A Study of Clairaut Semi-Invariant Riemannian Maps from Cosymplectic Manifolds

Yanlin Li ${ }^{1}{ }^{(\mathbb{D}}$, Rajendra Prasad ${ }^{2}$ (D) Abdul Haseeb ${ }^{3, *}{ }^{(\mathbb{D}}$, Sushil Kumar ${ }^{4}$ © and Sumeet Kumar 5 (D)
1 School of Mathematics, Hangzhou Normal University, Hangzhou 311121, China
2 Department of Mathematics and Astronomy, University of Lucknow (U.P.), Lucknow 226007, India
3 Department of Mathematics, College of Science, Jazan University, Jazan 45142, Saudi Arabia
4 Shri Jai Narain Post Graduate College, University of Lucknow (U.P.), Lucknow 226001, India
5 Department of Mathematics, Dr. Shree Krishna Sinha Women's College Motihari, Babasaheb Bhimrao Ambedkar University, Bihar 845401, India
* Correspondence: haseeb@jazanu.edu.sa or malikhaseeb80@gmail.com

Citation: Li, Y.; Prasad, R.; Haseeb, A.; Kumar, S.; Kumar, S. A Study of Clairaut Semi-Invariant Riemannian Maps from Cosymplectic Manifolds. Axioms 2022, 11, 503. https:// doi.org/10.3390/axioms11100503

Academic Editor: Mica Stankovic

Received: 7 August 2022
Accepted: 21 September 2022
Published: 26 September 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

In the present note, we characterize Clairaut semi-invariant Riemannian maps from cosymplectic manifolds to Riemannian manifolds. Moreover, we provide a nontrivial example of such a Riemannian map.

Keywords: cosymplectic manifolds; Riemannian map; Clairaut semi-invariant Riemannian map
MSC: 53C43; 53C15; 53C20; 53C55

1. Introduction

The theory of Riemannian maps between Riemannian manifolds is widely used to compare the geometric structures between two Riemannian manifolds, initiated by Fischer [1]. Let $\left(\mathcal{M}_{1}, g_{1}\right)$ and $\left(\mathcal{M}_{2}, g_{2}\right)$ be two Riemannian manifolds of dimensions m and n, respectively. Let a Riemannian map $\Pi:\left(\mathcal{M}_{1}, g_{1}\right) \rightarrow\left(\mathcal{M}_{2}, g_{2}\right)$ be a differentiable map between $\left(\mathcal{M}_{1}, g_{1}\right)$ and $\left(\mathcal{M}_{2}, g_{2}\right)$ such that $0<\operatorname{rank} \Pi_{*}<\min \{m, n\}$, where Π_{*} represents a differential map of Π. If we denote the kernel space of Π_{*} by $\operatorname{ker} \Pi_{*}$ and the orthogonal complementary space of $\operatorname{ker} \Pi_{*}$ by $\left(\operatorname{ker} \Pi_{*}\right)^{\perp}$ in $T \mathcal{M}_{1}$, then the $T \mathcal{M}_{1}$ has the following orthogonal decomposition:

$$
\begin{equation*}
T \mathcal{M}_{1}=\operatorname{ker} \Pi_{*} \oplus\left(\operatorname{ker} \Pi_{*}\right)^{\perp} \tag{1}
\end{equation*}
$$

We denote the range of Π_{*} by range Π_{*} and for a point $q \in \mathcal{M}_{1}$ the orthogonal complementary space of $\operatorname{range} \Pi_{* \Pi(q)}$ by $\left(\operatorname{range} \Pi_{* \Pi(q)}\right)^{\perp}$ in $T_{\Pi(q)} \mathcal{M}_{2}$. The tangent space $T_{\Pi(q)} \mathcal{M}_{2}$ has the following orthogonal decomposition:

$$
T_{\Pi(q)} \mathcal{M}_{2}=\left(\operatorname{range} \Pi_{* \Pi(q)}\right) \oplus\left(\operatorname{range} \Pi_{* \Pi(q)}\right)^{\perp}
$$

