
Citation: Xie, J.; Li, S.

Training Neural Networks by

Time-Fractional Gradient Descent.

Axioms 2022, 11, 507. https://

doi.org/10.3390/axioms11100507

Academic Editor: Oscar Humberto

Montiel Ross

Received: 1 September 2022

Accepted: 22 September 2022

Published: 26 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Training Neural Networks by Time-Fractional Gradient Descent
Jingyi Xie and Sirui Li *

School of Mathematics and Statistics, Guizhou University, Guiyang 550025, China
* Correspondence: srli@gzu.edu.cn

Abstract: Motivated by the weighted averaging method for training neural networks, we study the
time-fractional gradient descent (TFGD) method based on the time-fractional gradient flow and
explore the influence of memory dependence on neural network training. The TFGD algorithm in this
paper is studied via theoretical derivations and neural network training experiments. Compared with
the common gradient descent (GD) algorithm, the optimization effect of the time-fractional gradient
descent algorithm is significant when the value of fractional α is close to 1, under the condition of
appropriate learning rate η. The comparison is extended to experiments on the MNIST dataset with
various learning rates. It is verified that the TFGD has potential advantages when the fractional α

nears 0.95∼0.99. This suggests that the memory dependence can improve training performance of
neural networks.

Keywords: time-fractional gradient descent; training neural networks; weighted averaging; memory
dependence

MSC: 26A33; 35K99; 35E15

1. Introduction

Many problems arising in machine learning, and intelligent systems are usually
reduced to optimization problems. Neural network training is essentially a process that
minimizes model errors. The GD method, in particular the stochastic GD method has been
extensively applied to solve such problems from different perspectives [1].

To improve the optimization error and the generalization error in the training of neural
networks, the parameter-averaging technique that combines iterative solutions has been
employed. Most works adopting simple averaging based on all iterative solutions generally
cannot obtain satisfactory performance regardless of their advantages. Bottou [2] and
Hardt et al. [3] uses the simple output of the last solution, which leads to faster convergence
but has less stability in the optimization error. Some works [4,5] also analyze the stochastic
GD method by the uniform averaging. To improve the convergence rate of strongly convex
function optimization, the non-uniform averaging method has been proposed in [6,7].
However, the averaging method that combines all iterative solutions into a single solution
remains to be discussed. Guo et al. [8] provide a beneficial attempt for this problem. For
the non-strongly convex objectives, they analyze the optimization error and generalization
error by synthesizing a polynomial increasing weighted average scheme. Again, based on
a new primal averaging, Tao et al. [9] attain the optimal individual convergence using a
simple modified gradient evaluation step. By a simple averaging of multiple points along
the trajectory of stochastic GD, Izmailov et al. [10] also obtain a better generalization than
conventional training and show that the stochastic weight averaging procedure finds much
flatter solutions than stochastic GD.

The core formula in the GD algorithm is to calculate the derivative of the loss function.
Fractional calculus is applied to the GD algorithm in the training of neural networks, which
is called the fractional GD method since it gives better optimization performance, especially
the stability of algorithm. Khan et al. [11] present a fractional gradient descent-based

Axioms 2022, 11, 507. https://doi.org/10.3390/axioms11100507 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11100507
https://doi.org/10.3390/axioms11100507
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0001-8323-3499
https://doi.org/10.3390/axioms11100507
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11100507?type=check_update&version=3

Axioms 2022, 11, 507 2 of 11

learning algorithm for radial-basis-function neural networks, based on Riemann–Liouville
derivative and a convex combination of improved fractional GD. Bao et al. [12] provide
a Caputo fractional-order deep back-propagation neural network model armed with L2

regularization. A fractional gradient descent method for the BP neural networks is proposed
in [13]. In particular, the Caputo derivative is used to calculate the fractional-order gradient
of the error expressed by the traditional quadratic energy function. An adaptive fractional-
order BP neural network for handwritten digit recognition problems is presented in [14],
combining a competitive evolutionary algorithm. The general convergence problem of the
fractional-order gradient method has been tentatively investigated in [15].

There are a great deal of works on the fractional GD method, and we will not list
them here.

