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Abstract

:

One of the most common tools for achieving optimization and adequate production process management is linear programming (LP) in various forms. However, there are specific cases of the application of linear programming when production optimization implies several potential solutions instead of one. Exactly such a problem is solved in this paper, which integrates linear programming and a Multi-Criteria Decision-Making (MCDM) model. First, linear programming was applied to optimize production and several potential solutions lying on the line segment AB were obtained. A list of criteria was created and evaluated using the Improved Fuzzy Stepwise Weight Assessment Ratio Analysis (IMF SWARA). To obtain the final solution, a novel Rough compromise ranking of alternatives from distance to ideal solution (R-CRADIS) method was developed and verified through comparative analysis. The results show that the integration of linear programming and a Fuzzy-Rough MCDM model can be an exceptional solution for solving specific optimization problems.
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1. Introduction


Today, linear programming is one of the most effective mathematical tools for solving economic problems, certainly with the support of computer systems. Along with the development of computer systems, there has been an intensified application of linear programming and other related functions to solve specific economic problems. By applying linear programming, greater efficiency is achieved, and production costs can be significantly reduced, as indicated in [1] in which the authors applied the Mixed-Integer Linear Programming model. This is also confirmed by the authors Chandrawat et al. [2] applying fuzzy linear programming to optimize production costs because, in order to optimize these processes, we must make changes that are allow managers to be well informed [3]. However, taking into account that market conditions change very quickly and that there is uncertainty in every segment of the economic system, integrated models are most frequently applied to optimize various problems, as is the case in this paper, in which we presented a novel Rough CRADIS model in integration with the IMF SWARA method and linear programming. The application of linear programming and multi-criteria models is not rare [4,5,6,7]. Cheng et al. [8] created an integration model of multi-criteria decision analysis (MCDA) and inexact mixed integer linear programming (IMILP) to support the selection of an optimal landfill location and waste-flow-allocation pattern so that the total system cost can be minimized. This model includes qualitative and quantitative indicators, which is an advantage considering that the disadvantage of various multi-objective programming models is that they are basically mathematical and often ignore qualitative and subjective factors [8]. The paper [9] uses an integrated fuzzy multi-criteria model and a multi-objective programming approach for supplier selection and order allocation in a green supply chain. First, the fuzzy analytic hierarchy process and fuzzy TOPSIS were applied in order to analyze the significance of criteria and determine the best green suppliers. Then, multi-objective linear programming was used to consider and formulate various constraints such as quality control, capacity and other objectives. The objective of the mathematical model is simultaneously to maximize the total value of purchasing and to minimize the total cost of purchasing. The subject of research in the paper [10] refers to an integrated approach of multi-attribute utility theory (MAUT) and linear programming (LP) for evaluating and selecting the best suppliers and defining optimal order quantities among the selected ones to maximize total utility.



The following can be identified as special contributions of this paper:



(1) Formation of a novel integrated model consisting of linear programming, IMF SWARA method and Rough CRADIS approach.



(2) Extending the CRADIS approach with Rough Numbers (R-CRADIS) and presenting it for the first time in the literature, which is an enrichment of the entire field that treats multi-criteria problems.



(3) Solving the special case of linear programming obtaining multiple optimal solutions and integration with a MCDM model in order to achieve the desired optimum.



(4) Carrying out a sensitivity analysis based on which decision-makers can make decisions in real time, by looking at the real needs of the company and market requirements at any moment, and by considering the simulated values of criteria and obtaining new optimal solutions.



Motivation and objectives of the paper can be manifested through the following. When applying LP for the optimization and management of production processes in this special case, several potential solutions are obtained instead of one which is usually the case. In order to determine one solution that is optimal under the given circumstances and taking into account various factors, integration with a novel MCDM model was carried out. Moreover, the aim is to develop a model ensuring managers use real-time decision-making.



The rest of the paper consists of the following sections. In Section 2, materials and methods are given. The overall flow of the research is presented graphically and the steps of the developed method and applied methods are explained. The development of a novel Rough CRADIS approach is presented in detail. Section 3 introduces the optimization of production with the aim of maximizing profit. A special case of linear programming and its integration with a fuzzy-rough MCDM model is given. Section 4 is also of great importance because it presents the verification of the proposed model through sensitivity analysis, comparative analysis and calculation of statistical SCC and WS coefficients to determine the correlation of the ranks obtained. Finally, Section 5 provides concluding considerations with guidelines for future actions.




2. Materials and Methods


2.1. Methodology Steps


Figure 1 presents the overall methodology of this paper, which is divided into four different phases (I, II, III and IV). The first phase represents the expressed need for solving special problems by LP optimization. Additionally, in this phase, solving the problem of optimizing the production plan is presented with the aim of determining the maximum profit.



