consumption statistics.
According to its intended uses, the commercial section contained eight different types of
808 devices.

Table 3. Controllable device data in the commercial area.

Type of Device
Hourly Load of Device (kW)

Number of Devices
I Hr II Hr III Hr

Water Dispenser 2.5 156

Dryer 3.5 117

Kettle 3 2.5 123

Oven 5 77

Coffee Maker 2 2 99

Fan 3.5 3 93

Air Conditioner 4 3.5 3 56

Lights 2 1.75 1.5 87

Total 808
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5. Results and Discussion

The utilized DSM technique has enough capability to replicate the load curve with the
objective curve, as shown by data tables and figures. The RUN did a great job at handling
the minimization problem.

To validate the proposed technique, two test boats have been used.

• Test Boat 1: Strategic Conservation.
• Test Boat 2: Load Shifting.

5.1. Test Boat 1: Strategic Conservation

Appliances that are effective and smart are utilized to decrease load demand in order
to maintain the appropriate load shape. Due to the need for a constant supply of electricity
in the industrial sector, this technique of demand response is only relevant to residential
and commercial consumers.

Figure ?? depicted the simulation curves of the residential area from the strategic
conservation technique. Table IV shows the comparison of operational cost reduction and
peak demand reduction in both areas. For the residential area, curtailment in the cost of
the operation using the SMA, SCA, MFO, and WOA is given by 14.73%, 21.79%, 23.77%,
and 22.78%, respectively. Here, the RUN proved its efficacy over the SMA, SCA, MFO, and
WOA by giving a 42.77% curtailment in the operational cost.
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Figure 7. Strategic conservation curves for residential consumers.

For the commercial area, the curtailment in operational cost using the SMA, SCA,
MFO, and WOA is given by 13.94%, 10.47%, 15.35%, and 15.20%, respectively. Here, the
RUN again proved its efficacy over the SMA, SCA, MFO, and WOA by giving a 28.90%
curtailment in the operational cost. When several devices have been used then proposed,
the DSM technique gives the better results.

Figure ?? depicted the simulation curves of the commercial area acquired from the
strategic conservation technique. Table ?? shows the comparison of the operational cost
reduction and peak demand reduction in both areas. Several benefits provided when the
effective path is selected for the DSM. The reduction in peak demand is the one of the
examples of it. For the residential area, the peak reduction using the SMA, SCA, MFO, and
WOA is given by 44.67%, 54.42%, 48.87%, and 48.53%, respectively. Here, the RUN proved
its efficacy over the SMA, SCA, MFO, and WOA by giving 61.16% in peak reduction.
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Figure 8. Strategic conservation curves for commercial consumers.

Table 4. Operational cost and peak demand reduction due to strategic conservation.

Operational Cost Reduction

Area Algorithm Operational Cost
without DSM in USD

Operational Cost with
DSM in USD

Reduction in
Percentage

Residential

RUN 2302.87928 1317.85 42.77

SMA 2302.87928 1963.54 14.73

SCA 2302.87928 1801.08 21.79

MFO 2302.87928 1755.39 23.77

WOA 2302.87928 1778.13 22.78

Commercial

RUN 3626.6396 2578.48 28.90

SMA 3626.6396 3120.97 13.94

SCA 3626.6396 3246.64 10.47

MFO 3626.6396 3069.87 15.35

WOA 3626.6396 3075.12 15.20

Peak Demand Reduction

Area Algorithm Peak Reduction
without DSM (kWh)

Peak Reduction with
DSM (kWh)

Reduction in
Percentage

Residential

RUN 1363.6 529.60 61.16

SMA 1363.6 754.38 44.67

SCA 1363.6 621.42 54.42

MFO 1363.6 697.08 48.87

WOA 1363.6 701.82 48.53

Commercial

RUN 1818.2 1293.20 28.87

SMA 1818.2 1529.99 15.85

SCA 1818.2 1529.99 15.85

MFO 1818.2 1423.30 21.71

WOA 1818.2 1528.62 15.92

For the commercial area, the peak reduction using the SMA, SCA, MFO, and WOA is
given by 15.85%, 15.85%, 21.71%, and 15.92%, respectively. Here, the RUN again proved its
efficacy by giving a 28.87% peak reduction. The peak reduction results in an increase in
grid stability and lowers the utility cost.
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???? show the reduction in operational cost and peak demand, respectively, for strate-
gic conservation.
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Figure 10. Peak demand reduction by strategic conservation.