We now turn to the time-fraction gradient flow. Two classical examples are the Allen–
Cahn equation and the Cahn–Hilliard equation. The time-fractional Allen–Cahn equation
has been investigated both theoretically and numerically [16–20]. Tang et al. [20] establish
the energy dissipation law of the fractional time-field equation. Specifically, they prove
that the fractional time-field model admits an integral-type energy dissipation law at a
continuous level. Moreover, the discrete version of the energy-dissipative law is also in-
herited. Liao et al. [17] design a variable-step Crank–Nicolson-type scheme for the time
fractional Allen–Cahn equation, which is unconditionally stable. The proposed scheme can
preserve both the energy stability and the maximum principle. Liu et al. [18] investigate
the fractional Allen–Cahn and Cahn–Hilliard phase field models and give an effect finite
difference and Fourier spectral schemes. On the other hand, for the complex time-fractional
Schrödinger equation and the space–time fractional differential equation, novel precise
solitary wave solutions are obtained by the modified simple equation scheme [21]. A num-
ber of solitary envelope solutions of the quadratic nonlinear Klein–Gordon equation also
are constructed by the generalized Kudryashov and extended Sinh–Gordon expansion
schemes [22].

In the training of neural networks, the parameter averaging technique can be regarded
as memory-dependent, which just corresponds to an important feature of the time-fractional
derivative. The weighted averaging cannot be easily used to analyze theoretically; however,
the time-fractional derivative is well suited to this purpose. The main objective of this paper
is to develop a TFGD algorithm based on the time-fractional gradient flow and theoretical
derivations and then to explore the influence of memory dependence on training neural
networks.

2. The Time-Fractional Allen–Cahn Equation

This section will be devoted to introducing the time-fractional Allen–Cahn equation
and its basic properties. Consider the following time-fractional Allen–Cahn equation,

∂α
t u = ε2∆u− f (u), for x ∈ Ω and t > 0, (1)

where the domain Ω = (0, L)2 ⊂ R2, and ε is an interface width parameter and u is a
function of (x, t). The notation ∂α

t represents the Caputo derivative of order α defined as

∂α
t v =C

0 Dα
t

def
= I1−α

t v′, α ∈ (0, 1), (2)

where Iα
t is the Riemann–Liouville fractional integration operator of order α > 0,

(Iα
t v) def

=
∫ t

0
ωα(t− s)v(s)ds, ωα(t)

def
=

tα−1

Γ(α)
.

Axioms 2022, 11, 507 3 of 11

The nonlinear function f (u) is associated with the derivative of the bulk energy density
function F(u), which is usually chosen as

F(u) =
1
4
(1− u2)2.

The function F(u) is of bistable type and admits two local minima.
When the fractional order parameter α = 1, Equation (1) immediately becomes the

classical Allen–Cahn equation,

∂tu = ε2∆u− f (u). (3)

The Allen–Cahn Equation (3) can be viewed as an L2 gradient flow,

∂tu = − δE
δu

, (4)

where δE
δu represents the first-order variational derivative, and the corresponding free-

energy functional E[u] is defined as

E[u](t) =
∫

Ω

(ε2

2
|∇u|2 + F(u)

)
dx.

It is well-known that Equation (3) satisfies two important properties: one is the energy
dissipation,

dE
dt

= −
∥∥∥ δE

δu

∥∥∥2
, or E[u](t) ≤ E[u](s), ∀t > s,

and the other is the maximum principle,

|u(x, t)| ≤ 1 if |u(x, 0)| ≤ 1.

These two properties play an important role in constructing stable numerical schemes.
In a similar way, the time-fractional Allen–Cahn Equation (1) can be also regarded as

a fractional gradient flow,

∂α
t u = − δE

δu
. (5)

It can be found in [20] that Equation (1) admits the maximum principle but only
satisfies the special energy inequality,

E[u](t) ≤ E[u](0), ∀t > 0.

TFGD Model and Numerical Schemes

Before giving numerical algorithms, we write down the TFGD model based on training
neural networks.