When applying LP for the optimization and management of production processes in this special case, several potential solutions are obtained instead of one which is usually the case. In order to determine one solution that is optimal under the given circumstances and taking into account various factors, the integration with a novel MCDM model was carried out. This represents the second phase of the research. First, four criteria were defined: capacity utilization of the first group of machines M (C1), capacity utilization of the second group of machines N (C2), supplying the market with articles of group A (C3) supplying the market with articles of group B (C4). Alternatives represent all potential solutions for x1 = 2000–2500, and for x2 = 1000–2000. A total of 21 potential solutions were created, and then the data were transformed into an initial decision matrix. The third phase involves the development of the novel Rough CRADIS approach (in which computation was made in Microsoft Excel), which represents a contribution from the methodological aspect. The developed approach is used to evaluate potential solutions, while the IMF SWARA method is used to calculate the weights of criteria. The fourth phase is determining the verification of the proposed model through several steps. Using sensitivity analysis and the formation of 40 scenarios, it is possible for decision-makers to determine the optimal solution in real time, which is also one of the contributions of this research both from the methodological and professional aspect. Then the obtained results were compared with four other Rough MCDM methods: Rough WASPAS [11], Rough SAW [12], Rough ARAS [13] and Rough MARCOS [14]. An additional test of the rank stability of potential solutions was also performed by creating 20 new scenarios in which the worst alternative was removed, and the entire procedure was repeated. Finally, statistical correlation tests were calculated for both sensitivity analysis and comparative analysis. Thus, SCC [15] and WS coefficients were calculated [16].




2.2. Linear Programming


The general task of LP: find a non-negative solution


  X =  (   x 1  ,  x 2  , … ,  x n   )  , (  x i  ≥ 0 , i = 1 , 2 , … , n )  



(1)




of the systems of linear inequalities or equations with constraints:


     a  11    x 1  +  a  12    x 2  + … +  a  1 n    x n   {   = ≤ ≥   }   b 1       a  21    x 1  +  a  22    x 2  + … +  a  2 n    x n   {   = ≤ ≥   }   b 2      ⋮      a  m 1    x 1  +  a  m 2    x 2  + … +  a  m n    x n   {   = ≤ ≥   }   b m     



(2)




so that the linear objective function reaches an extremum, i.e., a minimum or maximum value.


  F = F  (   x 1  ,  x 2  , … ,  x n   )  =  c 1   x 1  +  c 2   x 2  + … +  c n   x n   



(3)







The constraints in the LP problem form a domain of admissible solutions, which contains a set of solutions    C ¯   . Each point in    C ¯    is a candidate for a solution in the LP problem and is denoted as an admissible solution. A set    C ¯    represents a set of admissible solutions. Among all points in the set    C ¯   , the point(s) that optimize(s) the objective function of the LP problem is called the optimal solution of the LP problem.




2.3. IMF SWARA Method


The IMF SWARA method has been created by Vrtagić et al. [17] and consists of the following steps [14,18]:



Step 1: Sorting criteria in descending order based on their expected significance.



Step 2: Relatively smaller significance of each criterion (criterion Cj) is determined in relation to the previous one (Cj − 1), and this is repeated for each subsequent criterion. The comparative significance of the average value is denoted by      ℘ j   ¯   . Linguistics and the TFN scale for assessment of criteria is shown in Table 1.



Step 3: Determining the fuzzy coefficient      ℑ j   ¯    from Equation (4):


     ℑ j   ¯  =  {     1 ¯          j = 1        ℘ j   ¯  ⊕  1 ¯      j > 1      



(4)







The comparative significance of the average value—     ℘ j   ¯    can then be found.



Step 4: Determining the calculated weights      ℵ j   ¯    from Equation (5):


     ℵ j   ¯  =  {     1 ¯        j = 1          ℵ  j − 1    ¯       ℑ j   ¯        j > 1      



(5)







     ℑ j   ¯    is the fuzzy coefficient from the previous step.



Step 5: Calculation of the fuzzy weight coefficients, from Equation (6):


     w j   ¯  =      ℵ j   ¯      ∑  j = 1  n      ℵ j   ¯       



(6)




where      w j   ¯    represents the fuzzy relative weight of the criteria j, and n represents the number of criteria.




2.4. Development of a Novel Rough CRADIS Approach


In this section of the paper, the CRADIS approach [19,20,21] was extended with Rough numbers. The developed Rough CRADIS approach is described through the following steps and equations.



Step 1. The first step includes the formation of an initial Rough decision matrix consisting of n criteria and m alternatives as shown in Equation (7),


  ξ =  [       [   ξ  11  L  ,  ξ  11  U   ]         [   ξ  21  L  ,  ξ  21  U   ]       ⋮       [   ξ  m 1  L  ,  ξ  m 1  U   ]           [   ξ  12  L  ,  ξ  12  U   ]         [   ξ  22  L  ,  ξ  22  U   ]       ⋮       [   ξ  m 2  L  ,  ξ  m 2  U   ]         ⋯     ⋯     ⋱     ⋯         [   ξ  1 n  L  ,  ξ  1 n  U   ]         [   ξ  2 n  L  ,  ξ  2 n  U   ]       ⋮       [   ξ  m n  L  ,  ξ  m n  U   ]       ]   



(7)




where    ξ  i j     denotes the performance of alternative m in relation to criterion n.



