

Article

Applications of Higher-Order *q*-Derivative to Meromorphic *q*-Starlike Function Related to Janowski Function

Likai Liu¹, Rekha Srivastava² and Jin-Lin Liu^{3,*}

- Information Technology Department, Nanjing Vocational College of Information Technology, Nanjing 210023, China
- ² Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada
- Department of Information Science, Yangzhou University, Yangzhou 225002, China
- * Correspondence: jlliu@yzu.edu.cn

Abstract: By making use of a higher-order *q*-derivative operator, certain families of meromorphic *q*-starlike functions and meromorphic *q*-convex functions are introduced and studied. Several sufficient conditions and coefficient inequalities for functions in these subclasses are derived. The results presented in this article extend and generalize a number of previous results.

Keywords: *q*-derivative; analytic functions; differential subordination; meromorphic functions; meromorphic *q*-convex functions

MSC: 30C45; 05A30

Citation: Liu, L.; Srivastava, R.; Liu, J.-L. Applications of Higher-Order *q*-Derivative to Meromorphic *q*-Starlike Function Related to Janowski Function. *Axioms* **2022**, *11*, 509. https://doi.org/10.3390/axioms11100509

Academic Editors: Sevtap Sümer Eker and Juan J. Nieto

Received: 11 August 2022 Accepted: 25 September 2022 Published: 27 September 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Recently, q-analysis has fascinated scholars due to various applications in many areas of physics and mathematics. The applications of q-analysis were first considered by Jackson [1,2]. In recent years, some scholars have written a number of papers [3–15] associated with q-starlike functions and the Janowski functions [16]. In particular, Srivastava [17,18] pointed out some applications and mathematical explanations of q-derivatives in GFT. In this paper, we consider several families of meromorphically multivalent q-starlike functions by making use of the Janowski function and the higher-order q-derivative. Certain sufficient conditions and coefficient inequalities for functions in these subclasses are derived. Moreover, several previous results are generalized.

Let $\Sigma(p)(p \in \mathbb{N})$ denote the family of p-valent analytic functions in $U^* = \{z : 0 < |z| < 1\}$ which have the following form:

$$f(z) = z^{-p} + \sum_{k=1}^{\infty} a_{k-p} z^{k-p}.$$
 (1)

Furthermore, we let $\Sigma(1) = \Sigma$. If $f \in \Sigma(p)$ satisfies the condition

$$\operatorname{Re}\left(-\frac{zf'(z)}{f(z)}\right) > 0,\tag{2}$$

then f is called a meromorphic p-valent starlike function. We note the family by $M\Sigma^*(p)$ and write $M\Sigma^*(1) = M\Sigma^*$. The class $M\Sigma^*$ was studied by Pommerenke [19].

If $f \in \Sigma(p)$ satisfies the condition

$$\operatorname{Re}\left(-\frac{(zf'(z))'}{f'(z)}\right) > 0,\tag{3}$$

Axioms **2022**, 11, 509 2 of 10

then f is called a meromorphic p-valent convex function. We note this family by MC(p) and write MC(1) = MC.

If a function ψ is analytic in $U = U^* \cup \{0\}$ and satisfies

$$\psi(z) = 1 + \sum_{k=1}^{\infty} \psi_k z^k \tag{4}$$

and

$$\operatorname{Re}(\psi(z)) > 0$$
,

then ψ is said to be in the family P.

Let φ be analytic in U and $\varphi(0) = 1$. If φ satisfies

$$\varphi(z) \prec \frac{Az+1}{Bz+1} \quad (-1 \le B < A \le 1),$$

then φ is said to be in P[A, B].

In [16], Janowski studied the family P[A, B] and obtained that φ is in P[A, B] if

$$\varphi(z) = \frac{(1-A) + (1+A)\psi(z)}{(1-B) + (1+B)\psi(z)} \quad (\psi \in P; -1 \le B < A \le 1).$$

Let f and g be analytic in U. If there exists w analytic in U with w(0) = 0 and |w(z)| < 1, so that f(z) = g(w(z)), then we say that f is subordinate to g, written by $f \prec g$. Further, if the function g is analytic and univalent in U, then

$$f \prec g \ (z \in U) \iff f(U) \subset g(U) \text{ and } f(0) = g(0).$$

Definition 1. Let $f \in \Sigma$. Then f is called to be in $M\Sigma^*[A, B]$ if

$$-\frac{zf'(z)}{f(z)} = \frac{(1-A) + (1+A)\psi(z)}{(1-B) + (1+B)\psi(z)} \quad (-1 \le B < A \le 1; \psi \in P). \tag{5}$$