In machine learning, the main task of learning a predictive model is typically formu-
lated as the minimization problem of the empirical risk function,

minJ (w), J (ω) = Ex,yL(y, f (x; w)), (6)

where w is a set of parameters in the neural networks and L(·, ·) is the loss function for each
sample, which quantifies the deviation between the predicted value f and the respective
true one y. When the gradient descent is applied, the iteration of weights for (6) can be
given by

Axioms 2022, 11, 507 4 of 11

wk+1 = wk − ξ∇J (wk), (7)

where ξ represents a positive stepsize. The continuous version is the gradient flow,

wt = −∇J (w).

In order to solve (7) associated with (6), existing works mostly consider the weighted
averaging schemes over the training process instead of the newest weight, that is,

w̃k =
k

∑
i=1

γiwi. (8)

The simplest case of (8) is the arithmetic mean, where γi are constants. In this paper,
we will consider non-constant cases such as γi ∝ βi for some β ≥ 1 and propose a new type
of weight that is connected to the fractional gradients.

Now, we consider the following model equation:

∂α
t w(t) = −∇J (w), 0 < α < 1, (9)

w(0) = w0, (10)

where ∂α
t denotes the Caputo fractional derivative operator defined by

∂α
t w(t) =

1
Γ(1− α)

∫ t

0
(t− s)−α d

ds
w(s)ds

=
d
dt

∫ t

0

(t− s)−α

Γ(1− α)
(w(s)− w(0))ds

=P.V.
∫ t

0

(t− s)−α−1

Γ(−α)
(w(s)− w(0))ds

(11)

with P.V. being the principal value.

Remark 1. For the gradient flow wt = −∇J (w), the loss is descent since ∂tJ (w) ≤ 0. For the
case of the fractional flow, however, it can be seen from [20] that there is a regularized loss that is
descending. In addition, when α→ 0, the Equation (9) recovers the classical Allen–Cahn equation.

We know that Equation (9) corresponds to a fractional gradient flow (5). Similar to
the work [20], to maintain the energy dissipative law, we define the modified variational
energy as

Eα(w) = J (w) +
1
2
Iα

t ‖∇J (w)‖2 def
= J (w) +R(w), (12)

where the non-negative termR(w) is a regularization term, which is given by

R(w) =
1
2

∫ t

0

1
(t− s)1−αΓ(α)

‖∇J (w(s))‖2ds. (13)

Then the modified fractional gradient flow of (12) is given by

∂α
t w = − δEα

δw
. (14)

Following the work [20], we have the following dissipation properties.

Theorem 1. The modified variational energy Eα is dissipative along the time-fractional gradient
flow (14).

Axioms 2022, 11, 507 5 of 11

Proof. To begin with, the time-fractional Allen–Cahn Equation (9) can be equivalently
reformulated as

∂tw(t) = −R∂1−α
t ∇J (w), (15)

where R∂α
t =RL

0 Dα
t is the Riemann–Liouville derivative defined by

R∂α
t v def

= ∂tI1−α
t v, α ∈ (0, 1). (16)

Along the time fractional gradient flow ∂α
t w(t) = −∇J (w), we have

dJ (u)
dt

=
〈
∇J (w), ∂tw

〉
= −

〈
∇J (w),R ∂1−α

t ∇J (w)
〉

. (17)

Using the inequality from [23],

v(t)
(

R∂1−α
t v

)
(t) ≥ 1

2

(
R∂1−α

t v2
)
(t) +

1
2

ωα(t)v2(t), ∀vs. ∈ C[0, T],

and letting v(t) = ∇J (w), we derive from (15) and (17) that

dJ (w)

dt
≤− 1

2
R∂1−α

t ‖∇J (w)‖2 − 1
2

ωα(t)‖∇J (w)‖2

=− ∂tIα
t ‖∇J (w)‖2 − 1

2
ωα(t)‖∇J (w)‖2.

Therefore, we obtain

dEα

dt
=

dJ (w)

dt
+ ∂tIα

t ‖∇J (w)‖2 ≤ − 1
2 ωα(t)‖∇J (w)‖2 ≤ 0.