Step 2. Determination of a Rough normalized decision matrix (8) using Equations (9) and (10):


  ς =  [       [   ς  11  L  ,  ς  11  U   ]         [   ς  21  L  ,  ς  21  U   ]       ⋮       [   ς  m 1  L  ,  ς  m 1  U   ]           [   ς  12  L  ,  ς  12  U   ]         [   ς  22  L  ,  ς  22  U   ]       ⋮       [   ς  m 2  L  ,  ς  m 2  U   ]         ⋯     ⋯     ⋱     ⋯         [   ς  1 n  L  ,  ς  1 n  U   ]         [   ς  2 n  L  ,  ς  2 n  U   ]       ⋮       [   ς  m n  L  ,  ς  m n  U   ]       ]   



(8)






   ς  i j   =    ξ  i j     max  ξ  i j     =  [     ξ  i j  L    max  ξ  i j  U    ,    ξ  i j  U    max  ξ  i j  L     ]  ,   j ∈ B  



(9)




where B marks a set of benefit criteria, and


   ς  i j   =   min  ξ  i j      ξ  i j     =  [    min  ξ  i j  L     ξ  i j  U    ,   min  ξ  i j  U     ξ  i j  L     ]  ,   j ∈ C  



(10)




where C marks a set of cost criteria.



Step 3. Calculation of the weighted normalized Rough matrix (11) using Equation (12):


  υ =  [       [   υ  11  L  ,  υ  11  U   ]         [   υ  21  L  ,  υ  21  U   ]       ⋮       [   υ  m 1  L  ,  υ  m 1  U   ]           [   υ  12  L  ,  υ  12  U   ]         [   υ  22  L  ,  υ  22  U   ]       ⋮       [   υ  m 2  L  ,  υ  m 2  U   ]         ⋯     ⋯     ⋱     ⋯         [   υ  1 n  L  ,  υ  1 n  U   ]         [   υ  2 n  L  ,  υ  2 n  U   ]       ⋮       [   υ  m n  L  ,  υ  m n  U   ]       ]   



(11)






   υ  i j   =  ς  i j   ⊗  w j  =  [   ς  i j  L  ⊗  w j L  ,  ς  i j  U  ⊗  w j U   ]   



(12)







Step 4. Calculation of an ideal    τ  i d     (the largest value of    υ  i j    ) and anti-ideal solution    τ  a i d     (the smallest value    υ  i j    ).


   τ  i d   =    [   τ  i d  L  ,  τ  i d  U   ]    1 × n   = max  υ  i j    



(13)






   τ  a i d   =    [   τ  a i d  L  ,  τ  a i d  U   ]    1 × n   = min  υ  i j    



(14)







Step 5. Determination of deviations from ideal and anti-ideal solutions, Equations (15) and (16).


   δ  i j  +  =    [   δ  i j   + L   ,  δ  i j   + U    ]    m × n   = max  τ  i d   −  υ  i j   =  [  max  τ  i j  L  −  υ  i j  U  , max  τ  i j  U  −  υ  i j  L   ]   



(15)






   δ  i j  −  =    [   δ  i j   − L   ,  δ  i j   − U    ]    m × n   =  υ  i j   − min  τ  a i d   =  [   υ  i j  L  − min  τ  i j  U  ,  υ  i j  U  − min  τ  i j  L   ]   



(16)







Step 6. Calculation of the degree of deviation of each alternative from ideal and anti-ideal solutions.


   ℜ i +  =    [   ℜ i  + L   ,  ℜ i  + U    ]    1 × m   =   ∑  j = 1  n    δ  i j  +     



(17)






   ℜ i −  =    [   ℜ i  − L   ,  ℜ i  − U    ]    1 × m   =   ∑  j = 1  n    δ  i j  −     



(18)







Step 7. Determination of the utility function of each alternative relative to the optimal alternatives.


     ℏ i +  =   [   ℏ i  + L   ,  ℏ i  + U    ]   1 × m   =  [     ℜ o +     ℜ i +     ]  =  [     ℜ o  + L      ℜ i  + U     ,    ℜ o  + U      ℜ i  + L      ]       ℜ o +  =   ∑  j = 1  n    (  min  (   δ  i j  +   )   )       



(19)






     ℏ i −  =   [   ℏ i  − L   ,  ℏ i  − U    ]   1 × m   =  [     ℜ o −     ℜ i −     ]  =  [     ℜ o  − L      ℜ i  − U     ,    ℜ o  − U      ℜ i  − L      ]       ℜ o −  =   ∑  j = 1  n    (  min  (   δ  i j  −   )   )       



(20)







Step 8. Sorting alternatives by calculating the average utility function using Equation (21). The best alternative is the one with the highest value.


   χ i  =    [   χ i  − L   ,  χ i  − U    ]    1 × m   =  [     ℏ i +  +  ℏ i −   2   ]  =  [     ℏ i  + L   +  ℏ i  − L    2  ,    ℏ i  + U   +  ℏ i  − U    2   ]   



(21)









3. Integration of Linear Programming and a Fuzzy-Rough MCDM Model for Production Optimization


3.1. Special Case of Linear Programming Optimization


The company produces two articles, A and B, on two groups of machines, M and N. In the period considered, the first group of machines has a capacity of 6000 working hours, and the second group has a capacity of 3000 working hours. The processing time of a unit of article A is 1.5 working hours on the first group of machines, and 1 working hour on the second group of machines. The processing time of a unit of article B is 1.5 working hours on the first group of machines, and 0.5 working hour on the second group of machines. For the production realization, the company has enough raw materials and labor, but it can only put 2500 units of article A and 3000 units of article B on the market. By selling, the company makes a profit of 2000 monetary units per unit of article A and 1000 monetary units per unit of article B. It is necessary to determine the optimal production plan in order to achieve the maximum profit for the company.



