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Abstract: A discrete modified Leslie–Gower prey-predator model considering the effect of fear on
prey species is proposed and studied in this paper. First, we discuss the existence of equilibria and the
local stability of the model. Second, we use the iterative method and comparison principle to obtain
the set of conditions which ensures the global attractivity of positive equilibrium point. The results
show that prey and predator can coexist stably when the intrinsic growth rates of both prey and
predator are maintained within a certain range. Then, we study the global attractivity of the boundary
equilibrium point. Our results suggest that when the intrinsic rate of prey is small enough or the
fear factor is large enough, the prey will tend to go extinct, while the predator can survive stably
due to the availability of other food sources. Subsequently, we discuss flip bifurcation, transcritical
bifurcation at the equilibria of the system, by using the center manifold theorem and bifurcation
theory. We find that system changes from chaotic state to four-period orbit, two-period orbit, stable
state, and finally prey species will be driven to extinction, while predator species survive in a stable
state for enough large birth rate of prey species with the increasing of fear effect. Finally, we verify
the feasibility of the main results by numerical simulations, and discuss the influence of the fear effect.
The results show that the fear effect within a certain range can enhance the stability of the system.

Keywords: Leslie–Gower predator–prey system; fear effect; discrete-time; flip bifurcation; transcritical
bifurcation; global attractivity

MSC: 92D25; 34D20

1. Introduction

The dynamic quantitative relationship between predator and prey has always been a
hot topic in ecology and mathematical ecology. The derivation of more realistic predator–
prey dynamics models is a major trend of relevant theoretical research. Traditionally, all
predator–prey models evolve from two basic models—the first is the famous Lotka–Volterra
predator–prey model [1], which takes the form

dx
dt

= x(a− bx)− cxy,
dy
dt

= −dy + k1cxy.
(1)

In this model, k1 is the transform rate of the predator species. A total of cxy prey
populations are captured, and the energy gained by the predator will further generate

Axioms 2022, 11, 520. https://doi.org/10.3390/axioms11100520 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11100520
https://doi.org/10.3390/axioms11100520
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-3617-5550
https://doi.org/10.3390/axioms11100520
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11100520?type=check_update&version=2


Axioms 2022, 11, 520 2 of 30

k1cxy individuals in the predator population. The model can be adjusted to a more suitable
predator–prey model by incorporating functional response, which takes the form

dx
dt

= x(a− bx)− cΨ(x, y)y,
dy
dt

= −dy + k1cΨ(x, y)y.
(2)

There are numerous kinds of functional response, depending on the circumstance
considered. These include the Holling II functional response [1], Beddington–DeAngelis
functional response [2] and square root functional response [3], etc.

The second one is now referred to as the Leslie–Gower predator–prey model, which
was first introduced by Leslie [4], where the carrying capacity of the predator’s environment
is proportional to the number of prey:

dx
dt

= x(r1 − a1x− b1y),

dy
dt

= y
(

r2 −
a2y
x

)
.

(3)

The model seems very simple, however, only in 2001 did Korobeinikov [5] give a strict
proof of the global stability property of the positive equilibrium. Since then, numerous
studies had been conducted in this direction. For example, Chen, Chen, and Xie [6]
incorporated prey refuge in the system (3) and showed that refuge has a complicated
influence on the dynamic behaviors of the predator species. To investigate the influence of
human disturbance, Chen and Chen [7] proposed a Leslie–Gower predator–prey model
with feedback control; by constructing a suitable Lyapunov function, they obtained a set
of sufficient conditions which ensured the existence of a unique globally asymptotically
stable positive equilibrium of the system. Li, Han, and Chen [8] studied the stability
property of the stage-structured predator–prey model. Recently, several scholars [9–12]
studied the influence of Allee effect on the Leslie–Gower predator–prey system. They
gave a detailed bifurcation analysis of the model proposed. Yu and Chen [13] and Yu [14]
studied the mutual interferences of the predator species. Zhu and Kong [15] showed
that nonlinear harvesting may lead to very complicated dynamic behaviors in the system.
Zou and Guo [16] studied the influence of a spatially heterogeneous environment on a
diffusive Leslie–Gower predator–prey model. Mondal, Pal, and Samanta [17] proposed
a Leslie–Gower predator–prey eco-epidemiological model with disease in predator; they
gave a thorough analysis of the dynamic behaviors of the system. Liang, Zeng, Pang, and
Liang [18] showed that a Leslie–Gower predator–prey system with ratio-dependent and
state impulsive feedback control could have a periodic solution, which is quite different
from the dynamic behaviors of the system (3).

Aziz-Alaoui and Okiye [19] proposed a modified Leslie–Gower predator–prey model
in 2003. The authors argued that in the case of severe scarcity, a predator species can switch
over to other populations, but its growth will be limited by the fact that its favorite food
(prey species) is not available in abundance. The modified Leslie–Gower predator–prey
model with Holling I functional response can be described by the following equations:

dx
dt

= x(r1 − a1x− b1y),
dy
dt

= y
(

r− f y
m + x

)
,

(4)

where x(t) and y(t) represent the population density of the prey population and the
predator population at time t, respectively; m represents the environmental protection
rate for predators, which reflects the fact that the predators have other food resources; r
represents the birth rate of the predator population; and f represents the mortality of the
predator population due to intraspecific competition. Wu [20] further incorporated prey
refuge to above system, and he showed that under some suitable assumption, the system
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may exist a unique positive equilibrium. The condition which ensure the existence of the
positive equilibrium is enough to ensure its globally asymptotically stability.

Considering that the population of predators can not only directly reduce the pop-
ulation density of the prey species by catching prey as its food resource, the presence of
predators creates fear in the prey species because the prey species is always alert to potential
attacks, and the prey will engage in reverse feeding behavior in response to the perceived
risk (e.g., foraging frequency decreases and decreased number of offspring foraging), which
leads to a decrease in the prey species population density. The fear response of prey is
called the fear effect. The first famous experiment was done by Zanette, White, Allen, and
Clinchy [21]. They experimented on song sparrows over the course of an entire breeding
season to see if perceived predation danger could, even in the absence of direct killing,
influence reproduction. They discovered that having a fear of predators caused the number
of offspring to reduce by 40%.

In 2016, based on system (1), Wang, Zanette and Zou [22] first proposed a continuous
predator–prey model incorporating the fear effect:

du
dt

= r0u f (k, v)− du− au2 − puv,

dv
dt

= cpuv−mv,
(5)

where u(t) and v(t) represent the population density of the prey population and the
predator population at time t, respectively. k represents the level of fear that drives the
anti-predatory behavior of prey, r0 and d represent the birth rate and natural mortality rate
of the prey population, respectively, a represents the mortality of the prey population due
to intraspecific competition, and b represents maximum capture rate of predators. The
authors showed that for system (5), fear effect had no influence on the existence or stability
of the equilibria.

Zhu, Wu, Lai et al. [23] proposed the following predator–prey model:

du
dt

=
r0u

1 + kv
− du− au2 − puv,

dv
dt

= cpuv + mv− d1v2.
(6)

In this model, without the prey species, the predator species takes the form

dv
dt

= mv− d1v2. (7)

It is a logistic equation, which means that in system (6), the authors made the assump-
tion that the predator species takes other species as food resources. Their study showed
that the fear effect is one of the most important factors leading to the extinction of the prey
species. This result is quite different from the results of Wang, Zanette and Zou [22].

It is natural to study the influence of the fear effect in the Leslie–Gower-type predator–
prey system; indeed, many scholars [9,10,24–26] have conducted research in this direc-
tion. Firdiansyah [24] employed a Leslie–Gower predator–prey model with Beddington–
DeAngelis functional response to examine the influence of fear effect; the model had the
following form:

dx
dt

=
r1x

1 + Ky
− bx− px2 − α(1−m)xy

a + b(1−m)x + cy
,

dy
dt

= y
(

r2 −
βy

(1−m)x + γ

)
.