Remark 2. Armed with (2) and (16), we see that the Caputo derivative C
0Dα

t and the Riemann–
Liouville derivative RL

0 Dα
t can be defined by the Riemann–Liouville fractional integration operator,

RL
0 Dα

t v(t) =∂tI1−α
t v =

1
Γ(1− α)

d
dt

∫ t

0
(t− s)−αv(s)ds,

C
0Dα

t v(t) =I1−α
t v′ =

1
Γ(1− α)

∫ t

0
(t− s)−αv′(s)ds.

For an absolutely continuous (derivable) function v : R+ → R, the Caputo fractional
derivative and the Riemann–Liouville fractional derivative can be connected with each other by the
following relations:

C
0Dα

t v(t) =RL
0 Dα

t (v(t)− v(0)), or C
0Dα

t v(t) =RL
0 Dα

t v(t)− v(0)
Γ(1− α)

t−α,

where 0 < α < 1. Compared with the Riemann–Liouville derivative, the Caputo derivative is more
flexible for handling initial and boundary value problems.

The remaining part of this section is to construct the numerical scheme for the TFDG
model by weighted averaging with the newest weight. The first-order accurate Grünwald–
Letnikov formula for

P.V.
∫ t

0

(t− s)−α−1

Γ(−α)
w(s)ds

Axioms 2022, 11, 507 6 of 11

is given by

P.V.
∫ tn

0

(tn − s)−α−1

Γ(−α)
w(s)ds ≈ 1

η

α n

∑
k=0

φ
(α)
n−kw(tk), (18)

where tk = kη, η is time step size, and φ
(α)
n = (−1)n(α

n) =
Γ(n−α)

Γ(−α)Γ(n+1) satisfies

φ(α)(z) = (1− z)α =
∞

∑
n=0

ω
(α)
n zn, |z| ≤ 1,

which can be calculated by the recurrence formula

φ
(α)
n =

n− 1− α

n
φ
(α)
n−1, φ

(α)
0 = 1. (19)

Then, from (11) and (18), we obtain

∂α
t w(tn) ≈

1
η

α n

∑
k=0

φ
(α)
n−k(w(tk)− w(0)). (20)

This provides a training scheme

1
ηα

k+1

∑
i=0

ω
(α)
k+1−i(ui − u0) = −∇J (wn),

which is reformulated as

wk+1 = w0 − ηα
(
∇J (wk) +

k

∑
i=0

φ
(α)
k+1−i(wi − w0)

)
. (21)

It should be emphasized that scheme (21) is new and is a key step in the time-fractional
gradient descent algorithm, while other steps are similar to those in usual gradient descent.

3. Numerical Simulation and Empirical Analysis

In this section, we will present numerical experiments of neural networks to verify
our theoretical findings by combining the actual data and the classical MNIST data set.
The experiment involves two important parameters: the learning rate (lr) denoted by η and
the fractional-order parameter α. We will explore the influence of the two parameters on
the TFGD algorithm and compare it with the general GD algorithm.

We now present the algorithm description for TFGD, which is a simple but effective
modification for the general GD algorithm in the training neural networks. The TFGD
procedure is summarized in Algorithm 1.

Algorithm 1 Time-fractional gradient descent (TFGD)

Input: fractional-order parameter α ∈ (0, 1), weight w0, LR bounds η1, η2, cycle length c
(for constant learning rate c = 1), number of iterations n
Ensure: weight w

w← w0 {Initialize weights with w0}
for k← 1, 2, · · · , n do

η ← η(k) {Calculate LR for the iteration}
Calculate the gradient gk ← ∇Jk(w)
w← w− ηgk {for GD update} (∗)
or execute

w← w− ηα
(

gk +
k
∑

i=0
φ
(α)
k+1−i(wi − w0)

)
{for TFGD update} (∗∗)

Store w as wk {for TFGD}
end for

Axioms 2022, 11, 507 7 of 11

Some explanations for the TFGD algorithm are indispensable. We linearly decrease
the learning rate from η1 to η2 in each cycle. The formula for the learning rate at iteration k
is given by

η(k) = (1− t(k))η1 + t(k)η2, t(k) =
1
c
(
mod(k− 1, c) + 1

)
,

where the base learning rates η1 ≥ η2 and the cycle length c are hyper-parameters of the
method. On the other hand, when choosing (∗) to update w, Algorithm 1 corresponds to
the general GD algorithm. When (∗∗) is chosen to update w, Algorithm 1 becomes the
TFGD algorithm. Again, when updating the step (∗∗), the calculation of φ(α) is executed
by the recurrence formula (19).