First of all, it is necessary to set up a mathematical model in accordance with Equations (1)–(3). Constraints of the model according to the parameters of the study are as follows:


     3 2   x 1  +  3 2   x 2  ≤ 6000          x 1  +  1 2   x 2  ≤ 3000            x 1  ≤ 2500            x 2  ≤ 3000          x 1  ,  x 2  ≥ 0    








while the objective function of maximizing the company’s profit is presented as follows:


   F  max   = 2000  x 1  + 1000  x 2   











By applying the simplex method of linear programming (Simplex Method calculator), the values of the objective function presented in Table 2 are obtained.



Non-basic variables are zero. The value of the basic variables can be taken into account. The function F contains only non-basic variables. Thus, the value of the function F for the basis can be kept in mind.


     S 1  = 0 ,    S 2  = 0 ,    S 3  = 500 ,    S 4  = 1000      x 1  = 2000 ,    x 2  = 2000     F − 6000000 = 0 ⇒ F = 6000000    



(22)







From a geometric point of view, both solutions are points of space, i.e., they form a line segment. Any point (any solution) on this segment will also be a solution.



Finally, the result of linear programming is presented by the following function:


     x 1  = 2500 t + 2000  (  1 − t  )       x 2  = 1000 t + 2000  (  1 − t  )      0 ≤ t ≤ 1      F  max   = 6000000    











The optimal solution is represented by the extreme points, A and B, of the convex set C (Figure 2). In other words, the optimal solution is represented by every point of the line segment AB.



The maximum value of the objective function is as follows:


   F  max   ( X ) = F ( A ) = 2000 ( 2000 ) + 1000 ( 2000 ) = 6000000  



(23)




i.e.,


   F  max   ( X ) = F ( B ) = 2000 ( 2500 ) + 1000 ( 1000 ) = 6000000  



(24)







We will obtain the same value of the criterion function if we include the coordinates of any point on the line segment AB, which represents a large number of admissible optimal solutions. The optimal value of the objective function is unique because it is six million regardless of how many products A and how many products B will be produced, but there are infinitely many admissible solutions that provide this function value.



The multiplicity of the optimal solution gives greater opportunities to the decision-maker, and this is where MCDM methods come into focus. The decision-maker chooses an optimal solution that best fits these conditions, e.g., if the extreme point B is taken as the optimal solution, then the capacity of the second group of machines will be fully utilized, while the first group of machines will have an unused capacity of 750 working hours. The market will be fully supplied by the first article, and it will lack 2000 units of article B. Which solution the decision-maker will choose depends on whether it is more important for him to use the capacity of the machines or to supply the market with articles individually. It is through the further development of the multi-criteria Fuzzy-Rough MCDM model that the optimal solution is reached depending on the current needs of the company, and it is defined through determining the significance of the criteria and extensive sensitivity analysis.




3.2. Formation of MCDM Model—Defining Criteria and Alternatives


Since we have as a solution many points that represent the optimal solution, a multi-criteria model can be applied further. Four criteria are defined: capacity utilization of the first group of machines M (C1), capacity utilization of the second group of machines N (C2), supplying the market with articles of group A (C3) and supplying the market with articles of group B (C4). A total of 21 alternatives were defined in accordance with the value t = 0–1 with an interval of 0.05 (Table 3):




3.3. Determining the Significance of Criteria Using the IMF SWARA Method


In this section of the paper, the calculation of weight values of the criteria was carried out using the IMF SWARA method. It is not group decision-making because previously it was a specific optimization problem using linear programming, after which the decision-maker takes into account the current state and needs of the company and evaluates the criteria as shown in Table 4.



First, the linguistic values of the criterion comparison      ℘ j   ¯    are defined, and the values      ℑ j   ¯    for j > 1 are obtained by adding TFN (1,1,1). The values      ℵ j   ¯    for j > 1 are obtained as follows:      ℵ 1   ¯  =      ℵ  1 − 1    ¯       ℑ 1   ¯    =      ℵ 4   ¯       ℑ 1   ¯    =  (   1  1.286   ,  1  1.250   ,  1  1.222    )  =  (  0.778 , 0.800 , 0.818  )   . The final fuzzy criterion weights are obtained as follows:


     w 1   ¯  =      ℵ 1   ¯      ∑  j = 1  n      ℵ j   ¯      =  (   1  3.488   ,  1  3.440   ,  1  3.383    )  =  (  0.287 , 0.291 , 0.296  )  .  











The results show that the decision-maker views the significance of the criteria quite equally, so did not decide to assign much greater significance to any one criterion than to the others. Even the highest-ranked criterion is not much more significant compared to the least significant one.