A differentiable map $\Pi:\left(\mathcal{M}_{1}, g_{1}\right) \rightarrow\left(\mathcal{M}_{2}, g_{2}\right)$ is called a Riemannian map at $q \in \mathcal{M}_{1}$ if the horizontal restriction $\Pi_{* q}^{h}:\left(\operatorname{ker} \Pi_{* q}\right)^{\perp} \rightarrow\left(\operatorname{range} \Pi_{* \Pi(q)}\right)$ is a linear isometric between the inner product spaces $\left(\left(\operatorname{ker} \Pi_{* q}\right)^{\perp},\left.\left(g_{1}\right)_{(q)}\right|_{\left(\operatorname{ker} \Pi_{* q}\right)^{\perp}}\right)$ and $\left(\operatorname{range} \Pi_{\left.* \Pi_{(q)}\right)}\right.$, $\left.\left.\left(g_{2}\right)_{(\Pi(q)}\right)\left.\right|_{\left(\text {range }_{* q}\right)}\right)$.

Further, the notion of the Riemannian map has been studied from different perspectives, such as invariant and anti-invariant Riemannian maps [2], semi-invariant Riemannian maps [3], slant Riemannian maps [4-6], semi-slant Riemannian maps [7-9], hemi-slant Riemannian maps [10], quasi-hemi-slant Riemannian maps [11] etc.

On the other side, in the theory of the geodesics upon a surface of revolution, the prestigious Clairaut's theorem states that for any geodesic $c\left(c: I_{1} \subset R \rightarrow \mathcal{M}_{1}\right.$ on $\left.\mathcal{M}_{1}\right)$ on the revolution surface \mathcal{M}_{1} the product $r \sin \theta$ is constant along c, where $\theta(s)$ is the angle
between $c(s)$ and the meridian curve through $c(s), s \in I_{1}$. This means that it is independent of s. In 1972, Bishop [12] studied Riemannian submersions which are a generalization of Clairaut's theorem. According to him, a submersion $\Pi: \mathcal{M}_{1} \rightarrow \mathcal{M}_{2}$ is said to be a Clairaut submersion if there is a function $r: \mathcal{M}_{1} \rightarrow R^{+}$such that for every geodesic making an angle θ with the horizontal subspaces, $r \sin \theta$ is constant. This notion has also been studied in Lorentzian spaces, time-like and space-like spaces, by the authors [13-15]. Later, in [16], it was shown that such submersions have their applications in static spacetimes.

Moreover, Clairaut submersions were further generalized in [17]. We recommend the papers [18-32] and the references therein for more details about the further related studies.

In this paper, we are interested in studying the above idea in contact manifolds. Throughout the manuscript, we denote semi-invariant Riemannian maps by SIR maps and Clairaut semi-invariant Riemannian maps by CSIR maps. The article is organized as follows: In Section 2, we gather some basic facts that are needed for this paper. In Section 3, we define a CSIR map from an almost contact metric manifold to a Riemannian manifold and study its geometry. In Section 4, we give a nontrivial example of the CSIR map from cosymplectic manifolds to Riemannian manifolds.

2. Preliminaries

An odd-dimensional smooth manifold \mathcal{M}_{1} is said to have an almost contact structure [33] if there exist on \mathcal{M}_{1} a tensor field ϕ of type (1,1), a vector field ξ, and 1-form η such that

$$
\begin{gather*}
\phi^{2} V_{1}=-V_{1}+\eta\left(V_{1}\right) \xi, \eta \circ \phi=0, \phi \xi=0, \tag{2}\\
\eta(\xi)=1 . \tag{3}
\end{gather*}
$$