In [20], Karunakaran studied the family $M\Sigma^*[A, B]$. Let 0 < q < 1 and define $[\tau]_q$ as the following:

$$[\tau]_q = \begin{cases} \frac{q^{\tau} - 1}{q - 1} & (\tau \in \mathbb{C}) \\ \sum_{k=0}^{n-1} q^k = 1 + q + q^2 + \dots + q^{n-1} & (\tau = n \in \mathbb{N}). \end{cases}$$

Let 0 < q < 1. The *q*-factorial $[m]_q!$ is defined by

$$[m]_q! = \begin{cases} 1 & (m=0) \\ \prod_{k=1}^m [k]_q & (m \in \mathbb{N}). \end{cases}$$

Let $\gamma \in \mathbb{N}$. We define *q*-Pochhammer symbol $[\gamma]_{q,n}$ by (see [21])

$$[\gamma]_{q,n} = \begin{cases} 1 & (n=0) \\ \prod_{k=\gamma}^{\gamma+n-1} [k]_q & (n \in \mathbb{N}). \end{cases}$$

Specifically, we write $[0]_{q,n} = 0$.

Next, we define the *q*-derivative D_q (0 < q < 1) for $f \in \Sigma(p)$ by

$$(D_q f)(z) = \frac{f(zq) - f(z)}{z(q-1)}$$

$$= -\sum_{k=1}^{p} \left(\frac{[k]_{q,1}}{q^k}\right) a_{-k} z^{-1-k} + \sum_{k=1}^{\infty} [k]_q a_k z^{-1+k},$$
(6)

Axioms 2022, 11, 509 3 of 10

where $a_{-p} = 1$.

From (6), we can see that

$$\lim_{q \to 1} (D_q f)(z) = \lim_{q \to 1} \frac{f(zq) - f(z)}{z(q-1)} = f'(z).$$

Further, one can find that

$$(D_q^{(2)}f)(z) = \sum_{k=1}^p \left(\frac{[k]_{q,2}}{q^{2k+1}}\right) a_{-k} z^{-k-2} + \sum_{k=2}^\infty [k-1]_{q,2} a_k z^{k-2},\tag{7}$$

$$(D_q^{(3)}f)(z) = -\sum_{k=1}^p \left(\frac{[k]_{q,3}}{q^{3k+3}}\right) a_{-k} z^{-k-3} + \sum_{k=3}^\infty [k-2]_{q,3} a_k z^{k-3},\tag{8}$$

.

$$(D_q^{(p)}f)(z) = (-1)^p \sum_{k=1}^p \left(\frac{[k]_{q,p}}{q^{p[k+\frac{1}{2}(p-1)]}} \right) a_{-k} z^{-k-p} + \sum_{k=p}^\infty [k-p+1]_{q,p} a_k z^{k-p}, \tag{9}$$

where $a_{-p} = 1$ and $D_q^{(p)}$ is called pth order q-derivatives.

Definition 2. *Let* $f \in \Sigma$ *. If* f *satisfies*

$$\left| \frac{qzD_q f(z)}{f(z)} + \frac{1}{1-q} \right| < \frac{1}{1-q},$$
 (10)

then f is called to be in the meromorphic q-starlike function family $M\Sigma_q^*$.

It is easily seen that, when $q \to 1^-$, the disk given by (10) becomes

$$\operatorname{Re}\left(-\frac{zf'(z)}{f(z)}\right) > 0.$$

Thus, the class $M\Sigma_q^*$ reduces to the meromorphic starlike function family $M\Sigma^*$ (see [19]). Furthermore, we can rewrite (10) as the following:

$$-\frac{qzD_qf(z)}{f(z)} \prec \widehat{h}(z)$$
 where $\widehat{h}(z) = \frac{z+1}{1-qz}$.

Further, the meromorphic q-convex function family MC_q could be derived by

$$f(z) \in MC_q \Leftrightarrow -qzD_qf(z) \in M\Sigma_q^*$$
.

Definition 3. *If a function* $f \in \Sigma(p)$ *satisfies*

$$-\frac{q^{2p-1}z(D_q^{(p)}f)(z)}{[2p-1]_q(D_q^{(p-1)}f)(z)} \prec \frac{(A+1)\widehat{h}(z)+(1-A)}{(B+1)\widehat{h}(z)+(1-B)} \quad \left(\widehat{h}(z)=\frac{z+1}{1-qz}-1; \le B < A \le 1\right),$$

or, equivalently,

$$-\frac{q^{2p-1}z(D_q^{(p)}f)(z)}{[2p-1]_q(D_q^{(p-1)}f)(z)} \prec s(z),\tag{11}$$

where

$$s(z) = \frac{z(1+A) - zq(1-A) + 2}{z(1+B) - zq(1-B) + 2} \quad (0 < q < 1; -1 \le B < A \le 1), \tag{12}$$

then f is in the family $M\Sigma_q^*[p, A, B]$

Axioms 2022, 11, 509 4 of 10

Remark 1. We write the following special cases:

- $M\Sigma_{a}^{*}[1, A, B] = M\Sigma_{a}^{*}[A, B]$, when p = 1.
- (ii) $\lim_{q\to 1^-} M\Sigma_q^*[1,A,B] = M\Sigma^*[A,B]$, when p=1. (iii) $M\Sigma_q^*[p,A,B] = M\Sigma_q^*[\alpha]$, when p=1, $A=1-2\alpha$ $(0\leq \alpha<1)$ and B=-1. In [19], Pommerenke considered the family $M\Sigma_{\mathfrak{q}}^*[\alpha]$.