3.4. Determining the Optimal Solution Using the Rough CRADIS Approach


In Section 3.2, alternative values of t and values of x1 and x2 are defined, by including the values of x1 and x2 in each constraint, as e.g., for A1:


     3 2  × 2500 +  3 2  × 1000 = 5250 ≤ 6000    (  750  )              2500 +  1 2  × 1000 = 3000    ( 0 )                  2500 = 2500    ( 0 )                  1000 ≤ 3000    (  2000  )     











For A2:


     3 2  × 2475 +  3 2  × 1050 = 5287.5 ≤ 6000    (  712.5  )              2475 +  1 2  × 1050 = 3000    ( 0 )                  2475 ≤ 2500    (  25  )                  1050 ≤ 3000    (  1950  )     











For A21:


     3 2  × 2000 +  3 2  × 2000 = 6000    ( 0 )            2000 +  1 2  × 2000 = 3000    ( 0 )                  2000 ≤ 2500    (  500  )                  2000 ≤ 3000    (  1000  )     











In this way, the complete initial decision matrix is obtained as shown in Table 5, which essentially represents the difference in satisfying the set restrictions for each criterion separately. For example, for A1, the values of x1 and x2 are 2500 and 1000, respectively, and the utilization of the first group of machines M is not complete, but there are still 750 h available, while the second group of machines N is fully utilized. When it comes to meeting the requirements of the market with product A, it is fully satisfied, while there is a shortage of 2000 products B according to these parameters. The initial decision-making matrix represents equal low and upper numbers because it represents the difference in satisfying the set restrictions for each criterion separately which is essential for managers while having no influence on the application of the rough model.



By Equations (8)–(21), the final results of applying the new Rough CRADIS approach are obtained, which is shown in Table 6.



After applying the Rough CRADIS model, the optimal solution is alternative A1, while the alternative A21 represents the second best solution under the given conditions and parameters of the model.





4. Verification of the Developed Model and Discussion


4.1. Sensitivity Analysis


The sensitivity analysis has been performed through 40 scenarios that represent new simulated criterion values using Equation (22) [22,23,24]:


    W ¯   n β   =  (  1 −   W ¯   n α    )      W ¯   n = β      (  1 −   W ¯  n   )     



(25)







The new criterion values are shown in Figure 3, where the values are simulated as follows: starting from the first scenario in which the value of criterion C1 is reduced by 5% to S10 in which the value of that criterion is reduced by 95%, while the values of criteria C2, C3 and C4 increase proportionally. In the same way, new criterion values are determined in S11–S20 for C2, in S21–S30 for C3 and in S31–S40 for C4.



Figure 4 shows the ranks of all alternatives depending on the simulated weight values of the criteria.



The change in the ranks of alternatives is obvious so, e.g., A1 in S4–S10 is in the first position, which is a consequence of the reduction of C1 criterion by 35–95% while, e.g., in S27–S30, its rank decreases drastically to the 7th, 11th, 14th and 19th position, respectively, which is a consequence of the decrease in the significance of criterion C3 by 65–95%. This kind of sensitivity analysis in this special case of searching for an optimal solution represents an exceptional contribution for the decision-maker because he can fully perceive the real needs and determine which solution is optimal in real time.



Since there are certain changes in the ranks of potential solutions when reducing the weight values of the criteria, a statistical correlation of the ranks is performed (Figure 5), SCC and WS, which has already been mentioned in the methodology section of the paper. The lowest SCC = 0.521 is in set 40 since A3 drastically increases its position with a total decrease in the value of criterion C4. The lowest WS = 0.762 is in set 31, when the value of the third criterion decreases. Considering the large set of potential solutions (21), the average values of both coefficients show a very high level of rank correlation: SCC = 0.970, WS = 0.944.




4.2. Comparative Analysis


Comparative analysis represents one of the ways of testing the results obtained [25]. As already mentioned, the comparative analysis involves a comparison with four other Rough MCDM methods: Rough WASPAS [11], Rough SAW [12], Rough ARAS [13] and Rough MARCOS [14]. The results of the comparative analysis are shown in Figure 6.



Compared to three Rough MCDM methods, there is no change in the best alternative, while when applying the Rough ARAS method, the two best alternatives exchange places. Moreover, the greatest changes are in the comparison of Rough CRADIS with the Rough ARAS method, where A3 changes its position by several places.



Figure 7 shows the values of SCC and WS coefficients in the comparative analysis.



Rough CRADIS has a full correlation of ranks with Rough SAW, while it has 0.999 with Rough MARCOS, 0.874 with Rough ARAS, and 0.961 with Rough WASPAS when it comes to the SCC coefficient. The situation is similar with the WS coefficient, which has a full correlation with R-WASPAS, R-SAW, R-MARCOS.




4.3. Limitations and Managerial Implications


Limitations of the solution proposed by this research can be traced to linear programming and MCDM methodology. From the aspect of linear programming, the number of variables can represent limitations, while the developed Rough CRADIS model can be applied for group decision-making only, which is the second limitation.



It is very important to note that sensitivity analysis enables real-time decision-making since the decision-maker has at his disposal a set of 40 formed scenarios in which the criteria change their original values. This means that in real time, if it is more important for the company to satisfy the requirements of the market with product B rather than A, it can precisely determine from the obtained results what quantity of product it needs. The same is the case with the use of own resources, which are presented in the paper as criteria.