(8)

The author demonstrated that an increase in fear might reduce the population density
of both species. However, in the event of a constant fear rate, prey refuge is beneficial
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to the survival of both species. For more works on continuous predator–prey models
incorporating the fear effect, one could refer to [22–38] and the references cited therein.

It is well-known that when species have non-overlapping generations or their pop-
ulation sizes are too small, discrete models described by difference equations are more
appropriate than continuous-time ones. Generally speaking, discrete systems will have
more complex dynamical behaviors. However, to this day, there are not many works on
discrete predator–prey systems incorporating the fear effect.

Corresponding to system (5), Kundu, Pal, and Samanta [34] proposed the following
discrete predator–prey system with consideration of fear effect in prey species:

x(n + 1) = x(n) exp[
r0

1 + ky(n)
− d− ax(n)− py(n)],

y(n + 1) = y(n) exp[cpx(n)−m].
(9)

The dynamic behaviors of this system are quite different from those of the system (5).
Indeed, the authors showed that the stability of the coexistence equilibrium point of the
corresponding discrete-time model changed (unstable to stable) with the increase of the
cost of fear k.

Stimulated by the work of Wang, Zanette, and Zou [22]; Zhu, Wu, Lai et al. [23]; and
Kundu, Pal, and Samanta [34], corresponding to system (6), Chen, He, and Chen [35] re-
cently proposed and studied a discrete predator–prey model, in which the prey population
has a fear effect and the predator population has other food sources:

x(n + 1) = x(n) exp[
r0

1 + ky(n)
− d− ax(n)− by(n)],

y(n + 1) = y(n) exp[m− hy(n) + cbx(n)].
(10)

The authors paid attention to the local and global stability property of the equilibria of
the system. They showed that due to the fear of predation, the prey species will be driven
to extinction while the predator species tends to be stable since it has other food resources.

Given this background, it is natural to propose a discrete Leslie–Gower discrete
predator–prey model with fear effect in prey species, and to study the influence of fear
effect. In this paper, based on the model (4), we propose the following discrete Leslie–Gower
predator–prey model:

x(n + 1) = x(n) exp
(

r0

1 + ky(n)
− d− ax(n)− by(n)

)
,

y(n + 1) = y(n) exp
(

h− y(n)
m + x(n)

)
,

(11)

where x(n) and y(n) are the population density of prey and predator at the nth-generation,
respectively. k represents the level of fear that drives the anti-predatory behavior of prey, r0
and d represent the birth rate and natural mortality rate of the prey population, respectively,
a represents the mortality of the prey population due to intraspecific competition, b repre-
sents the maximum capture rate of predators, and h represents the intrinsic growth rate
of predators. m represents the environmental protection rate for predators, which reflects
the fact that the predators have other food resources. r0, k, d, a, b, h, and m are all positive
constants. Since there seems to be no research on discrete Leslie–Gower predator–prey
systems with fear effect, this study would be an interesting attempt to complement existing
research on Leslie–Gower predator–prey systems.

As far as system (11) is concerned, there are several issues needing to be solved: (1) Is
it possible to give a thorough analysis of the local and global stability of the equilibrium?
(2) Is it possible to investigate the bifurcation phenomenon of the system? (3) To what
extent does fear effect k change the dynamic behaviors of the system?

We investigate these three issues in this paper. The rest of the paper is arranged as
follows: We investigate the existence, local stability, and global stability of equilibria in
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Sections 2–4, respectively. We then investigate the bifurcation phenomenon in Section 5.
Some numerical simulations are carried out to show the feasibility of the main results in
Section 6. We end this paper with a brief discussion.

2. The Existence of Equilibria

The equilibria of system (11) are determined by the following equations:
x = x exp

( r0

1 + ky
− d− ax− by

)
,

y = y exp
(

h− y
m + x

)
.

(12)

By solving Equation (12), we can obtain the following conclusions:

Theorem 1. System (11) always has two boundary equilibria given by E0(0, 0), E1(0, hm); if

r0 > d holds, there is also a boundary equilibrium E2

( r0 − d
a

, 0
)

.

Theorem 2. Assuming that
r0 > (d + bhm)(1 + hkm) (13)

holds, system (11) admits a unique positive equilibrium E∗
(
x∗, y∗

)
, where y∗ = h(m + x∗), x∗ is

the unique positive solution of the equation:

A2x2 + A1x + A0 = 0, (14)

with

A2 = bh2k + ahk > 0,

A1 = 2bh2mk + ahmk + dhk + bh + a > 0, (15)

A0 = bh2mk + dhmk + bhm− d− r0 = (d + bhm)(1 + hkm)− r0 < 0.

Proof. Since x 6= 0, y 6= 0, Equation (12) is equivalent to:
r0x

1 + ky
− d− ax− by = 0,

h− y
m + x

= 0.
(16)

The second equation of (16) is equivalent to y = h(m + x). Substituting it into the
first equation and simplifying it, we obtain Equation (14). Obviously, both A1 and A2
are positive, so Equation (14) has a unique positive solution x∗ if and only if A0 < 0, i.e.,
r0 > (d + bhm)(1 + hkm). Consequently, the system (11) has a unique positive equilibrium
E∗(x∗, y∗), where y∗ = h(m + x∗).

The proof of Theorem 2 is finished.

Remark 1. One could easily see that (14) has no positive solution, consequently, if condition (13)
does not hold, the system (11) does not admit any positive equilibrium. So we can draw the following
conclusions:

The equilibria of the system (11) are:

(1) E0(0, 0), E1(0, hm), if r0 ≤ d;

(2) E0(0, 0), E1(0, hm), and E2

( r0 − d
a

, 0
)

, if d < r0 ≤ (d + bhm)(1 + hkm);

(3) E0(0, 0), E1(0, hm), E2

( r0 − d
a

, 0
)

, and E∗(x∗, y∗), if r0 > (d + bhm)(1 + hkm).
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Remark 2. Assume x∗ = x∗(k) is the unique positive root of Equation (14), i.e.,

A2(k)
(
x∗(k)

)2
+ A1(k)x∗(k) + A0(k) = 0, (17)

where A0(k) < 0. Computing the derivative of (17) with respect to k, we obtain

A′2(k)
(

x∗(k)
)2

+ 2A2(k)x∗(k)x∗′(k) + A′1(k)x∗(k) + A1(k)x∗′(k) + A′0(k) = 0,

where "′" represents the derivative
d
dk

. Simple calculation and analysis can reveal that

dx∗(k)
dk

= −
A′2(k)

(
x∗(k)

)2
+ A′1(k)x∗(k) + A′0(k)

2A2(k)x∗(k) + A1(k)
< 0,

which means that the value of prey equilibrium x∗ is strictly deceasing function of k.
Due to

y∗(k) = h
(
m + x∗(k)

)
,

we can conclude that the value of predator equilibrium y∗ is also is the decreasing function of k,
however, y∗(k) ≥ hm.

3. The Local Stability of Equilibria

The Jacobian matrix of system (11) at the equilibrium E(x, y) is

J(E) =

 (1− ax) exp
( r0

1 + ky
− d− ax− by

)
x
(
− r0k

(1 + ky)2 − b
)

exp
( r0

1 + ky
− d− ax− by

)
y2

(m + x)2 exp
(

h− y
m + x

) (
1− y

m + x

)
exp

(
h− y

m + x

)
.

Next, we judge the local stability of the equilibria of system (11) according to the above
Jacobian matrix and Lemmas 1 and 2 in [35].

3.1. The Local Stability of Boundary Equilibria E0, E1, E2

Theorem 3. E0(0, 0) is

(1) A source if r0 > d;
(2) A saddle if r0 < d;
(3) Non-hyperbolic if r0 = d.