Now we define the meromorphic *q*-convex function family $MC_q[p, A, B]$ by

$$f \in MC_q[p, A, B] \iff \frac{(-1)^p q^{\frac{1}{2}p(3p-1)}}{[p]_{q,v}} z^p D_q^{(p)} f \in M\Sigma_q^*[p, A, B].$$

In particular, we write $MC_q[p, A, B] = MC_q[A, B]$ when p = 1.

Lemma 1 ([22]). Let $\psi(z) = 1 + \psi_1 z + \psi_2 z^2 + \cdots$ belong to the family P. Then

$$|\psi_2 - \nu \psi_1^2| \le \begin{cases} 4\nu - 2 & (\nu > 1) \\ 2 & (0 \le \nu \le 1) \\ -4\nu + 2 & (\nu < 0). \end{cases}$$
 (13)

Lemma 2 ([23]). Let $h(z) = 1 + \sum_{k=1}^{\infty} h_k z^k$ be analytic in U. Furthermore, let $H(z) = 1 + \sum_{k=1}^{\infty} C_k z^k$ be univalent convex in U. If $h(z) \prec H(z)$, then

$$|h_k| \leq |C_1| \quad (k \geq 1).$$

2. Main Results

Theorem 1. If

$$g(z) = z^{-p} + \sum_{k=1}^{\infty} a_{-p+k} z^{-p+k} \in M\Sigma_q^*[p, A, B] \quad (p \ge 2),$$

then

$$|a_{2-p} - \mu a_{1-p}^{2}| \leq \begin{cases} \left(\frac{A-B}{2}\right) \left(\frac{[2p-3]_{q,3}}{q^{2p-2}[p-2]_{q,2}}\right) \Lambda(q) & (\mu > \sigma_{1}) \\ \left(\frac{A-B}{2}\right) \left(\frac{[2p-3]_{q,3}}{q^{2p-2}[p-2]_{q,2}}\right) & (\sigma_{2} \leq \mu \leq \sigma_{1}) \\ \left(\frac{B-A}{2}\right) \left(\frac{[2p-3]_{q,3}}{q^{2p-2}[p-2]_{q,2}}\right) \Lambda(q) & (\mu < \sigma_{2}), \end{cases}$$

where

$$\Lambda(q) = \frac{\left\{ \begin{array}{l} \big\{ (1+Bq[2p-2]_q - A[2p-1]_q)(q+1) - 2 \big\}[p-1]_q[2p-3]_q \\ + \mu(q+1)^2(A-B)[2p-2]_{q,2}[p-2]_q \end{array} \right\}}{2[p-1]_q[2p-3]_q},$$

$$\sigma_1 = \frac{[p-1]_q[2p-3]_q\{4+(q+1)(A[2p-1]_q - qB[2p-2]_q - 1)\}}{(q+1)^2(A-B)[p-2]_q[2p-2]_{q,2}},$$

and

$$\sigma_2 = \frac{[p-1]_q[2p-3]_q\{(q+1)(A[2p-1]_q - 1 - qB[2p-2]_q)\}}{4(q+1)^2(A-B)[p-2]_q[2p-2]_{q,2}}.$$

Proof. From the assumption of the theorem, we obtain

$$-\frac{q^{2p-1}z(D_q^{(p)}g)(z)}{[2p-1]_q(D_q^{(p-1)}g)(z)} \prec \phi(z),$$

Axioms **2022**, 11, 509 5 of 10

where

$$\phi(z) = \frac{2 - q(1 - A)z + (1 + A)z}{2 - q(1 - B)z + (1 + B)z}.$$

This gives that

$$-\frac{q^{2p-1}z(D_q^{(p)}g)(z)}{[2p-1]_q(D_q^{(p-1)}g)(z)}=\phi(w(z)),$$

where w(z) is a Schwarz function. Now a function h(z) is defined as follows:

$$h(z) = \frac{1 + w(z)}{1 - w(z)} = 1 + \sum_{n=1}^{\infty} h_n z^n \in P.$$

Furthermore, one can see that

$$\begin{split} \phi(w(z)) &= \frac{2(h(z)+1-q(h(z)-1))+(1+A)(q+1)(h(z)-1)}{2(h(z)+1-q(h(z)-1))+(1+B)(q+1)(h(z)-1)} \\ &= 1 + \frac{1}{4}(1+q)(A-B)h_1z + \frac{1}{16}(1+q)(A-B)\Big\{4h_2 - (B(1+q)-q+3)h_1^2\Big\}z^2 + \cdots. \end{split}$$