If there exists a Riemannian metric g_{1} on an almost contact manifold \mathcal{M}_{1} satisfying:

$$
\begin{align*}
& g_{1}\left(\phi V_{1}, \phi V_{2}\right)=g_{1}\left(V_{1}, V_{2}\right)-\eta\left(V_{1}\right) \eta\left(V_{2}\right) \tag{4}\\
& g_{1}\left(V_{1}, \phi V_{2}\right)=-g_{1}\left(\phi V_{1}, V_{2}\right) \\
& g_{1}\left(V_{1}, \xi\right)=\eta\left(V_{1}\right) \tag{5}
\end{align*}
$$

where V_{1}, V_{2} are any vector fields on \mathcal{M}_{1}, then \mathcal{M}_{1} is called an almost contact metric manifold [34] with an almost contact structure $\left(\phi, \xi, \eta, g_{1}\right)$ and is represented by $\left(\mathcal{M}_{1}, \phi, \xi, \eta, g_{1}\right)$.

An almost contact structure (ϕ, ξ, η) is said to be normal if the almost complex structure J on the product manifold $\mathcal{M}_{1} \times R$ is given by

$$
\begin{equation*}
J\left(V_{1}, \mathcal{F} \frac{d}{d t}\right)=\left(\phi V_{1}-\mathcal{F} \xi, \eta\left(V_{1}\right) \frac{d}{d t}\right) \tag{6}
\end{equation*}
$$

where $J^{2}=-I$ and \mathcal{F} is a differentiable function on $\mathcal{M}_{1} \times R$ that has no torsion, i.e., J is integrable. The condition for normality in terms of ϕ, ξ, and η is given by $[\phi, \phi]+2 d \eta \otimes \xi=0$ on \mathcal{M}_{1}, where $[\phi, \phi]$ is the Nijenhuis tensor of ϕ. Further, the fundamental 2-form Φ is defined by $\Phi\left(V_{1}, V_{2}\right)=g_{1}\left(V_{1}, \phi V_{2}\right)$.

A manifold \mathcal{M}_{1} with the structure $\left(\phi, \xi, \eta, g_{1}\right)$ is said to be cosymplectic [33] if

$$
\begin{equation*}
\left(\nabla_{V_{1}} \phi\right) V_{2}=0, \tag{7}
\end{equation*}
$$

for any vector fields V_{1}, V_{2} on \mathcal{M}_{1}, where ∇ stands for the Riemannian connection of the metric g_{1} on \mathcal{M}_{1}. For a cosymplectic manifold, we have

$$
\begin{equation*}
\nabla_{V_{1}} \xi=0 \tag{8}
\end{equation*}
$$

for any vector field V_{1} on \mathcal{M}_{1}.

$$
\begin{equation*}
\mathcal{A}_{F_{1}} F_{2}=\mathcal{H} \nabla_{\mathcal{H} F_{1}} \mathcal{V} F_{2}+\mathcal{V} \nabla_{\mathcal{H} F_{1}} \mathcal{H} F_{2}, \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{T}_{F_{1}} F_{2}=\mathcal{H} \nabla_{\mathcal{V} F_{1}} \mathcal{V} F_{2}+\mathcal{V} \nabla_{\mathcal{V} F_{1}} \mathcal{H} F_{2}, \tag{10}
\end{equation*}
$$

for any F_{1}, F_{2} on \mathcal{M}_{1}. It is easy to see that $\mathcal{T}_{F_{1}}$ and $\mathcal{A}_{F_{1}}$ are skew-symmetric operators on the tangent bundle of \mathcal{M}_{1} reversing the vertical and the horizontal distributions. In addition, for any vertical vector fields X_{1} and X_{2}, the tensor field \mathcal{T} has the symmetry property, i.e.,

$$
\begin{equation*}
\mathcal{T}_{X_{1}} X_{2}=\mathcal{T}_{X_{2}} X_{1}, \tag{11}
\end{equation*}
$$

while for horizontal vector fields Z_{1}, Z_{2}, the tensor field \mathcal{A} has alternation property, i.e.,

$$
\begin{equation*}
\mathcal{A}_{Z_{1}} Z_{2}=-\mathcal{A}_{Z_{2}} Z_{1} \tag{12}
\end{equation*}
$$