Proof. The Jacobian matrix of system (11) at E0(0, 0) is

J(E0) =

(
exp (r0 − d) 0

0 exp (h)

)
.

Obviously, the two eigenvalues of J(E0) are λ1 = exp(r0 − d) > 0 and λ2 = exp(h) > 1.
Hence, if r0 > d, i.e., λ1 > 1, then E0(0, 0) is a source according to Lemma 1 of [35]. Thus,
(1) holds. Numbers (2) and (3) can be proved in the same way. Therefore, E0 is always
unstable.

The proof of Theorem 3 is finished.

Theorem 4. E1(0, hm) is

(1) A sink if r0 < (d + bhm)(1 + hkm) and h < 2;
(2) A source if r0 > (d + bhm)(1 + hkm) and h > 2;
(3) A saddle if one of the following conditions holds:

(i) r0 < (d + bhm)(1 + hkm) and h > 2;
(ii) r0 > (d + bhm)(1 + hkm) and h < 2;

(4) Non-hyperbolic if r0 = (d + bhm)(1 + hkm) or h = 2.
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Proof. The Jacobian matrix of system (11) at E1(0, hm) is

J(E1) =

 exp
( r0

1 + hkm
− d− bhm

)
0

h2 1− h

;

the two eigenvalues of J(E1) are λ1 = exp
( r0

1 + hkm
− d− bhm

)
> 0 and λ2 = 1− h < 1.

Hence, if r0 < (d + bhm)(1 + hkm) and h < 2, we have 0 < λ1 < 1 and |λ2| < 1, then
E1(0, hm) is a sink according to Lemma 1 of [35]. Thus, (1) holds, and (2)–(4) can be proved
in the same way. Therefore, E1 is stable if and only if r0 < (d + bhm)(1 + hkm) and h < 2.

The proof of Theorem 4 is finished.

Theorem 5. If the predator-free equilibrium E2

( r0 − d
a

, 0
)

of system (11) exists (i.e., r0 > d
holds), we can easily obtain that E2 is

(1) A source if r0 − d > 2;
(2) A saddle if r0 − d < 2;
(3) Non-hyperbolic if r0 − d = 2.

Proof. The Jacobian matrix of system (11) at E2

( r0 − d
a

, 0
)

is

J(E2) =

 1− (r0 − d) − (r0 − d)(kr0 + b)
a

0 exp (h)

.

Obviously, the two eigenvalues of J(E2) are λ1 = 1− (r0− d) < 1 and λ2 = exp (h) > 1.
Similar to the proof in Theorem 4, the above results can be easily obtained.

The proof of Theorem 5 is finished.

The above is the correlation analysis of the local stability of the boundary equilibria
of the system (11). Next, we discuss the local stability of the positive equilibrium of
system (11).

3.2. The Local Stability of the Positive Equilibrium E∗

Theorem 6. If the positive equilibrium E∗(x∗, y∗) of system (11) exists, i.e., r0 > (d + bhm)
(1 + hkm), we can easily obtain that E∗ is

(1) A sink if P < Q 6 2 or 0 < 2Q− 4 < P < Q;
(2) A source if one of the following conditions holds:

(i) Q 6 2 and P > Q;
(ii) Q > 2 and P > max(Q, 2Q− 4);

(3) A saddle if Q > 2 and P < 2Q− 4;
(4) Non-hyperbolic if P = 2Q− 4, where

P = h
(

a +
hr0k

(1 + ky∗)2 + bh
)

x∗,

Q = ax∗ + h.

Hence, E∗ is locally asymptotically stable if P < Q 6 2 or 0 < 2Q− 4 < P < Q; otherwise,
it is unstable.
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Proof. The Jacobian matrix of system (11) at E∗(x∗, y∗) is

J(E∗) =

 1− ax∗ −x∗
(

r0k
(1 + ky∗)2 + b

)
h2 1− h

.

Therefore, the characteristic equation of J(E∗) is F(λ) = λ2 + Bλ + C = 0, where

B = −2 + ax∗ + h,

C = (1− ax∗)(1− h) + h2x∗
(

r0k
(1 + ky∗)2 + b

)
.

It can be obtained through calculation that:

F(1) = 1 + B + C = h
(

a +
hr0k

(1 + ky∗)2 + bh
)

x∗ = P > 0,

F(−1) = 1− B + C = 4− 2h− 2ax∗ + h
(

a +
hr0k

(1 + ky∗)2 + bh
)

x∗ = 4− 2Q + P,

C− 1 = −h− ax∗ + h
(

a +
hr0k

(1 + ky∗)2 + bh
)

x∗ = P−Q,

where

x∗ =
−A1 +

√
A2

1 − 4A2 A0

2A2
, y∗ = h(m + x∗), (18)

and A2, A1, A0 are given in (15).
If P < Q 6 2 or 0 < 2Q− 4 < P < Q holds, then F(−1) > 0, C < 1. Hence, according

to Lemmas 1 and 2 in [35], we obtain that E∗ is a sink, which is stable. Numbers (2)–(4) can
be proved in the same way.

The proof of Theorem 6 is finished.

Remark 3. From Remark 1, it is easy to know that if k = 0 and r0 > d + bhm hold, the system
(11) admits a unique positive equilibrium E∗(x∗, y∗), where

x∗ = −A0

A1
=

r0 − d− bhm
a + bh

, y∗ = h(m + x∗),

which can not be obtained by equalities (18).

4. The Global Attractivity of Equilibria
4.1. The Global Attractivity of the Positive Equilibrium E∗

According to Theorem 6, the positive Equilibrium E∗ is locally asymptotically stable
when P < Q 6 2 or 0 < 2Q− 4 < P < Q. Next, we further explore global attractivity by
using Lemmas 3–5 from [35].

Theorem 7. If (1 + kUy
1 )(d + bUy

1 ) < r0 ≤ d + 1 and (1 + a)/b < h ≤ 1, the positive
equilibrium E∗ is globally attractive, i.e.,

lim
n→∞

x(n) = x∗, lim
n→∞

y(n) = y∗, (19)

where Uy
1 = h(m + Ux

1 ) + ε, Ux
1 = (r0 − d)/a + ε, ε is an arbitrarily small positive number.
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Proof. Let
(

x(n), y(n)
)

be any positive solution of system (11) with x(0) > 0 and y(0) > 0. Let

S1 = lim sup
n→∞

x(n), I1 = lim inf
n→∞

x(n),

S2 = lim sup
n→∞

y(n), I2 = lim inf
n→∞

y(n).

Therefore, to prove (19), we need only prove the following equations:

S1 = I1 = x∗, S2 = I2 = y∗. (20)

If there exist four sequences {Ux
n}, {U

y
n}, {Vx

n }, {V
y
n } satisfying:

Vx
n ≤ I1 ≤ S1 ≤ Ux

n , Vy
n ≤ I2 ≤ S2 ≤ Uy

n, (21)

and
lim

n→∞
Ux

n = lim
n→∞

Vx
n = x∗, lim

n→∞
Uy

n = lim
n→∞

Vy
n = y∗, (22)

then Equation (20) is clearly established according to the squeezing of the limit. Below, we
construct these four sequences by the iterative method:

(I) Through the first iteration, we can prove that there exist Ux
1 , Uy

1 > 0, such that S1 ≤ Ux
1

and S2 ≤ Uy
1 .