5.2. Test Boat 2: Load Shifting:

The load shifting technique is used frequently to shift the load from the peak time to
the off-peak time.

Figure ?? shows the results for residential consumers by using load shifting. Table ??
encountered the reductions in the operational cost for residential consumers by using the
SMA, SCA, MFO, and WOA which is given by 6.26%, 2.36%, 9.40%, and 6.05%, respectively.
The RUN proved its iron among other optimization algorithms by giving a reduction in
cost by 8.41%. For commercial consumers, a reduction in operational cost by using the
SMA, SCA, MFO, and WOA is given by 0.72%, −2.72%, 4.43%, and 6.76%, respectively.
The RUN proved its iron over the SMA, SCA, MFO, and WOA by giving a reduction in
cost by 16.45%.
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Figure 11. Load shifting results for residential consumers.

Table 5. Operational cost and peak demand reduction due to load shifting.

Operational Cost Reduction

Area Algorithm Operational Cost
without DSM in USD

Operational Cost with
DSM in USD

Reduction in
Percentage

Residential

RUN 2302.87928 2109.10 8.41

SMA 2302.87928 2158.53 6.26

SCA 2302.87928 2248.47 2.36

MFO 2302.87928 2086.24 9.40

WOA 2302.87928 2163.48 6.05

Commercial

RUN 3626.6396 3029.83 16.45

SMA 3626.6396 3600.41 0.72

SCA 3626.6396 3725.54 -2.72

MFO 3626.6396 3465.72 4.43

WOA 3626.6396 3381.39 6.76

Peak Demand Reduction

Area Algorithm Peak Reduction
without DSM (kWh)

Peak Reduction with
DSM (kWh)

Reduction in
Percentage

Residential

RUN 1363.6 569.12 58.26

SMA 1363.6 763.21 44.02

SCA 1363.6 764.99 43.89

MFO 1363.6 725.48 46.79

WOA 1363.6 764.99 43.89

Commercial

RUN 1818.2 1255.06 30.97

SMA 1818.2 1529.99 15.85

SCA 1818.2 1529.99 15.85

MFO 1818.2 1481.12 18.53

WOA 1818.2 1528.62 15.92
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Figure ?? reported the simulation results for the commercial area by load shifting. For
residential and commercial areas, the peak demand is given by Table ??. For the residential
area, the used DSM technique lowered the peak load by using the SMA, SCA, MFO, and
WOA which is given by 44.02%, 43.89%, 46.79%, and 43.89%, respectively. The RUN
again gives better results by a 58.26% reduction. For the commercial area, the used DSM
technique lowered the peak load by using the SMA, SCA, MFO, and WOA which is given
by 15.85%, 15.85%, 18.53%, and 15.92%, respectively. The RUN again gives better results by
a 30.97% reduction.
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Figure 12. Load shifting results for commercial consumers.

???? show the peak reduction and operational cost, respectively, for load shifting.
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6. Conclusions

This paper is a meaningful comparison of the optimization algorithms, namely: the
RUN, SMA, SCA, MFO, and WOA. The results clearly show that DR is only required for the
development of future smart grids. The following are the main findings of this investigation:

1. The energy demand curves provide a wealth of actual information regarding the
amount of electricity consumed and the cost of energy.

2. Additionally, a comparison of the RUNs performance in terms of delivering demand-
side management techniques for the area’s residential and commercial consumers,
such as strategic conversion and load shifting tactics, has been done.

3. After comparing the findings, we see that there are favourable implications, such as a
decrease in cost and peak demand. When compared to contemporary optimization
algorithms, the RUN offers the best performance.

The application of the proposed variant on more challenging problems like industrial
consumers, protein structure prediction, and model order reduction is kept for the future.
It will be fascinating to know how a new variant of RUN responds to industrial load data
and how it will show its superiority over all types of consumers. A comparative analysis
of the variants of RUN and different algorithms along with the proposal of supervised
learning framework are also kept for future research work.
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