Similarly, we find that

$$-\frac{q^{2p-1}z(D_{q}^{(p)}g)(z)}{[2p-1]_{q}(D_{q}^{(p-1)}g)(z)} = 1 - \frac{[p-1]_{q}}{[2p-2]_{q,2}}q^{p-1}a_{1-p}z$$

$$+ \frac{[p-1]_{q}}{[2(p-1)]_{q,2}}q^{2(p-1)}\left(\frac{[p-1]_{q}}{[2(p-1)]_{q}}a_{1-p}^{2} - \frac{[p-2]_{q}}{[2p-3]_{q}}(1+q)a_{2-p}\right)z^{2} + \cdots$$

for $p \ge 2$. Therefore, for $p \ge 2$, we obtain

$$a_{1-p} = -\frac{(q+1)(A-B)[2(p-1)]_{q,2}}{4q^{p-1}[p-1]_q}h_1$$
(14)

and

$$a_{2-p} = \frac{(A-B)[2p-3]_{q,3}}{q^{2p-2}[p-2]_{q,2}} \left(\frac{1}{16}k_1(q)h_1^2 - \frac{1}{4}h_2\right),\tag{15}$$

where

$$k_1(q) = (1+q)\{A[2p-1]_q - B([2p-1]_q - 1) - 1\} + 4.$$
 (16)

Hence we obtain for $p \ge 2$ that

$$|a_{2-p} - \mu a_{1-p}^2| = \left(\frac{A-B}{4}\right) \left(\frac{[2p-3]_{q,3}}{q^{2p-2}[p-2]_{q,2}}\right) |h_2 - k_2 h_1^2|,\tag{17}$$

where

$$k_2 = \frac{[p-1]_q[2p-3]_q k_1(q) - \mu[2(p-1)]_{q,2}[p-2]_q (A-B)(q+1)^2}{4[2p-3]_q[p-1]_q}$$

with $k_1(q)$ given by (16).

Now we can see that the conditions $\mu > \sigma_1$, $\sigma_2 \le \mu \le \sigma_1$ and $\mu < \sigma_2$ in Theorem 1 imply that $k_2 < 0$, $0 \le k_2 \le 1$ and $k_2 > 1$, respectively. By applying Lemma 1 in (17), the desired result is obtained. This proves Theorem 1.

Applying the same method as in the proof of Theorem 1, we obtain the following theorem for the case p = 1.

Axioms 2022, 11, 509 6 of 10

Theorem 2. *If*

$$g(z) = z^{-1} + \sum_{k=1}^{\infty} a_{k-1} z^{k-1} \in M\Sigma_q^*[A, B],$$

$$|a_1 - \mu a_0^2| \leq \begin{cases} \frac{(A-B)}{4} [(1-A)q + \mu(q+1)^2(A-B) - A - 1] & \left(\mu > \frac{(A-1)q + A + 3}{(A-B)(q+1)^2}\right) \\ \frac{A-B}{2} & \left(\frac{A-1}{(A-B)(q+1)} \leq \mu \leq \frac{(A-1)q + A + 3}{(A-B)(q+1)^2}\right) \\ \left(\frac{B-A}{4}\right) [(1-A)q + \mu(q+1)^2(A-B) - A - 1] & \left(\mu < \frac{A-1}{(A-B)(q+1)}\right). \end{cases}$$

Letting $q \to 1^-$, A = 1 and B = -1 in Theorem 2, we obtain a result of the known family $M\Sigma^*$.

Corollary 1. If

$$g(z) = z^{-1} + \sum_{k=1}^{\infty} a_{k-1} z^{k-1} \in M\Sigma^*,$$

then

$$\left| a_1 - \mu a_0^2 \right| \le \begin{cases} 4\mu - 1 & (\mu > \frac{1}{2}) \\ 1 & (0 \le \mu \le \frac{1}{2}) \\ 1 - 4\mu & (\mu < 0). \end{cases}$$

Theorem 3. *Let* $p \ge 2$. *If*

$$g(z) = z^{-p} + \sum_{k=1}^{\infty} a_{-p+k} z^{-p+k} \in M\Sigma_q^*[p, A, B],$$

then

$$\left| a_{-p+k} \right| \le \prod_{j=1}^{k} \frac{2[j-1]_q + [2p-1]_q (q+1)(A-B)}{2[j]_q q^{p-1} [p-j]_q} \tag{18}$$

for $1 \leq k \leq p-1$.