(i) Given by the first equation of system (11), we get

x(n + 1) = x(n) exp
(

r0

1 + ky(n)
− d− ax(n)− by(n)

)
≤ x(n) exp

(
r0 − d− ax(n)

)
, n = 0, 1, 2, · · ·

Consider the auxiliary equation

u(n + 1) = u(n) exp
(
r0 − d− au(n)

)
; (23)

since r0 − d ≤ 1, we obtain u(n) ≤ 1/a for all n ≥ 2, where u(n) is any
solution of system (23) with u(0) > 0 according to Lemma 3 in [35]. From
Lemma 4 in [35], we have f (u) = u exp

(
r0 − d− au(n)

)
is nondecreasing for

u ∈ (0, 1/a]. Hence, according to Lemma 5 in [35], we have that x(n) ≤ u(n)
for all n ≥ 2, where u(n) is any solution of (23) satisfying the initial condition
u(2) = x(2). Furthermore, because r0 − d<2, we have lim

n→∞
un = (r0 − d)/a

according to Lemma 3 in [35]. Therefore, we have

S1 = lim sup
n→∞

x(n) ≤ lim
n→∞

u(n) =
r0 − d

a
.

Hence, for sufficiently small ε > 0 there exists an integer N1 > 2 such that if
n ≥ N1, then

x(n) ≤ r0 − d
a

+ ε := Ux
1 .

(ii) Given by the second equation of system (11), we get

y(n + 1) = y(n) exp
(

h− y(n)
m + x(n)

)
≤ y(n) exp

(
h− y(n)

m + Ux
1

)
, ∀n ≥ N1.
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Consider the auxiliary equation

u(n + 1) = u(n) exp
(

h− y(n)
m + Ux

1

)
.

Since h ≤ 1, we obtain that u(n) ≤ m + Ux
1 for all n ≥ N1 from Lemma 3

in [35]. According to Lemma 4 in [35], we have that f (u) = u exp
(

h− y(n)
m + Ux

1

)
is nondecreasing for u ∈ (0, m + Ux

1 ]. Hence, according to Lemma 5 in [35], we
have that y(n) ≤ u(n) for all n ≥ N1. Therefore, as with (I) (i), we get

S2 = lim sup
n→∞

y(n) ≤ lim
n→∞

u(n) = h(m + Ux
1 ).

Hence, for sufficiently small ε > 0 there exists an integer N2 > N1 such that if
n ≥ N2, then

y(n) ≤ h(m + Ux
1 ) + ε := Uy

1 .

(II) Through the second iteration, we can prove that there exist Vx
1 , Vy

1 > 0, such
that I1 ≥ Vx

1 and I2 ≥ Vy
1 .

(i) Given by the first equation of system (11), we obtain that

x(n + 1) ≥ x(n) exp

(
r0

1 + kUy
1
− d− bUy

1 − ax(n)

)
, ∀n ≥ N2.

Consider the auxiliary equation

u(n + 1) = u(n) exp

(
r0

1 + kUy
1
− d− bUy

1 − au(n)

)
. (24)

Since (1 + kUy
1 )(d + bUy

1 ) < r0 ≤ d + 1, we obtain

0 <
r0

1 + kUy
1
− d− bUy

1 ≤ r0 − d ≤ 1.

Hence u(n) ≤ 1/a for all n ≥ N2 according to Lemma 3 in [35]. From Lemma

4 in [35], we know that f (u) = u exp

(
r0

1 + kUy
1
− d− bUy

1 − au

)
is nonde-

creasing for u ∈ (0, 1/a]. Hence, according to Lemma 5 in [35], we have that
x(n) ≥ u(n) for all n ≥ N2. According to Lemma 3 in [35], we have

I1 = lim inf
n→∞

x(n) ≥ lim
n→∞

u(n) =
1
a

(
r0

1 + kUy
1
− d− bUy

1

)
.

Hence, for sufficiently small ε > 0, there exists an integer N3 > N2 such that if
n ≥ N3, then

x(n) ≥ 1
a

(
r0

1 + kUy
1
− d− bUy

1

)
− ε := Vx

1 .

(ii) Given by the second equation of system (11), we obtain

y(n + 1) ≥ y(n) exp
(

h− y(n)
m + Vx

1

)
, ∀n ≥ N3.
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Consider the auxiliary equation

u(n + 1) = u(n) exp
(

h− u(n)
m + Vx

1

)
.

Since h ≤ 1, with a similar argument as above, we can obtain

I2 = lim inf
n→∞

y(n) ≥ lim
n→∞

u(n) = h(m + Vx
1 ).

Hence, for sufficiently small ε > 0 there exists an integer N4 > N3 such that if
n ≥ N4, then

y(n) ≥ h(m + Vx
1 )− ε := Vy

1 .

(III) Through the third iteration, we can prove that there exist Ux
2 ≤ Ux

1 , Uy
2 ≤ Uy

1 , such
that S1 ≤ Ux

2 and S2 ≤ Uy
2 .

(i) Given by the first equation of system (11), we obtain that

x(n + 1) ≤ x(n) exp

(
r0

1 + kVy
1
− d− bVy

1 − ax(n)

)
, ∀n ≥ N4.

Since Uy
1 > Vy

1 , we obtain 0 <
r0

1 + kUy
1
− d− bUy

1 <
r0

1 + kVy
1
− d− bVy

1 ≤

r0 − d ≤ 1, according to Lemma 5 in [35], we have that

S1 = lim sup
n→∞

x(n) ≤ 1
a

(
r0

1 + kVy
1
− d− bVy

1

)
.

Hence, for sufficiently small ε > 0, there exists an integer N5 > N4 such that if
n ≥ N5, then

x(n) ≤ 1
a

(
r0

1 + kVy
1
− d− bVy

1

)
+

ε

2
:= Ux

2 ≤ Ux
1 .

(ii) Given by the second equation of system (11), we obtain

y(n + 1) ≤ y(n) exp
(

h− y(n)
m + Ux

2

)
, ∀n ≥ N5.

Since h ≤ 1, with a similar argument as above, we can obtain

S2 = lim sup
n→∞

y(n) ≤ h(m + Ux
2 ).

Hence, for sufficiently small ε > 0, there exists an integer N6 > N5 such that if
n ≥ N6, then

y(n) ≤ h(m + Ux
2 ) +

ε

2
:= Uy

2 ≤ Uy
1 .

(IV) Through the fourth iteration, we can prove that there exist Vx
2 ≥ Vx

1 , Vy
2 ≥ Vy

1 , such
that I1 ≥ Vx

2 and I2 ≥ Vy
2 .

(i) Similarly, from the first equation of system (11), we obtain

x(n + 1) ≥ x(n) exp

(
r0

1 + kUy
2
− d− bUy

2 − ax(n)

)
, ∀n ≥ N6.



Axioms 2022, 11, 520 12 of 30

Since Uy
1 ≥ Uy

2 , we can obtain

0 <
r0

1 + kUy
1
− d− bUy

1 ≤
r0

1 + kUy
2
− d− bUy

2 ≤ r0 − d ≤ 1.

According to Lemma 5 in [35], we have

I1 = lim inf
n→∞

x(n)≥1
a

(
r0

1 + kUy
2
− d− bUy

2

)
.

Hence, for sufficiently small ε > 0 there exists an integer N7 > N6 such that if
n ≥ N7, then

x(n) ≥ 1
a

(
r0

1 + kUy
2
− d− bUy

2

)
− ε

2
:= Vx

2 ≥ Vx
1 .

(ii) Similarly, from the second equation of system (11), we obtain

y(n + 1) ≥ y(n) exp
(

h− y(n)
m + Vx

2

)
, ∀n ≥ N7.

Since h ≤ 1, with a similar argument as above, we can obtain

I2 = lim inf
n→∞

y(n)≥h(m + Vx
2 ).

Hence, for sufficiently small ε > 0 there exists an integer N8 > N7 such that if
n ≥ N8, then

y(n) ≥ h(m + Vx
2 )−

ε

2
:= Vy

2 ≥ Vy
1 .

By repeating steps (III)–(IV), sequences {Ux
n}, {U

y
n}, {Vx

n }, {V
y
n }, are constructed as

follows (define Vy
0 as 0) :

Ux
n =

1
a

(
r0

1 + kVy
n−1
− d− bVy

n−1

)
+

ε

n
,

Uy
n = h(m + Ux

n) +
ε
n ,

Vx
n =

1
a

(
r0

1 + kUy
n
− d− bUy

n

)
− ε

n
,

Vy
n = h(m + Vx

n )−
ε

n
.