From Equations (9) and (10), we have

$$
\begin{align*}
\nabla_{U_{1}} U_{2} & =\mathcal{T}_{U_{1}} U_{2}+\mathcal{V} \nabla_{U_{1}} U_{2}, \tag{13}\\
\nabla_{U_{1}} W_{1} & =\mathcal{T}_{U_{1}} W_{1}+\mathcal{H} \nabla_{U_{1}} W_{1}, \tag{14}\\
\nabla_{W_{1}} U_{1} & =\mathcal{A}_{W_{1}} U_{1}+\mathcal{V} \nabla_{W_{1}} U_{1}, \tag{15}\\
\nabla_{W_{1}} W_{2} & =\mathcal{H} \nabla_{W_{1}} W_{2}+\mathcal{A}_{W_{1}} W_{2} \tag{16}
\end{align*}
$$

for all $U_{1}, U_{2} \in \Gamma\left(\operatorname{ker} \Pi_{*}\right)$ and $W_{1}, W_{2} \in \Gamma\left(\operatorname{ker} \Pi_{*}\right)^{\perp}$, where $\mathcal{H} \nabla_{U_{1}} W_{1}=\mathcal{A}_{W_{1}} U_{1}$ and W_{1} is basic. It can be easily seen that \mathcal{T} acts on the fibers as the second fundamental form, while \mathcal{A} acts on the horizontal distribution and measures the obstruction to the integrability of the distribution.

It is noticed that for $p \in \mathcal{M}_{1}, Z_{1} \in \mathcal{V}_{p}$ and $X_{1} \in \mathcal{H}_{p}$ the linear operators

$$
\mathcal{A}_{X_{1}}, \mathcal{T}_{Z_{1}}: T_{p} \mathcal{M}_{1} \rightarrow T_{p} \mathcal{M}_{1}
$$

are skew-symmetric, i.e.,

$$
\begin{equation*}
g_{1}\left(\mathcal{A}_{X_{1}} F_{1}, F_{2}\right)=-g_{1}\left(F_{1}, \mathcal{A}_{X_{1}} F_{2}\right) \text { and } g_{1}\left(\mathcal{T}_{Z_{1}} F_{1}, F_{2}\right)=-g_{1}\left(F_{1}, \mathcal{T}_{Z_{1}} F_{2}\right) \tag{17}
\end{equation*}
$$

for each $F_{1}, F_{2} \in T_{P} \mathcal{M}_{1}$. Since $\mathcal{T}_{Z_{1}}$ is skew-symmetric, we observe that Π has totally geodesic fibres if and only if $\mathcal{T} \equiv 0$.

The map Π between two Riemannian manifolds is totally geodesic if

$$
\left(\nabla \Pi_{*}\right)\left(V_{1}, V_{2}\right)=0 \forall V_{1}, V_{2} \in \Gamma\left(T \mathcal{M}_{1}\right) .
$$

A totally umbilical map is a Riemannian map with totally umbilical fibers [36] if

$$
\begin{equation*}
\mathcal{T}_{Y_{1}} Y_{2}=g_{1}\left(Y_{1}, Y_{2}\right) H \tag{18}
\end{equation*}
$$

for all $Y_{1}, Y_{2} \in \Gamma\left(\operatorname{ker} \Pi_{*}\right)$, where H denotes the mean curvature vector field of fibers.
The map Π_{*} can be observed as a section of the bundle $\operatorname{Hom}\left(T \mathcal{M}_{1}, \Pi^{-1} T \mathcal{M}_{2}\right) \longrightarrow \mathcal{M}_{1}$, where $\Pi^{-1} T \mathcal{M}_{2}$ is the bundle which has fibers $\left(\Pi^{-1} T \mathcal{M}_{2}\right)_{x}=T_{\Pi(x)} \mathcal{M}_{2}$ and has a connection ∇ induced from the Riemannian connection $\nabla^{\mathcal{M}_{1}}$ and the pullback connection ∇^{Π}, then the second fundamental form of Π is given by