Proof. If *g* belongs to $M\Sigma_a^*[p, A, B]$, then

$$\psi(z) := -\frac{q^{2p-1}z(D_q^{(p)}g)(z)}{[2p-1]_q(D_q^{(p-1)}g)(z)} \prec \phi(z),\tag{19}$$

where

$$\phi(z) = \frac{z(1+A) - zq(1-A) + 2}{z(1+B) - zq(1-B) + 2} = 1 - \frac{1}{2}(1+q)(B-A)z + \frac{1}{4}(1+q)(B-A)\{1 + B(1+q) - q\}z^2 + \cdots$$

Let

$$\psi(z) = 1 + \sum_{k=1}^{\infty} \psi_k z^k.$$

Applying Lemma 2, we obtain

$$|\psi_k| \le \frac{1}{2}(q+1)(A-B) \quad (k \ge 1).$$
 (20)

Furthermore, from (19), we have

$$-q^{2p-1}z(D_q^{(p)}g)(z) = \{[2p-1]_q(D_q^{(p-1)}g)(z)\}\psi(z),$$

Axioms 2022. 11, 509 7 of 10

which implies that

$$\begin{split} &-q^{2p-1}\left(\sum_{k=1}^{p}\frac{(-1)^{p}[k]_{q,p}}{q^{p[k+\frac{1}{2}(p-1)]}}a_{-k}z^{-p-k+1}+\sum_{k=p}^{\infty}[-p+k+1]_{q,p}a_{k}z^{-p+k+1}\right)\\ &=[2p-1]_{q}\left(1+\sum_{k=1}^{\infty}\psi_{k}z^{k}\right)\left(\sum_{k=1}^{p}\frac{(-1)^{p-1}[k]_{q,p-1}}{q^{[k+\frac{1}{2}(p-2)](p-1)}}a_{-k}z^{-p-k+1}\right.\\ &\qquad \qquad +\sum_{k=p-1}^{\infty}[2+k-p]_{q,p-1}a_{k}z^{-p+k+1}\right), \end{split}$$

where $a_{-p} = 1$.

It is easily seen from the above formula that

$$|a_{-p+k}| \le \frac{(A-B)(q+1)[2p-1]_q q^{\frac{1}{2}(p-1)(3p-2k-2)}}{2[k]_q[p-k]_{q,p-1}} \sum_{l=1}^k \frac{[p+l-k]_{q,p-1}}{q^{\frac{1}{2}(3p-2k+2l-2)(p-1)}} \Big| a_{k-p-l} \Big|$$
(21)

for $1 \leq k \leq p-1$.

Now

$$|a_{1-p}| \leq \frac{[2p-2]_{q,2}(1+q)(A-B)}{2q^{p-1}[p-1]_q},$$

$$|a_{2-p}| \leq \frac{q^{\frac{1}{2}(p-1)(3p-6)}[2p-1]_q(1+q)(A-B)}{2[p-2]_{q,p-1}[2]_q} \left\{ \frac{[p]_{q,p-1}}{q^{\frac{1}{2}(3p-2)(p-1)}} + \frac{[p-1]_{q,p-1}}{q^{\frac{1}{2}(3p-4)(p-1)}} |a_{1-p}| \right\}$$

$$= \frac{(1+q)(A-B)[2p-2]_{q,2}}{2q^{p-1}[p-1]_q} \cdot \frac{\{2+[2p-1]_q(1+q)(A-B)\}[2p-3]_q}{2q^{p-1}[2]_q[p-2]_q},$$

$$\dots \dots$$

$$|a_{k-p}| \le \prod_{j=1}^k \frac{2[j-1]_q + (1+q)(A-B)[2p-1]_q}{2q^{p-1}[j]_q[p-j]_q}$$

for $1 \le k \le p - 1$. This proves Theorem 3.

Applying the same methods as in the proof of Theorem 3, we obtain the following Theorems 4 and 5.

Theorem 4. Let $p \ge 2$. If $g(z) = z^{-p} + \sum_{k=1}^{\infty} a_{-p+k} z^{-p+k}$ belongs to $MC_q[p, A, B]$, then

$$|a_{-p+k}| \le \frac{[p]_{q,p}}{q^{pk}[p-k]_{q,p}} \prod_{n=1}^k \frac{[2p-1]_q(1+q)(A-B) + 2[n-1]_q}{2[n]_q q^{p-1}[p-n]_q}$$

for $1 \leq k \leq p-1$.

Theorem 5. Let $g(z) = z^{-1} + \sum_{k=1}^{\infty} a_{k-1} z^{k-1}$ belong to $M\Sigma_q^*[A, B]$. Then

$$|a_{k-1}| \le \prod_{n=1}^k \frac{(1+q)(A-B) + 2[n-1]_q}{2[n]_q}$$

for $k \geq 2$.