(25)

These four sequences clearly satisfy inequalities (21), and it is shown below that they
also satisfy equalities (22).

We first prove that the limits of all four sequences exist, which can be proved by
using the monotone bounded criterion of sequence. First, it is proved by mathematical
induction that all four sequences are monotone, and that {Ux

n} and {Uy
n} are monotonically

decreasing, while {Vx
n } and {Vy

n } are monotonically increasing.
Obviously, if n = 1, we have

Ux
1 ≥ Ux

2 , Vx
1 ≤ Vx

2 , Uy
1 ≥ Uy

2 , Vy
1 ≤ Vy

2 .

For n = i− 1 (i ≥ 2), we assume that Ux
i−1 ≥ Ux

i and Vx
i−1 ≤ Vx

i hold. Then, further,
we have

Uy
i−1 = h(m + Ux

i−1) +
ε

i− 1
≥ h(m + Ux

i ) +
ε

i
= Uy

i ,

Vy
i−1 = h(m + Vx

i−1)−
ε

i− 1
≤ h(m + Vx

i )−
ε

i
= Vy

i .
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Consequently,

Ux
i =

1
a

(
r0

1 + kVy
i−1

− d− bVy
i−1

)
+

ε

i
≥ 1

a

(
r0

1 + kVy
i
− d− bVy

i

)
+

ε

i + 1
= Ux

i+1,

Uy
i = h(m + Ux

i ) +
ε

i
≥ h(m + Ux

i+1) +
ε

i + 1
= Uy

i+1,

Vx
i =

1
a

(
r0

1 + kUy
i
− d− bUy

i

)
− ε

i
≤ 1

a

(
r0

1 + kUy
i+1

− d− bUy
i+1

)
− ε

i + 1
= Vx

i+1,

Vy
i = h(m + Vx

i )−
ε

i
≤ h(m + Vx

i+1)−
ε

i + 1
= Vy

i+1.

Therefore, these four sequences are all monotone by mathematical induction. Combin-
ing with inequalities (21), it is easy to obtain that sequences {Ux

n} and {Uy
n} have lower

bounds and monotonic decreasing, and sequences {Vx
n } and {Vy

n } have upper bounds and
monotonic increasing. Therefore, it can be known from the monotone bounded criterion
that the limits of these four sequences all exist. Let

lim
n→∞

Ux
n = x1, lim

n→∞
Vx

n = x2, lim
n→∞

Uy
n = y1, lim

n→∞
Vy

n = y2. (26)

Obviously, they are all positive. Then, it is only necessary to prove that x1 = x2 = x∗,
y1 = y2 = y∗.

Let us take the limit of both sides of the equality sign of the four equations in (25);
taking n→ ∞, we obtain 

x1 =
1
a

( r0

1 + ky2
− d− by2

)
,

y1 = h(m + x1),

x2 =
1
a

( r0

1 + ky1
− d− by1

)
,

y2 = h(m + x2).

(27)

Note that the system of Equation (27) is equivalent to (16) if x1 = x2, y1 = y2, and
Uy

1 = h(m+Ux
1 )+ ε, so it can be known from r0 > (1+ kUy

1 )(d+ bUy
1 ) and from Theorem 2

that the positive equilibrium exists at this time, and therefore the system of Equation (27)
has a positive solution x1 = x2 = x∗, y1 = y2 = y∗ under the assumption of Theorem 7.
Following we will prove that the positive solution of the system (27) is unique.

The following can be obtained by simplification of (27):{ [
ax1 + d + bh(m + x2)

][
1 + kh(m + x2)

]
= r0,[

ax2 + d + bh(m + x1)
][

1 + kh(m + x1)
]
= r0.

(28)

Similarly, we know that (28) has at least one positive solution x1 = x2 = x∗. Below, we
prove that Equation (28) has only one positive solution:

Otherwise, Equation (28) has other positive solutions, that is, there are positive num-
bers x1 6= x2 satisfying (28). Subtracting the first equation of (28) from the second equation,
we obtain

(x1 − x2)
[
− 2bh2km− bh2k(x1 + x2) + ahkm− dhk + hkm− bh + a + 1

]
= 0. (29)

Because x1 6= x2, it can be obtained from (29) that

x1 + x2 =
−(d + bhm)hk− (1 + hkm)(bh− a− 1)

bh2k
.
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Since bh− a− 1 > 0, we have x1 + x2 < 0, which contradicts the fact that both x1 and
x2 are positive.

Hence, Equation (28) has only one positive solution x1 = x2 = x∗. Then, we have y1 =
y2 = y∗ from (27). Thus, we prove that these four sequences also satisfy the equalities (22).
Therefore, the positive equilibrium E∗ is globally attractive.

The proof of Theorem 7 is finished.

4.2. The Global Attractivity of the Boundary Equilibrium E1

In the previous section, we proved that the positive equilibrium is globally attractive
under certain conditions, which indicates that predator and prey populations can coexist
stably under certain conditions. When the prey population goes extinct, the predator
population probably does not go extinct with it, and tends to stabilize because there are
other food sources. This section discusses this possibility, and proves that the boundary
equilibrium E1 is also globally attractive under certain conditions.

Theorem 8. If r0 > d, any positive solution of system (11) is ultimately bounded.

Proof. Let (x(n), y(n)) be any positive solution of system (11). Since

x(n + 1) ≤ x(n) exp [r0 − d− ax(n)]

and r0 − d > 0, then from Lemma 6 in [35] we obtain

lim sup
n→∞

x(n) ≤ exp (r0 − d− 1)
a

.

Therefore, for any sufficiently small ε > 0 there exists an integer N1 > 0 such that if
n ≥ N1, then

x(n) ≤ exp (r0 − d− 1)
a

+ ε := U. (30)

Then, from the second equation of the system (11) and (30), we obtain

y(n + 1) ≤ y(n) exp
(

h− y(n)
m + U

)
, n ≥ N1.

According to Lemma 6 in [35], we have

lim sup
n→∞

y(n) ≤ (m + U) exp (h− 1).

Therefore, for any sufficiently small ε > 0 there exists an integer N2 > N1 such that if
n ≥ N2, then

y(n) ≤ (m + U) exp (h− 1) + ε := V. (31)

Combining (30) and (31), it can be concluded that any positive solution of system (11)
is ultimately bounded.

The proof of Theorem 8 is finished.

Next we use Lemmas 6 and 7 from [35] and Theorem 8 to discuss the global attractivity
of E1.

Theorem 9. Assuming that
r0 < d + bhm (32)

and
h < ln 2 + 1 (33)
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hold, the boundary equilibrium E1(0, hm) is globally attractive, i.e.,

lim
n→∞

x(n) = 0, lim
n→∞

y(n) = hm,

where (x(n), y(n)) is any positive solution of system (11).

Proof. Assume that (x(n), y(n)) is any positive solution of system (11). First let us prove
that lim

n→∞
x(n) = 0.

For all j ∈ N, according to system (11), we have

ln
x(j + 1)

x(j)
=

r0

1 + ky(j)
− d− ax(j)− by(j)

≤ r0 − d− ax(j)− by(j), (34)

ln
y(j + 1)

y(j)
= h− y(j)

m + x(j)
.

From (32), we have
r0 − d

h
< bm.

Hence, there exist the positive constants p and q such that

r0 − d
h

<
q
p
< bm.

Then,
bmp− q > 0, (35)

and
p(r0 − d)− qh < 0.

Then, there exists δ > 0 such that

p(r0 − d)− qh < −δ < 0. (36)

From (34)–(36), we obtain

p ln
x(j + 1)

x(j)
− q ln

y(j + 1)
y(j)

≤
[
p(r0 − d)− hq

]
−
[

apx(j) +
bmp− q

m
y(j)

]
≤ p(r0 − d)− hq < −δ < 0.