3.1. Numerical Simulation

The experimental data are randomly set. The date x is randomly taken as 20,000 points
on the interval of (−1, 1), and the value y is obtained by the test function

f (x) = sin(x) + sin(πx) + sin(ex).

The neural network model with two hidden layers is applied in this experiment.
The input is one and the output is one, and two hidden layers contain 25 neurons.

We next choose the two parameters. The learning rate η are taken as two different
value [0.1, 0.01], and the fractional order parameter α are chosen as [0.7, 0.8, 0.9, 0.95, 0.99]
which belong to (0.5, 1).

In the neural network training experiment based on the TFGD algorithm, each set of
data on the basis of 500 iterations will be repeatedly run 20 times for training. Then, we
take the average loss of 20 times of repeated experiments when the loss of each iteration
is the lowest. We obtain the obvious loss effects of the neural network associated with
different α, when the learning rate η is taken as 0.01 or 0.1, respectively. The experiment
result is shown in Figure 1.

Figure 1. Effects of fractional order parameter α, where lr = η denotes the learning rate.

Next, to make the effect of the neural network training experiment more clear and
intuitive, the learning rate is fixed at 0.1 and 0.01. We compare the loss effects of the
full batch gradient descent algorithm and the TFGD algorithm. The results are shown
in Figure 2.

Axioms 2022, 11, 507 8 of 11

Figure 2. Comparison of loss effects for the learning rates η = 0.1, 0.01, and different fractional order
parameter α, where QGD and TFGD stand for the general gradient descent and the time-fractional
gradient descent, respectively.

From Figure 2, we can verify the following two facts:

• For different learning rates (η = 0.01, 0.1) and the fractional order parameter α = 0.99, the
effect of the neural network optimization based on the TFGD algorithm is significantly
better than that of the general CD algorithm. Again, the fractional order parameter α
is larger, and the optimization effect of the neural network is better.

• When η = 0.1, α = 0.99 or η = 0.01, α = 0.9, 0.99, the loss effect of the TFGD algorithm
is better than that of the general GD algorithm. However, the loss effect of TFGD is
the same as that of the general GD if η = 0.01, α = 0.95.

In a word, under the condition of selecting the appropriate learning rate, if the value
of α is larger, the loss effect of the TFGD is better. This verifies that the memory dependence
has an impact on the training of neural networks.

3.2. Empirical Analysis

To further determine the optimization effect of the TFGD algorithm in the neural
network and to verify the accuracy of the previous numerical experiments, I apply the
TFDG algorithm to the neural network optimization of real data. In the empirical analysis,
I mainly use the classical handwritten digital data set, i.e., the MINST data set. To improve

Axioms 2022, 11, 507 9 of 11

the efficiency of the training, the parameter α is taken as [0.95, 0.99], and the different
learning rates η = 0.01, 0.1 are also selected.

The input data of this experimental model are 784-dimensional (28 × 28), the output
data are one-dimensional, and the cross entropy is used as the loss function. To improve
the efficiency of neural network training, the first 1000 data of handwritten digital data
sets are selected for the experiment. We run the TFGD algorithm with 100 iterations.
Under different learning rates (η = 0.01 or η = 0.1), the optimization effect of the TFGD
algorithm is better than that of the general GD algorithm. Again, for the TFGD algorithm,
the loss effect with α = 0.99 is better than that with α = 0.95. The corresponding results are
shown in Figure 3.

Figure 3. Comparison of loss effects for the learning rates η = 0.1 and η = 0.01, and the fractional
order parameters α = 0.95, 0.99, where QGD and TFGD stand for the general gradient descent and
the time-fractional gradient descent, respectively.

In the above, armed with the classical handwritten digital data sets, the neural network
training experiments based on the TFGD algorithm and the general GD algorithm are
carried out, respectively. At different learning rates, we verify that the memory dependence
affects neural network training.