Letting $q \to 1-$, $A = 1 - 2\alpha$ $(0 \le \alpha < 1)$ and B = -1 in Theorem 5, we have a result of the known family $M\Sigma^*(\alpha)$.

Corollary 2. Let
$$g(z) = z^{-1} + \sum_{k=1}^{\infty} a_{k-1} z^{k-1} \in M\Sigma^*(\alpha)$$
. Then

Axioms 2022, 11, 509 8 of 10

$$|a_{k-1}| \le \prod_{j=1}^k \frac{j - 2\alpha + 1}{j}$$

for $k \geq 2$.

The following equivalence could help us to study the family $M\Sigma_a^*[p, A, B]$:

$$g \in M\Sigma_q^*[p,A,B] \iff \left| \frac{(1-B) \left\{ \frac{q^{2p-1}z(D_q^{(p)}g)(z)}{[2p-1]_q(D_q^{(p-1)}g)(z)} \right\} + (1-A)}{(1+B) \left(-\frac{q^{2p-1}z(D_q^{(p)}g)(z)}{[2p-1]_q(D_q^{(p-1)}g)(z)} \right) - (1+A)} - \frac{1}{1-q} \right| < \frac{1}{1-q}.$$

Theorem 6. If a function $g(z) = z^{-p} + \sum_{k=1}^{\infty} a_{-p+k} z^{-p+k} \in \Sigma(p)$ satisfies

$$\sum_{k=1}^{p} \left(\frac{[k]_{q,p-1}}{q^{[k+\frac{1}{2}(p-2)](p-1)}} \right) \left\{ \left| [2p-1]_{q}(1+A) - [p+k-1]_{q}q^{p-k}(1+B) \right| + 2[p-k]_{q} \right\} |a_{-k}| \right. \\
+ \sum_{k=p}^{\infty} [k-p]_{q,p-1} \left\{ \left| [2p-1]_{q}(1+A) - [p+k-1]_{q}q^{2p-1}(1+B) \right| + 2[k+p]_{q} \right\} |a_{k}| \right. \\
+ [2p-1]_{q}[p-1]_{q}!(2+A)|a_{p-1}| < \frac{(A-B)[p]_{q,p}}{q^{\frac{1}{2}(3p-2)(p-1)}}, \tag{22}$$

then $g \in M\Sigma_q^*[p, A, B]$.

Proof. By a simple calculation, we obtain

$$\frac{\left|\frac{(1-B)\left\{\frac{q^{2p-1}z(D_{q}^{[p]}g)(z)}{(2p-1)_{q}(D_{q}^{(p-1)}g)(z)}\right\} + (1-A)}{(1+B)\left\{-\frac{q^{2p-1}z(D_{q}^{[p]}g)(z)}{(2p-1)_{q}(D_{q}^{(p-1)}g)(z)}\right\} - (1+A)} - \frac{1}{1-q}\right|}$$

$$\leq \left|\frac{\left\{-q^{2p-1}z(D_{q}^{(p)}g)(z)\right\}(1-B) - [2p-1]_{q}(1-A)(D_{q}^{(p-1)}g)(z)}{\left\{-q^{2p-1}z(D_{q}^{(p)}g)(z)\right\}(1+B) - [2p-1]_{q}(1+A)(D_{q}^{(p-1)}g)(z)} + 1\right| + \frac{q}{1-q}}$$

$$= 2 \frac{\left\{\sum_{k=1}^{p} \frac{(-1)^{p-1}[k]_{q,p-1}[2p-1]_{q}}{q^{(p-1)}[k^{\frac{1}{2}}(p-2)]} a_{-k}z^{p-k} + \sum_{k=p-1}^{\infty}[k+2-p]_{q,p}[2p-1]_{q}a_{k}z^{k+p}}\right\} - \frac{1}{p^{\frac{1}{2}}(p-1)^{\frac{1}{2}}[k^{\frac{1}{2}}(p-1)]}}{\left\{\sum_{k=1}^{p-1} \frac{(-1)^{p-1}[k]_{q,p-1}[2p-1]_{q}}{q^{p-1}[k^{\frac{1}{2}}(p-2)]} a_{-k}z^{p-k} + \sum_{k=p}^{\infty}q^{2p-1}[k+1-p]_{q,p}a_{k}z^{n+p}}\right\} - \frac{1}{p^{\frac{1}{2}}(p-1)^{\frac{1}{2}}[k^{\frac{1}{2}}(p-1)]} - \frac{1}{p^{\frac{1}{2}}(p-1)^{\frac{1}{2}}[k]_{q,p-1}}}{\left\{\sum_{k=1}^{p-1} \frac{(-1)^{p-1}[k]_{q,p-1}}{q^{\frac{1}{2}}(p-1)^{\frac{1}{2}}[k]_{p-1}}} \left\{[2p-1]_{q}(A+1) - (1+B)q^{p-k}[p-1+k]_{q}\}a_{-k}z^{p-k}}\right\} + \frac{q}{1-q}$$