Adding both sides from 0 to n− 1, we have

n

∑
j=1

(
p ln

x(j + 1)
x(j)

− q ln
y(j + 1)

y(j)

)
= p ln

x(n)
x(0)

− q ln
y(n)
y(0)

< −δn,

then

x(n) < x(0)
(

y(n)
y(0)

) q
p

exp
(
− δ

p
n
)

. (37)

From (31) and (37), we obtain

x(n) < x(0)
(

V
y(0)

) q
p

exp
(
− δ

p
n
)

, ∀n ≥ N2.
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Hence, x(n)→ 0 with n→ ∞, i.e.,

lim
n→∞

x(n) = 0. (38)

Therefore, for any sufficiently small ε > 0, there exists an integer N3 > N2 such that if
n ≥ N3, then

x(n) < ε. (39)

Then, we prove that lim
n→∞

y(n) = hm.

Consider the system:

y1(n + 1) = y1(n) exp
(

h− y1(n)
m

)
. (40)

The system has a unique positive equilibrium y∗1 = hm. Let {y1(n)} be any positive
solution of system (40); h < 2 from (33), so lim

n→∞
y1(n) = hm can be obtained by applying

Lemma 3 in [35]. Therefore, to prove that lim
n→∞

y(n) = hm, we need only prove that

lim
n→∞

(
y(n)− y1(n)

)
= 0.

Assume that
y(n) = y1(n) exp

[
c(n)

]
; (41)

then, we only need to prove lim
n→∞

c(n) = 0.

Substituting (39)–(41) into the second equation of system (11), we can obtain the
following equation by simple calculation:

c(n + 1) = c(n) +
y1(n)

m
−

y1(n) exp
[
c(n)

]
m + x(n)

≤
[

1− y1(n) exp (θ(n)c(n))
m + ε

]
c(n) +

y1(n)ε
m2 , (42)

where θ(n) ∈ [0, 1], which means y1(n) exp (θ(n)c(n)) ∈
[
y1(n), y(n)

]
.

Since y(n) exp
[

h− y(n)
m

]
≤ y(n + 1) ≤ y(n) exp

[
h− y(n)

m + ε

]
, from Lemmas 6 and 7

in [35], we obtain

lim sup
n→∞

y(n) ≤ (m + ε) exp (h− 1) := S,

lim inf
n→∞

y(n) ≥ hm exp
(

h− S
m

)
:= I.

According to system (40), we obtain

lim sup
n→∞

y1(n) ≤ m exp (h− 1) ≤ S,

lim inf
n→∞

y1(n) ≥ hm exp
(

h− S
m

)
= I.

Therefore, for any sufficiently small ε > 0, there exists an integer N4 > N3 such that

I − ε ≤ y(n), y1(n) ≤ S + ε, ∀n ≥ N4. (43)

Given (33), we obtain exp (h− 1) < 2. In addition, if ε is sufficiently small, we obtain

exp (h− 1) <
2m

m + ε
,
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from which we have

max
{∣∣∣1− 1

m
S
∣∣∣, ∣∣∣1− 1

m
I
∣∣∣} < 1.

Let

αε = max
{∣∣∣1− 1

m + ε
(S + ε)

∣∣∣, ∣∣∣1− 1
m + ε

(I − ε)
∣∣∣}, (44)

since ε is sufficiently small, we obtain

αε < 1. (45)

From (42)–(44), we obtain

∣∣c(n + 1)
∣∣ ≤ max

{∣∣∣1− 1
m + ε

(I − ε)
∣∣∣, ∣∣∣1− 1

m + ε
(S + ε)

∣∣∣}∣∣c(n)∣∣+ exp (h− 1)
m

ε

= αε

∣∣c(n)∣∣+ exp (h− 1)
m

ε, ∀n ≥ N4. (46)

then we can obtain

|c(n)| ≤ αn−N4
ε |c(N4)|+

exp (h− 1)
m

1− αn−N4
ε

1− αε
ε.

Given (45) and because ε is sufficiently small, we can obtain lim
n→∞

c(n) = 0 from the

above inequality.
The proof of Theorem 9 is finished.

5. Bifurcation Analysis

In this section, we discuss bifurcations at the equilibria of the system (11). We can easily
derive the following theorems by using the central manifold and bifurcation theory [37,38].

5.1. Flip Bifurcation

First, we discuss the flip bifurcation of the system (11) at E1(0, hm).

Theorem 10. System (11) undergoes flip bifurcation at E1(0, hm) if parameters vary in the small
neighborhood of FA =

{
(r0, k, d, a, b, h, m) ∈ R7

+ : h = 2, r0 6= (d + bhm)(1 + hkm)
}

.

Theorem 11. System (11) undergoes flip bifurcation at E2

( r0 − d
a

, 0
)

if parameters vary in the

small neighborhood of FB = {(r0, k, d, a, b, h, m) ∈ R7
+ : r0 = d + 2}.

Proof. The proof of Theorem 11 is similar to the proof of Theorem 10. Therefore, we only
give the proof of Theorem 10. First, we can obtain that if h = 2 and r0 6= (d+ bhm)(1+ hkm)
hold, the eigenvalues of J(E1) are λ2 = −1 and λ1 6= 1,−1. Since a center manifold of
system (11) at E1 is x = 0 and the system (11) restricted to it is the logistic model:

y→ f (y) = y exp
(

h− y
m

)
.

Its nontrivial fixed point is y1 = hm. Then, we can easily obtain that

f ′(y1) = 1− h = −1

when parameters vary in the small neighborhood of FA. Hence, flip bifurcation can occur
at E1(0, hm), as shown in Figure 1.
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Figure 1. Flip bifurcation diagram of the boundary fixed point E1(0, hm).

The proof of Theorem 10 is finished.

5.2. Transcritical Bifurcation

In this section, our claim is that fixed point E0(0, 0) undergoes transcritical bifurcation.

Theorem 12. System (11) undergoes transcritical bifurcation at its trivial equilibrium E0(0, 0) if
parameters vary in the small neighborhood of FC =

{
(r0, k, d, a, b, h, m) ∈ R7

+ : r0 = d
}

.

Proof. First, we can obtain that if r0 = d and h > 0 hold, the eigenvalues of J(E0) are
λ1 = 1 and λ2 = exp (h) 6= 1,−1.

As (r0, k, d, a, b, h, m) ∈ FC, we can describe system (11) by the following map:

(
x
y

)
→

x exp
(
(r∗0 + r̃) + x

1 + ky
− d− ax− by

)
y exp

(
h− y

m + x

)
, (47)

where r∗0 = d and parameter r̃ represents a very small perturbation parameter such that
|r̃| � 1. If we expand the system (47) by Taylor at (x, y, r̃) = (0, 0, 0), we have:(

x
y

)
→
(

1 0
0 λ2

)(
x
y

)
+

(
f (x, y, r̃)
g(x, y, r̃)

)
, (48)

where

f (x, y, r̃) = −ax2 + r̃x + (−dk + b)xy +
1
2

a2x3 − ar̃x2 + (adk + ab)x2y +
(1

2
d2k2 + bdk

+dk2 +
1
2

b2
)

x2y +
1
2

r̃2x− (dk + b + k)r̃xy + O
(
(|x|+ |y|+ |r̃|)4),

g(x, y, r̃) = λ2y− λ2

m
y2 +

λ2

m2 xy2 +
λ2

2m2 y3 + O
(
(|x|+ |y|+ |r̃|)4).

Therefore, there exists a center manifold Wc(0, 0, 0) for map (48) at (0, 0) in a small
neighborhood of r̃ = 0:

Wc(0, 0, 0) =
{
(x, y, r̃) ∈ R3|y = h(x, r̃), h(0, 0) = 0, Dh(0, 0) = 0

}
.