5. Conclusions


The paper proposes a novel integrated model consisting of a combination of linear programming, fuzzy set theory, rough set theory and a MCDM method. A novel Rough CRADIS approach has been created that can be used for any problem involving multiple criteria. The problem of optimizing production with the aim of maximizing profit, which represents a specific problem of linear programming, has been presented and solved. Based on a numerical example using linear programming, a set of optimal solutions that lie on the line segment AB has been obtained. After that, a total of 21 different solutions were formed, which can represent the optimum depending on the real requirements of the market and the orientation of the company. The IMF SWARA method was applied in order to determine the significance of the criteria considered when making a decision. At the end, a calculation was made using the novel Rough CRADIS approach in order to determine the optimal solution under the given conditions, i.e., how many products should be produced. The results show that the integration of linear programming and a Fuzzy-Rough MCDM model can be an exceptional solution for solving specific optimization problems.



Future research can be reflected through defining a larger number of influential factors and defining an objective function that will minimize costs while maximizing the profit. In addition, the application of fuzzy linear programming with the development of new approaches is highlighted as a useful option.
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Figure 1. Research methodology. 
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Figure 2. The function F that has a maximum value at any point on the line segment AB. 
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Figure 3. Simulation of the weight values of criteria through 40 newly formed scenarios. 
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Figure 4. Ranks of alternatives when changing the values of the criteria. 
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Figure 5. Statistical SCC and WS correlation coefficients for changes in criterion significance. 
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Figure 6. Comparison results of R-CRADIS with four Rough MCDM methods. 
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Figure 7. Correlation of ranks in comparative analysis. 
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Table 1. Linguistics and the TFN scale.
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Linguistic Variable

	
Abbreviation

	
TFN Scale






	
Absolutely less significant

	
ALS

	
1

	
1

	
1




	
Dominantly less significant

	
DLS

	
1/2

	
2/3

	
1




	
Much less significant

	
MLS

	
2/5

	
1/2

	
2/3




	
Really less significant

	
RLS

	
1/3

	
2/5

	
1/2




	
Less significant

	
LS

	
2/7

	
1/3

	
2/5




	
Moderately less significant

	
MDLS

	
1/4

	
2/7

	
1/3




	
Weakly less significant

	
WLS

	
2/9

	
1/4

	
2/7




	
Equally significant

	
ES

	
0

	
0

	
0
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Table 2. Value of function F.






Table 2. Value of function F.





	x1
	X2
	S1
	S2
	S3
	S4
	Const.





	0
	0
	1
	−3
	3/2
	0
	750



	0
	1
	0
	2
	−2
	0
	1000



	1
	0
	0
	0
	1
	0
	2500



	0
	0
	0
	−2
	2
	1
	2000



	0
	0
	0
	−2000
	0
	0
	F − 6000000



	0
	0
	2/3
	−2
	1
	0
	500



	0
	1
	0
	2
	−2
	0
	1000



	1
	0
	0
	0
	1
	0
	2500



	0
	0
	0
	−2
	2
	1
	2000



	0
	0
	0
	−2000
	0
	0
	F − 6000000



	0
	0
	2/3
	−2
	1
	0
	500



	0
	1
	4/3
	−2
	0
	0
	2000



	1
	0
	−2/3
	2
	0
	0
	2000



	0
	0
	−4/3
	2
	0
	1
	1000



	0
	0
	0
	−2000
	0
	0
	F − 6000000
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Table 3. Defining alternatives depending on the value t.
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	t
	x1
	x2





	A1
	1
	2500
	1000



	A2
	0.095
	2475
	1050



	A3
	0.090
	2450
	1100



	A4
	0.085
	2425
	1150



	A5
	0.080
	2400
	1200



	A6
	0.075
	2375
	1250



	A7
	0.070
	2350
	1300



	A8
	0.065
	2325
	1350



	A9
	0.060
	2300
	1400



	A10
	0.055
	2275
	1450



	A11
	0.050
	2250
	1500



	A12
	0.045
	2225
	1550



	A13
	0.040
	2200
	1600



	A14
	0.035
	2175
	1650



	A15
	0.030
	2150
	1700



	A16
	0.025
	2125
	1750



	A17
	0.020
	2100
	1800



	A18
	0.015
	2075
	1850



	A19
	0.010
	2050
	1900



	A20
	0.05
	2025
	1950



	A21
	0
	2000
	2000
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Table 4. Weight values of the criteria calculated with the IMF SWARA method.
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       ℘ j   ¯     

	
       ℑ j   ¯     

	
       ℵ j   ¯     

	
       w j   ¯     






	
C3

	

	
1.000

	
1.000

	
1.000

	
1.000

	
1.000

	
1.000

	
0.287

	
0.291

	
0.296




	
C4

	
ES

	
1.000

	
1.000

	
1.000

	
1.000

	
1.000

	
1.000

	
0.287

	
0.291

	
0.296




	
C1

	
WLS

	
1.222

	
1.250

	
1.286

	
0.778

	
0.800

	
0.818

	
0.223

	
0.233

	
0.242




	
C2

	
WLS

	
1.222

	
1.250

	
1.286

	
0.605

	
0.640

	
0.669

	
0.173

	
0.186

	
0.198




	

	

	

	

	
SUM

	
3.383

	
3.440

	
3.488
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Table 5. Initial decision matrix.
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C1