$$\leq 2 \frac{\sum_{k=1}^{p-1} \frac{[k]_{q,p-1}[p-k]_{q}}{q^{(p-1)}[k^{\frac{1}{2}}(p-2)]}} |a_{-k}| + [p-1]_{q}![2p-1]_{q}|a_{p-1}| + \sum_{k=p}^{\infty}[k-p]_{q,p+1}[k+p]_{q}|a_{k}|}}{\left\{\left(\frac{[p]_{q,p}}{q^{\frac{1}{2}(p-1)(3p-2)}}(A-B) - (1+A)[p-1]_{q}![2p-1]_{q}|a_{p-1}|\right)}{-\sum_{k=1}^{p-1} \frac{[k]_{q,p-1}}{q^{\frac{1}{2}(p-1)}[p-1]}} \left\{[2p-1]_{q}(A+1) - (B+1)[p+k-1+]_{q}q^{p-k}\right\} |a_{-k}| - \sum_{k=p}^{\infty}[k-p]_{q,p+1}} |\{[2p-1]_{q}(A+1) - (B+1)[p+k-1+]_{q}q^{p-k}\} + a_{-k}|a_{-k}| - \sum_{k=p}^{\infty}[k-p]_{q,p+1}} |\{[2p-1]_{q}(A+1) - (B+1)[p+k-1+]_{q}q^{p-k}\} |a_{-k}| - \sum_{k=p}^{\infty}[k-p]_{q,p+1}} |\{[2p-1]_{q}(A+1) - (B+1)[p^{2p-1}[p+k-1]_{q}] |a_{k}| - \sum_{k=p}^{\infty}[k-p]_{q,p+1}} |a_{-k}| - \sum_{k=p}^{\infty}[k-p]_{q,p+1}} |\{[2p-1]_{q}(A+1) - (B+1)[p^{2p-1}[p+k-1]_{q}] |a_{k}| - \sum_{k=p}^{\infty}[k-p]_{q,p+1}} |a_{-k}| - \sum_{k=p}^{$$

Axioms 2022, 11, 509 9 of 10

Now, it follows from (22) that the last expression in (23) is less than $\frac{1}{1-q}$. This proves Theorem 6.

Theorem 7. If a function $g(z) = z^{-1} + \sum_{k=1}^{\infty} a_{k-1} z^{k-1} \in \Sigma$ satisfies

$$\sum_{k=1}^{\infty} \left\{ 2[k]_q + \left| q[k-1]_q(1+B) - (1-A) \right| \right\} |a_{k-1}| < A - B, \tag{24}$$

then $g \in M\Sigma_q^*[A, B]$.

Proof. By simple calculation, we have

$$\left| \frac{(1-B)\left(\frac{qz(D_{q}g)(z)}{g(z)}\right) + (1-A)}{(1+B)\left(-\frac{qz(D_{q}g)(z)}{g(z)}\right) - (1+A)} - \frac{1}{1-q} \right|
\leq \frac{q}{1-q} + 2 \left| \frac{g(z) + qz(D_{q}g)(z)}{q(1+B)z(D_{q}g)(z) + (1+A)} \right|
= \frac{q}{1-q} + 2 \left| \frac{\sum_{k=1}^{\infty} [k]_{q} |a_{k-1}|}{(A-B) - \sum_{k=1}^{\infty} [q(1+B)[k-1]_{q} + (1+A)]|a_{k-1}|} \right|.$$
(25)

From (24) we can see that (25) is less than $\frac{1}{1-q}$. This proves Theorem 7. \Box

Letting $A = 1 - 2\alpha$ ($0 \le \alpha < 1$), B = -1 and $q \to 1^-$ in Theorem 7, we obtain a result of the known family $M\Sigma^*(\alpha)$.

Corollary 3. If a function $g(z) = z^{-1} + \sum_{k=1}^{\infty} a_{k-1} z^{k-1} \in \Sigma$ satisfies

$$\sum_{k=1}^{\infty} (1+k-\alpha)|a_{k-1}| < 1-\alpha \quad (0 \le \alpha < 1),$$

then $g \in M\Sigma^*(\alpha)$.

Applying the same method as in the proof of Theorem 7, we obtain the following theorem.

Theorem 8. If a function $g(z) = z^{-1} + \sum_{k=1}^{\infty} a_{k-1} z^{k-1} \in \Sigma$ satisfies

$$\sum_{k=1}^{\infty} \left\{ 2[k]_q + \left| q[k-1]_q(1+B) - (1-A) \right| \right\} [k-1]_q |a_{k-1}| < A - B,$$

then $g \in MC_q[A, B]$.