Then, h must satisfy

h(x + f (x, h(x, r̃), r̃), r̃) = λ2h(x, r̃) + g(x, h(x, r̃), r̃). (49)
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h can be written as

h(x, r̃) = h1x2 + h2xr̃ + h3r̃2 + O
(
(|x|+ |r̃|)3). (50)

Substituting (50) into (49), we can obtain h1 = h2 = h3 = 0. Additionally, the map
restricted to the center manifold Wc(0, 0, 0) is given by:

F : x → x− ax2 + xr̃ +
1
2

a2x3 − ax2r̃ +
1
2

xr̃2 + O
(
(|x|+ |r̃|)4).

Next, we establish L1 6= 0 and L2 6= 0 as follows:
L1 =

(
∂2F
∂x2

)
(0,0)

= −2a 6= 0,

L2 =

(
∂2F
∂x∂r̃

)
(0,0)

= 1 6= 0.

Thus, we can state that system (11) undergoes transcritical bifurcation at E0 if r0 = d.
The proof of Theorem 12 is finished.

6. Numerical Simulations

In this section, we show the feasibility of the main results of this paper. Through nu-
merical simulation, we directly analyze the influences of fear effect on discrete system (11).

Example 1. The stability of the positive equilibrium E∗.

(1) When
(k, d, a, b, h, m, r0) = (0.7, 0.3, 3.0, 0.5, 0.5, 1.0, 4.0),

we take the initial values of system (11) as (0.6, 0.3), we have (1+ hkm)(d + bhm) = 0.74 <
r0, then the system (11) admits a unique positive equilibrium E∗(0.62, 0.81) according to
Theorem 2. At this point, we have P = 1.18, Q = 2.35, then E∗ is locally asymptotically
stable according to Theorem 6, as shown in Figure 2. In fact, if we take the initial values of
system (11) as (0.6, 0.3), (0.9, 0.2), (0.7, 0.4), (0.4, 0.5)(0.2, 0.2), (0.8, 0.8), we can see that
E∗ is also globally stable in Figure 3, but at this point we have r0 = 4 > 1.3 = d + 1. It
shows that it is possible for E∗ to be globally attractive even if the conditions of Theorem 7
are not satisfied. This means that sufficient conditions to ensure the globally asymptotically
stable equilibrium E∗ is too strict, which is probably due to the contraction and expansion of
the proof.

(2) When
(k, d, a, b, h, m, r0) = (0.0, 0.3, 3.0, 0.5, 0.5, 1.0, 4.0)

and (x(0), y(0)) = (0.5, 0.3), we have (1 + hkm)(d + bhm) = 0.55 < r0, the system (11)
has a unique positive equilibrium E∗(1.06, 1.03) according to Remark 3. At this point, we
have P = 1.73, Q = 3.68, then E∗ is a saddle according to Theorem 6, as shown in Figure 4.
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Figure 2. Local stability of positive equilibrium E∗.

(a) Prey (b) Predator

Figure 3. Global attractivity of positive equilibrium E∗.

Figure 4. The positive equilibrium is unstable.

Example 2. The stability of prey-free equilibrium E1.

(1) When
(k, d, a, b, h, m, r0) = (0.7, 0.3, 3.0, 0.5, 0.5, 1.0, 0.4)

and (x(0), y(0)) = (0.5, 0.3), we have (1 + hkm)(d + bhm) = 0.74 > r0 and h < 2, then
E1 is locally asymptotically stable according to Theorem 4, as shown in Figure 5. Further, we
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can see that d + bhm = 0.55 > r0 > d and h < ln 2 + 1, which means that E1 is globally
attractive according to Theorem 9. We take the initial values of the system (11) as

(0.6, 0.3), (0.9, 0.2), (0.7, 0.4), (0.4, 0.5), (0.2, 0.2), (0.8, 0.8),

respectively, for numerical simulation, and the results verify the accuracy of the conclusion of
Theorem 9, as shown in Figure 6.

(2) When
(k, d, a, b, h, m, r0) = (0.7, 0.3, 3.0, 0.5, 1.9, 1.0, 2.8)

we have
(1 + hkm)(d + bhm) = 2.91 > r0 = 2.8 > 1.25 = d + bhm

and ln 2 + 1 < h = 1.9 < 2, which satisfy the conditions of Theorem 4, but do not meet the
requirements of Theorem 9. However, we take the initial values of the system as

(0.5, 1.5), (0.3, 2.7), (1.1, 1.2), (0.7, 2.4)(0.2, 0.2), (0.8, 1.8),

we can see that E1(0, 1.9) is also globally attractive at this time from Figure 7.

Figure 5. Local stability of prey-free equilibrium.

(a) Prey (b) Predator

Figure 6. Global attractivity of prey-free equilibrium.
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Figure 7. The prey-free equilibrium is also globally attractive at this time.

Example 3. The impact of fear effect on system stability is studied by numerical simulations.

(1) First, we consider the case where there is no fear effect. Set each parameter value of system (11)
as (k, d, a, b, h, m) = (0.0, 0.3, 3.0, 0.5, 0.5, 1.0) and set (x(0), y(0)) = (0.5, 0.3). Through
numerical simulation, we find that when r0 < 2.67, system (11) has a stable equilibrium point.
When r0 continues to increase, this equilibrium point first bifurcates into a two-period orbit
(2.67 < r0 < 3.25), then bifurcates into a four-period orbit (3.25 < r0 < 3.33), and finally
chaos occurs (r0 > 3.33), as shown in Figure 8. We can see that with the increasing of grow
rate of prey species, the dynamic behaviors of both predator and prey becomes complicated.

(2) Then, we consider the fear effect. Set each parameter value of system (11) as:

(d, a, b, m, h, r0) = (0.3, 3.0, 0.5, 1.0, 0.5, 4.0),

set (x(0), y(0)) = (0.5, 0.3), and plot with k as the abscissa. We can see from Figure 9
that the system (11) changes from chaotic state (0 < k < 0.204) to eight-period orbit
(0.204 < k < 0.214), four-period orbit (0.214 < k < 0.277), then to two-period orbit
(0.277 < k < 0.440), to stable state (0.440 < k < 12.545), and finally to be the state that
the prey is driven to extinction while the predator survive in a stable state (k > 12.545).
This means that the stability of system (11) increases as the fear effect of prey increases
within a certain range, which is similar to the result in [35]. In addition, it can be seen from
Figure 9 (c)-(d) that the positive equilibrium solution (x∗(k), y∗(k)) of the system (11) will
decrease with the increasing of k, which is consistent with the conclusion of Remark 2. If k is
sufficiently large, the prey will become extinct, while the predator will not become extinct due
to the presence of other food sources.

(a) Prey (b) Predator

Figure 8. Variation of prey and predator densities with parameter r0 (k = 0).
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(a) Prey (0 < k < 1) (b) Predator (0 < k < 1)

(c) Prey (1 < k < 20) (d) Predator (1 < k < 20)

Figure 9. Variation of prey and predator densities with parameter k.

The phase portraits correlated with Figure 9 are displayed in Figure 10, which includes orbits
of periods 2, 4, and 8. When k = 0.005, we can see chaotic sets in Figure 10a.

(a) k = 0.005 (b) k = 0.205 (c) k = 0.215

(d) k = 0.279 (e) k = 0.450 (f) k = 12.550

Figure 10. Phase portraits for various values of k corresponding to Figure 9.