	
C2

	
C3

	
C4






	
A1

	
750.00

	
750.00

	
1

	
1

	
1

	
1

	
2000

	
2000




	
A2

	
712.50

	
712.50

	
1

	
1

	
25

	
25

	
1950

	
1950




	
A3

	
675.00

	
675.00

	
1

	
1

	
50

	
50

	
1900

	
1900




	
A4

	
637.50

	
637.50

	
1

	
1

	
75

	
75

	
1850

	
1850




	
A5

	
600.00

	
600.00

	
1

	
1

	
100

	
100

	
1800

	
1800




	
A6

	
562.50

	
562.50

	
1

	
1

	
125

	
125

	
1750

	
1750




	
A7

	
525.00

	
525.00

	
1

	
1

	
150

	
150

	
1700

	
1700




	
A8

	
487.50

	
487.50

	
1

	
1

	
175

	
175

	
1650

	
1650




	
A9

	
450.00

	
450.00

	
1

	
1

	
200

	
200

	
1600

	
1600




	
A10

	
412.50

	
412.50

	
1

	
1

	
225

	
225

	
1550

	
1550




	
A11

	
375.00

	
375.00

	
1

	
1

	
250

	
250

	
1500

	
1500




	
A12

	
337.50

	
337.50

	
1

	
1

	
275

	
275

	
1450

	
1450




	
A13

	
300.00

	
300.00

	
1

	
1

	
300

	
300

	
1400

	
1400




	
A14

	
262.50

	
262.50

	
1

	
1

	
325

	
325

	
1350

	
1350




	
A15

	
225.00

	
225.00

	
1

	
1

	
350

	
350

	
1300

	
1300




	
A16

	
187.50

	
187.50

	
1

	
1

	
375

	
375

	
1250

	
1250




	
A17

	
150.00

	
150.00

	
1

	
1

	
400

	
400

	
1200

	
1200




	
A18

	
112.50

	
112.50

	
1

	
1

	
425

	
425

	
1150

	
1150




	
A19

	
75.00

	
75.00

	
1

	
1

	
450

	
450

	
1100

	
1100




	
A20

	
37.50

	
37.50

	
1

	
1

	
475

	
475

	
1050

	
1050




	
A21

	
1.00

	
1.00

	
1

	
1

	
500

	
500

	
1000

	
1000
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Table 6. Results of applying the Rough CRADIS approach.
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     ℜ i +     

	
     ℜ i −     

	
     ℜ o +     

	
     ℜ o −     

	
     ℏ i +     

	
     ℏ i −     

	
     χ i     

	
Rank






	
A1

	
0.9465

	
0.6685

	
0.6165

	
0.9985

	
0.6514

	
0.669542

	
0.660

	
1




	
A2

	
1.3343

	
0.2807

	
0.4621

	
0.281146

	
0.372

	
3




	
A3

	
1.3422

	
0.2729

	
0.4594

	
0.273271

	
0.366

	
7




	
A4

	
1.3446

	
0.2704

	
0.4585

	
0.270808

	
0.365

	
11




	
A5

	
1.3457

	
0.2693

	
0.4581

	
0.269709

	
0.364

	
14




	
A6

	
1.3463

	
0.2688

	
0.4580

	
0.269167

	
0.364

	
17




	
A7

	
1.3465

	
0.2685

	
0.4579

	
0.268913

	
0.363

	
19




	
A8

	
1.3466

	
0.2684

	
0.4578

	
0.268834

	
0.363

	
21




	
A9

	
1.3466

	
0.2685

	
0.4579

	
0.268876

	
0.363

	
20




	
A10

	
1.3464

	
0.2686

	
0.4579

	
0.269011

	
0.363

	
18




	
A11

	
1.3462

	
0.2688

	
0.4580

	
0.269222

	
0.364

	
16




	
A12

	
1.3459

	
0.2691

	
0.4581

	
0.269506

	
0.364

	
15




	
A13

	
1.3456

	
0.2695

	
0.4582

	
0.269862

	
0.364

	
13




	
A14

	
1.3451

	
0.2699

	
0.4583

	
0.270297

	
0.364

	
12




	
A15

	
1.3446

	
0.2704

	
0.4585

	
0.270829

	
0.365

	
10




	
A16

	
1.3439

	
0.2711

	
0.4587

	
0.271487

	
0.365

	
9




	
A17

	
1.3431

	
0.2719

	
0.4590

	
0.272337

	
0.366

	
8




	
A18

	
1.3419

	
0.2731

	
0.4594

	
0.273524

	
0.366

	
6




	
A19

	
1.3400

	
0.2751

	
0.4601

	
0.275485

	
0.368

	
5




	
A20

	
1.3351

	
0.2800

	
0.4618

	
0.280383

	
0.371

	
4




	
A21

	
1.0199

	
0.5951

	
0.6045

	
0.596012

	
0.600

	
2

















	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.











© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






media/file13.jpg
Values of SCC and WS cocficients

s

o500

s

B

§

s

ReRADIS

RWASPAS.