Author Contributions: Every authors contribution is equal. All authors have read and agreed to the published version of the manuscript.

Funding: The work was supported by Natural Science Foundation of Nanjing Vocational College of Information Technology (Grant No.YK20180403).

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank the referees for their careful reading and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253–281. [CrossRef]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203.

Axioms 2022, 11, 509 10 of 10

3. Ahmad, B.; Khan, M.G.; Frasin, B.A.; Aouf, M.K.; Abdeljawad, T.; Mashwani, W.K.; Arif, M. On *q*-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain. *AIMS Math.* **2021**, *6*, 3037–3052. [CrossRef]

- 4. Khan, B.; Liu, Z.-G.; Srivastava, H.M.; Khan, N.; Tahir, M. Applications of higher-order derivatives to subclasses of multivalent *q*-starlike functions. *Maejo Int. J. Sci. Technol.* **2021**, *45*, 61–72.
- 5. Mahmood, S.; Raza, N.; Abujarad, E.S.A.; Srivastava, G.; Srivastava, H.M.; Malik, S.N. Geomotric properties of certain classes of analytic functions associated with a *q*-integral operator. *Symmetry* **2019**, *11*, 719.
- 6. Güney H.Ö.; Oros G.I.; Owa S. An application of Sălăgean operator concerning starlike functions. Axioms 2022, 11, 50. [CrossRef]
- 7. Mahmmod, S.; Sokół, J. New subclass of analytic functions in conical domain associated with Ruscheweyh *q*-differential operator. *Results Math.* **2017**, *71*, 1345–1357. [CrossRef]
- 8. Raza, M.; Srivastava, H.M.; Arif, M.; Ahmad, K. Coefficient estimates for a certain family of analytic functions involving a *q*-derivative operator. *Ramanujan J.* **2021**, *54*, 501–519. [CrossRef]
- 9. Rehman, M.S.U.; Ahmad, Q.Z.; Srivastava, H.M.; Khan, N.; Darus, M.; Khan, B. Applications of higher-order *q*-derivatives to the subclass of *q*-starlike functions associated with the Janowski functions. *AIMS Math.* **2021**, *6*, 1110–1125. [CrossRef]
- 10. Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z. Coefficient inequalities for *q*-starlike functions associated with the Janowski functions. *Hokkaido Math. J.* **2019**, *48*, 407–425. [CrossRef]
- 11. Srivastava, H.M.; Raza, N.; AbuJarad, E.S.A.; Srivastava, G.; AbuJarad, M.H. Fekete-Szegö inequality f or classes of (p, q)-starlike and (p, q)-convex functions. *Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat.* **2019**, *113*, 3563–3584. [CrossRef]
- 12. Srivastava, H.M.; Khan, B.; Khan, N.; Tahir, M.; Ahmad, S.; Khan, N. Upper bound of the third Hankel determinant for a subclass of *q*-starlike functions associated with the *q*-exponential function. *Bull. Sci. Math.* **2021**, *167*, 102942. [CrossRef]
- 13. Seoudy, T.M.; Aouf, M.K. Coefficient estimates of new classes of *q*-starlike and *q*-convex functions of complex order. *J. Math. Inequal.* **2016**, *10*, 135–145. [CrossRef]
- 14. Liu, L.; Liu, J.-L. Properties of certain multivalent analytic functions associated with the Lemmiscate of Bernoulli. *Axioms* **2021**, *10*, 160. [CrossRef]
- 15. Yan, C.M.; Srivastava, R.; Liu, J.-L. Properties of certain subclass of meromorphic multivalent functions associated with *q*-difference operator. *Symmetry* **2021**, *13*, 1035. [CrossRef]
- 16. Janowski, W. Some extremal problems for certain families of analytic functions. Ann. Pol. Math. 1973, 28, 297–326. [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory
 of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [CrossRef]
- 18. Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. *J. Nonlinear Convex Anal.* **2021**, 22, 1501–1520.
- 19. Pommerenke, C. On meromorphic starlike functions. Trans. Am. Math. Soc. 1963, 107, 300–308. [CrossRef]
- 20. Karunakaran, V. On a class of meromorphic starlike functions in the unit disc. *Math. Chron.* **1976**, *4*, 112–121.
- 21. Srivastava, H.M.; El-Deeb, S.M. The Faber polynomial expansion method and the Taylor-Maciaurin coefficient estimates of bi-close-to-convex functions connected with the *q*-convolution. *AIMS Math.* **2020**, *5*, 7087–7106. [CrossRef]
- 22. Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; Li, Z., Ren, F.-Y., Yang, L., Zhang, S., Eds.; International Press: Cambridge, MA, USA, 1994; pp. 157–169.
- 23. Rogosinski, W. On the coefficients of subordinate functions. *Proc. Lond. Math. Soc.* **1943**, 48, 48–82. [CrossRef]