Example 4. The influence of fear effect on the positive equilibrium solution of system.
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Set each parameter value of system (11) as:

(d, a, b, m, h, r0) = (0.3, 3.0, 0.5, 1.0, 0.5, 4.0)

and (x(0), y(0)) = (0.5, 0.3). The fear effect values were set as

k1 = 0.6, k2 = 1, k3 = 2, k4 = 4, k5 = 8, k6 = 20

for numerical simulation, and the number of iterations n was taken as the abscissa for plotting, as
shown in Figure 11. It can be seen from Figure 11 that the larger the fear effect is, the smaller the
positive equilibrium solution (x∗(k), y∗(k)) is. In other words, the density of prey and predator
population in the stable state will decrease with the increasing of the fear effect. When the fear
effect is sufficiently large, the prey population will become extinct, while the predator population
will become stable. In addition, it is noted that when the fear effect is in a certain range, the larger
the fear effect is, the fewer iterations it takes for the predator and prey populations to stabilize,
that is, the faster the two populations stabilize. Therefore, it is concluded that the fear effect k can
enhance the stability of the positive equilibrium solution (x∗(k), y∗(k)) and reduce the value of the
positive equilibrium solution (x∗(k), y∗(k)), which is consistent with the conclusion of Remark 2
and Figure 9c,d.

(a) Prey (b) Predator

Figure 11. Prey and predator densities at different values of k.

Example 5. The impact of fear effect and other food resource on system stability is studied by
numerical simulations.

(1) First, we consider the case where there is no fear effect and has the variable other food re-
source. Set each parameter value of system (11) as (k, d, a, b) = (0.0, 0.3, 3.0, 0.5) and set
(x(0), y(0)) = (0.5, 0.3). Depending on r0 > 2, r0 < 2, h > 2 and h < 2, we give the
corresponding numerical simulations (Figures 12–15). We found that in any cases, too many
other food sources can accelerate the demise of prey populations. The possible reason is that
with the increasing of other food sources, the number of predator populations has increased.
Therefore, although the influence of a single predator on the prey is reduced, the overall preda-
tor population will have an excessive impact on the prey population, which will lead to the
decreasing of the prey population, and finally the prey species will be driven to extinction.

(2) Then, we consider the influence of fear effect. Set each parameter value of system (11) as:

(d, a, b) = (0.3, 3.0, 0.5),

set (x(0), y(0)) = (0.5, 0.3), and plot with k as the abscissa. Corresponding to the four cases
discussed above, we choose suitable m, such that two species could be coexist, no matter in the
stable state or chaos state. Figures 16–19 show that in any cases, if the fear effect is too large,
the prey species will be driven to extinction, while depending on the intrinsic growth rate of
predator species, the predator species will state in stable state for the case h < 2, and in chaos
state for the case h > 2.
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(a) Prey (b) Predator

Figure 12. Variation of prey and predator densities with parameter m (k = 0, r0 = 1.5, h = 1.5).

(a) Prey (b) Predator

Figure 13. Variation of prey and predator densities with parameter m (k = 0, r0 = 3, h = 1.5).

(a) Prey (b) Predator

Figure 14. Variation of prey and predator densities with parameter m (k = 0, r0 = 1.5, h = 3).
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(a) Prey (b) Predator

Figure 15. Variation of prey and predator densities with parameter m (k = 0, r0 = 3, h = 3).

(a) Prey (b) Predator

Figure 16. Variation of prey and predator densities with parameter k (m = 1, r0 = 1.5, h = 1.5).

(a) Prey (b) Predator

Figure 17. Variation of prey and predator densities with parameter k (m = 1, r0 = 3, h = 1.5).
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(a) Prey (b) Predator

Figure 18. Variation of prey and predator densities with parameter k (m = 0.6, r0 = 1.5, h = 3).

(a) Prey (b) Predator

Figure 19. Variation of prey and predator densities with parameter k (m = 0.5, r0 = 3, h = 3).

7. Discussion

Based on the traditional Lotka-Volterra predator prey model, Wang, Zanette, and
Zou [22] proposed system (5), in which the authors argued that the fear effect of predator to
prey may reduce the birth rate of the prey species. Their studied indicated that if the system
exists a positive equilibrium, it then is globally asymptotically stable. since the existence
condition is independent of the fear effect, one could draw the conclusion that fear effect
has no influence to the dynamic behaviors of the system (5). One may conjecture that such
a property still hold for the discrete counterpart system, however, Kundu, Pal, Samanta,
and Sen [34] showed that for system (9), the situations become complicated. If the birth rate
of the prey species is enough large, then, without the influence of fear effect, both predator
and prey species may have chaotic behaviors, then, for fixed birth rate, with the increasing
of fear effect, the system could becomes stable. They then drew the conclusion “fear effect
enhances stability in a predator-prey system”. However, an amazing property about system
(9) is that the system may have Hopf bifurcation, as was shown in Theorem 4.1 and Figure
5 in [34]. The existence of Hopf bifurcation exclude the global asymptotically stability of
the positive equilibrium, since such kind of phenomenon is induced by fear effect, we think
the fear effect also have negative effect on the stability of the system.

Zhu, Wu, Lai and Yu [23] proposed system (6), in which the predator species has
other food resource, they showed that the fear effect is one of the most important factors
that lead to the extinction of the prey species. The authors of [23] only paid attention to the
influence of fear effect, the dynamic behaviors of system (5) and (6) are quite different, the
reason may rely in the fact that in system (6), the predator species has other food resource,
and this leads to the lower bound of the predator species, and predator populations have
lasting effects on prey populations. While in system (5), with the reduce of prey species,
the predator species also reduced, since it has no enough food resource. Corresponding to
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system (6), Chen, He, and Chen [35] proposed system (10). Their studied indicated that the
prey free equilibrium may be globally stable under some suitable conditions.

Stimulated by the aforementioned works, we proposed a modified Leslie–Gower
discrete predator–prey model in which the prey population has a fear effect and the
predator population has other food sources, i.e., system (11). The fundamental difference
between model (10) and model (11) is that in model (10), the authors assume that the
predator population will increase its intrinsic growth rate after capturing the prey, while in
model (11), we assume that the captures the prey will increase the environmental capacity
of the predator population.

We discussed the existence, local stability, global attractivity and bifurcation phe-
nomenon of the equilibrium points.

By using iterative method and difference equation comparison principle, we obtained
the conclusion that the positive equilibrium point is globally attractive under certain
conditions. However, due to scaling in the proving process, the conditions of global
attraction of positive equilibrium obtained are more stringent. The results of numerical
simulation also show that the global attractivity of positive equilibrium may occur when
the theorem conditions are not fixed.

Then, we proved that the boundary equilibrium of prey extinction is also globally
attractive under certain conditions, and its stability is related to the birth rate of prey and
the intrinsic growth rate of predators. This means that the predator population stabilizes
while the prey population becomes extinct, the reason relies in the fact that the predator
species have other food sources.

Next, we discussed bifurcations at the equilibrium points of the system. At the same
time, through numerical simulation, we found that with the increase of growth rate of
predator population, a chaotic pattern appears in both prey and predator populations, and
the prey population will eventually become extinct.

Finally, we discussed the effect of fear effect on the stability of system (11). We found
that fear effect within a certain range can enhance the stability of the system, and this result
was presented intuitively via numerical simulation. However, for the case two species
could coexist in a stable state or chaotic state without fear effect, only with the increasing of
fear effect, the prey species will finally be driven to extinction. (see Example 5 for more
detail). Hence, fear effect of the prey to predator species is one of the essential factor that
could lead to the extinction of the prey species.

In this paper, we only considered the fear effect on the first species, and did not
consider the influence of functional response. It may be interesting to investigate the
discrete predator–prey system with fear effect and functional response; for example, to
date, there has been no investigation of the discrete type of system (8). In future, we will
try to conduct research in this direction.

At the end of the paper, based on the numeric simulations of this paper, we would
like to give two conjectures about the system (11).

Conjecture 1. The conditions which ensure the local stability of the prey free boundary equilibrium
is enough to ensure its global asymptotical stability.

Conjecture 2. Assume that
r0

1 + kUy
1
− d− bUy

1 < 2 (51)

and
h < 2 (52)

hold, then system (11) admits a unique positive equilibrium which is globally asymptotically stable.
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