4. Conclusions

This paper mainly studies the TFGD algorithm based on a weighted average to
optimize the neural network training, which finally leads to the better generalization perfor-

Axioms 2022, 11, 507 10 of 11

mance and the lower loss. Specifically, the parameter averaging method in neural network
training can be regarded as memory-dependent, which just corresponds to an important
feature of the time-fractional derivative. For theoretical analysis, the parameter averag-
ing method is not convenient; however, the time-fractional derivative is more suitable.
Again, the energy dissipation law and numerical stability of the time-fractional derivative
are all inherited. Based on the above advantages, the new TFGD algorithm is proposed.
We verify that the TFGD algorithm has potential advantages when the fractional order
parameter α nears 0.95∼0.99. This implies that the memory dependence could improve the
training performance of neural networks.

There are many exciting directions for future works. The TFGD algorithm is only
applied to the function fitting and the image classification in one dimension. In order
to verify the applicability and effectiveness of this algorithm, we consider more general
numerical examples, such as fittings of the multi-dimensional function, CIFAR10, CIFAR100,
and the other problems of image classification. The convergence analysis of this algorithm
could be developed for future research. The TFGD algorithm is a new attempt that combines
the averaging method in neural networks with the time-fractional gradient descent. We
hope that the algorithm will inspire further work in this area.

Author Contributions: The contributions of J.X. and S.L. are equal. All authors have read and agreed
to the published version of the manuscript.

Funding: Sirui Li is supported by the Growth Foundation for Youth Science and Technology Talent
of Educational Commission of Guizhou Province of China under grant No. [2021]087.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank the editors and the referees for their valuable comments
and suggestions to improve our paper. We also would like to thank Yongqiang Cai from Beijing
Normal University and Fanhai Zeng from Shandong University for their helpful discussions and
recommendations regarding this problem.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Bottou, L.; Curtis, F.; Nocedal, J. Optimization methods for large-scale machine learning. SIAM Rev. 2018, 60, 223–311. [CrossRef]
2. Bottou, L. Large-scale machine learning with stochastic gradient descent. In Proceedings of the International Conference on

Computational Statistics, Paris, France, 22–27 August 2010; pp. 177–186.
3. Hardt, M.; Recht, B.; Singer, Y. Train faster, generalize better: Stability of stochastic gradient descent. In Proceedings of the

International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016.
4. Polyak, B.T.; Juditsky, A.B. Acceleration of stochastic approximation by averaging. SIAM J. Control. Optim. 1992, 30, 838–855.

[CrossRef]
5. Zinkevich, M. Online convex programming and generalized infinitesimal gradient ascent. In Proceedings of the 20th International

Conference on Machine Learning (ICML-03), Washington, DC, USA, 21–24 August 2003; pp. 928–936.
6. Rakhlin, A.; Shamir, O.; Sridharan, K. Making gradient descent optimal for strongly convex stochastic optimization. arXiv 2011,

arXiv:1109.5647.
7. Shamir, O.; Zhang, T. Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging

schemes. In Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 71–79.
8. Guo, Z.; Yan, Y.; Yang, T. Revisiting SGD with increasingly weighted averaging: Optimization and generalization perspectives.

arXiv 2020, arXiv:2003.04339v3.
9. Tao, W.; Pan, Z.; Wu, G.; Tao, Q. Primal averaging: A new gradient evaluation step to attain the optimal individual convergence.

IEEE Trans. Cybern. 2020, 50, 835–845. [CrossRef] [PubMed]
10. Izmailov, P.; Podoprikhin, D.; Garipov, T.; Vetrov, D.; Wilson, A.G. Averaging weights leads to wider optima and better

generalization. In Proceedings of the 34th Conference on Uncertainty in Artificial Intelligence (UAI-2018), Monterey, CA, USA,
6–10 August 2018; pp. 876–885.