RsawW RARAS
Rough MCDM methods

—sCC —Ws

RMARCOS

Average





media/file4.png
60(>

40%

30008

« <
0 2500 3000 4000
3 @ (1>





nav.xhtml


  axioms-11-00510


  
    		
      axioms-11-00510
    


  




  





media/file2.png
I [ Recognizing needs for research ] [ Forming MCDM model ]

special case of linear programming LP optimization _ _ _

. e g - e Forming 21 alternatives as potential
Creating list of criteria : _
| , solution from LP
{ v

solving production . . : ... . .

T e I P ][ multi solution ] Transforming data in initial decision I
matrix

\ J

<

Development of novel Rough CRADIS approach and integration with IMF ]

SWARA method

|

5 v
Calculation criteria weights ] [ Ranking of alternatives ]

| |

[ Rough CRADIS approach ]

U

Iv [ Sensitivity and comparative analysis ] o
¢ Y . B

g =

Simulation of new criteria weights wj Comparing with other Rough MCDM methods: R-ARAS. R- g :TJ
— forming 40 scenarios MARCOS. R-SAW. R-WASPAS = 0

o]

2

[ Reverse rank matrix ] §






media/file5.jpg
010 020 030 040 050 06 070 080 090

Values of simulated weights

Owl Bwl’ Bw2 Ow2 Bu3 Bwd' Bwi Bwd





media/file3.jpg
6000

@

@ @ @





media/file1.jpg
)

s u

Desclapmentof ovel Rough CRADIS approac
'SWARA mithod.

l—‘—l

i tcgration with IMF I

o — (ot i)

l

v ety ad comparatve anatysis

3

‘Sinmitionof v crtriaweigs vy | | Comparing it otes Roneh MCDM et RAAS. K-
" Tonming 40 secmrion 'MARCOS.RLSAW RAVASPAS






media/file7.jpg
A19
A1z
Als
A13
A1

Alernatives
z

=

ZEHY

01 23 45678 91011 121314151617 181920 21
Ranks

SET 40 5 SET 39 = SET 38 u SET 37 m SET 36 W SET 35 WSET 34 WSET 33 WSET 32
WSET 31 WSET 30 #SET 29 u SET 28 « SET27 u SET 26 # SET 25  SET 24 WSET 23
WSET22 WSET 21 WSET20 WSET 19 WSET 18 8 SET 17 8 SET 16 # SET 15 8 SET 14
WSET13 W SET 12 WSET 11 WSET 10MSETS WSETS WSET7 WSET6 WSETS
WSET4 WSET3 WSET2 WSET1 WSETO





media/file10.png
1.000
0.930
0.200
0.830

0.800
0.750
0.700
0.620

SUCialiich

L

¥

O

0.600
0.230

san[ep

0.200

AV

6E 145
Le1dS
celds
ee 145
[e1d5
6L145
LCIAS
Cilds
£CldsS
e
61145
L1145
LILIES
e1LAS
1195
6145
LIdS
cIds
e 195
1195

Sets





media/file12.png
Ranks
WO

=1

= L

[ n
Al

A2 A3 A4 AD Ab A7 AB AS AlD All Al12 Al3 Al4 Al5 Ale AlY Al AlS A20 A2l

Alternatives

B R-CRADIS BER-WASFPAS OR-5AW OR-ARAS BEER-MARCOS





media/file9.jpg
AV
66135
6135
ce1ds
€e13s
16135
6213s
ze13s
ce1as
€e1as
T21ds
61135
2113s
c11as
€113s
s
6135

2135

c13s

€13s

113s

Sets.

—CCC m—WS





media/file0.png





media/file14.png
0.990

0.970

0.950

0.930

0.910

0.890

Values of SCC and WS coefficients

0.870

0.850

1.000

—\ 1 000 1.000 —2
1.000
1.000 1 000 \\ / / 0.999
0.961 \ 0.961 /
0.874
R-CRADIS R-WASPAS R-SAW R-ARAS R-MARCOS Average
Rough MCDM methods





media/file8.png
Alternatives

2>
N

A21
A19
Al7
Alb5

>
8

All
A9

Ab
A3
Al

n

-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Ranks

@ SET 40 © SET 39 = SET 38 m SET 37 m SET 36 mSET 35 m SET 34 m SET 33 m SET 32
B SET 31 mSET 30 = SET 29 = SET 28 = SET 27 = SET 26 1 SET 25 = SET 24 m SET 23
WSET 22 mSET 21 mSET 20 mSET 19 mSET 18 mSET 17 m SET 16 = SET 15 = SET 14
WSET13WSET 12 mSET 11 mSET 10 mSET9 MSET8 EMSET7 MSET 6 MSETDS
WmSET4 mSET3 mSET2 mSET1 mSETO





media/file11.jpg
2

R

M

A2 A3 AL AS AS A7 AS A9 AID AIL A2 AID Ald AIS Al6 AL

Altemnatives

BRCRADIS BRIWASPAS @RSAW

BRARsS

BRMARCOS

IS A19 A20 A2





media/file6.png
Scenario

540
S37
534
S31
528
525
522
519
516
513
510

S7

54

S1

0.00

0.10

0.20 0.30 0.40

Values of simulated weights

Owl @wl

Ow2 Ow2'

0.50 0.60

Bw3 BEHw3

0.70

Bwi Bw4

0.80

0.90

1.00