11. Khan, S.; Malik, M.A.; Togneri, R.; Bennamoun, M. A fractional gradient descent-based RBF neural network. Circuits Syst. Signal
Process. 2018, 37, 5311–5332. [CrossRef]

http://doi.org/10.1137/16M1080173
http://dx.doi.org/10.1137/0330046
http://dx.doi.org/10.1109/TCYB.2018.2874332
http://www.ncbi.nlm.nih.gov/pubmed/30346303
http://dx.doi.org/10.1007/s00034-018-0835-3

Axioms 2022, 11, 507 11 of 11

12. Bao, C.; Pu, Y. ; Zhang, Y. Fractional-order deep back propagation neural Network. Comput. Intell. Neurosci. 2018, 2018, 7361628.
[CrossRef] [PubMed]

13. Wang, J.; Wen, Y.; Gou, Y.; Ye, Z.; Chen, H. Fractional-order gradient descent learning of BP neural networks with Caputo
derivative. Neural Netw. 2017, 89, 19–30. [CrossRef] [PubMed]

14. Chen, M.; Chen, B.; Zeng, G.; Lu, K.; Chu, P. An adaptive fractional-order BP neural network based on extremal optimization for
handwritten digits recognition. Neurocomputing 2020, 391, 260–272. [CrossRef]

15. Wei, Y.; Kang, Y.; Yin, W.; Wang, Y. Generalization of the gradient method with fractional order gradient direction. J. Frankl. Inst.
2020, 357, 2514–2532. [CrossRef]

16. Du, Q.; Yang, J.; Zhou, Z. Time-fractional Allen-Cahn equations: Analysis and numerical methods. J. Sci. Comput. 2020, 42, 85.
[CrossRef]

17. Liao, H.L.; Tang, T.; Zhou, T. An energy stable and maximum bound preserving scheme with variable time steps for time
fractional Allen-Cahn equation. SIAM J. Sci. Comput. 2021, 43, A3503–A3526. [CrossRef]

18. Liu, H.; Cheng, A. ; Wang, H.; Zhao, J. Time-fractional Allen-Cahn and Cahn-Hilliard phase-field models and their numerical
investigation. Comput. Math. Appl. 2018, 76, 1876–1892. [CrossRef]

19. Quan, C.; Tang, T.; Yang, J. How to define dissipation-preserving energy for timefractional phase-field equations. CSIAM Trans.
Appl. Math. 2020, 1, 478–490. [CrossRef]

20. Tang, T.; Yu, H.; Zhou, T. On energy dissipation theory and numerical stability for time-fractional phase-field equations. SIAM J.
Sci. Comput. 2019, 41, A3757–A3778. [CrossRef]

21. Rahman, Z.; Abdeljabbar, A.; Roshid, H.; Ali, M.Z. Novel precise solitary wave solutions of two time fractional nonlinear
evolution models via the MSE scheme. Fractal Fract. 2022, 6, 444. [CrossRef]

22. Abdeljabbar, A.; Roshid, H.; Aldurayhim, A. Bright, dark, and rogue wave soliton solutions of the quadratic nonlinear Klein-
Gordon equation. Symmetry 2022, 14, 1223. [CrossRef]

23. Alsaedi, A.; Ahmad, B.; Kirane, M. Maximum principle for certain generalized time and space-fractional diffusion equations.
Quart. App. Math. 2015, 73, 163–175. [CrossRef]

http://dx.doi.org/10.1155/2018/7361628
http://www.ncbi.nlm.nih.gov/pubmed/30065757
http://dx.doi.org/10.1016/j.neunet.2017.02.007
http://www.ncbi.nlm.nih.gov/pubmed/28278430
http://dx.doi.org/10.1016/j.neucom.2018.10.090
http://dx.doi.org/10.1016/j.jfranklin.2020.01.008
http://dx.doi.org/10.1007/s10915-020-01351-5
http://dx.doi.org/10.1137/20M1384105
http://dx.doi.org/10.1016/j.camwa.2018.07.036
http://dx.doi.org/10.4208/csiam-am.2020-0024
http://dx.doi.org/10.1137/18M1203560
http://dx.doi.org/10.3390/fractalfract6080444
http://dx.doi.org/10.3390/sym14061223
http://dx.doi.org/10.1090/S0033-569X-2015-01386-2

	Introduction
	The Time-Fractional Allen–Cahn Equation
	Numerical Simulation and Empirical Analysis
	Numerical Simulation
	Empirical Analysis

	Conclusions
	References