$$
\begin{equation*}
\left(\nabla \Pi_{*}\right)\left(W_{1}, W_{2}\right)=\nabla_{W_{1}}^{\Pi} \Pi_{*}\left(W_{2}\right)-\Pi_{*}\left(\nabla_{W_{1}}^{\mathcal{M}_{1}} W_{2}\right) \tag{19}
\end{equation*}
$$

for the vector fields $W_{1}, W_{2} \in \Gamma\left(T \mathcal{M}_{1}\right)$. We know that the second fundamental form is symmetric.

Now, we have the following lemma [2]:
Lemma 1. Let $\Pi:\left(\mathcal{M}_{1}, g_{1}\right) \rightarrow\left(\mathcal{M}_{2}, g_{2}\right)$ be a map between Riemannian manifolds. Then

$$
\begin{equation*}
g_{2}\left(\left(\nabla \Pi_{*}\right)\left(\Upsilon_{1}, \Upsilon_{2}\right), \Pi_{*}\left(Y_{3}\right)\right)=0 \forall Y_{1}, \Upsilon_{2}, \Upsilon_{3} \in \Gamma\left(\operatorname{ker} \Pi_{*}\right)^{\perp} . \tag{20}
\end{equation*}
$$

As a result of above Lemma, we obtain

$$
\begin{equation*}
\left(\nabla \Pi_{*}\right)\left(Z_{1}, Z_{2}\right) \in\left(\Gamma\left(\operatorname{range} \Pi_{*}\right)^{\perp}\right) \forall Z_{1}, Z_{2} \in \Gamma\left(\operatorname{ker} \Pi_{*}\right)^{\perp} . \tag{21}
\end{equation*}
$$

3. CSIR Map from Cosymplectic Manifolds

Let S be a revolution surface in R^{3} with rotation axis L. For any $q \in S$, we denote the distance from q to L by $r(q)$. Given a geodesic $\alpha: I \subset R \rightarrow S$ on S, let $\theta(t)$ be the angle between $\alpha(t)$ and the meridian curve through $\alpha(t), t \in I$. A well-known Clairaut's theorem says that for any geodesic α on S, the product $r \sin \theta(t)$ is constant along α, i.e., it is independent of t.

Recently, Sahin [30] initiated the study of Clairaut Riemannian maps. He defined a $\operatorname{map} \Pi:\left(\mathcal{M}_{1}, g_{1}\right) \rightarrow\left(\mathcal{M}_{2}, g_{2}\right)$ called a Clairaut Riemannian map if there exists a positive function r on \mathcal{M}_{1}, such that for any geodesic α on \mathcal{M}_{1}, the function $(r \circ \alpha) \sin \theta$ is constant, where for any $t, \theta(t)$ is the angle between $\dot{\alpha}(t)$ and the horizontal space at $\alpha(t)$. Moreover, he obtained the following necessary and sufficient condition for a Riemannian map to be a Clairaut Riemannian map:

Theorem 1 ([30]). Let $\Pi:\left(\mathcal{M}_{1}, g_{1}\right) \rightarrow\left(\mathcal{M}_{2}, g_{2}\right)$ be a Riemannian map with connected fibers. Then, Π is a Clairaut Riemannian map with $r=e^{f}$ if each fiber is totally umbilical and has the mean curvature vector field $H=-\nabla f$, where ∇f is the gradient of the function f with respect to g_{1}.

Definition 1 ([3]). Let Π be a Riemannian map from an almost contact metric manifold $\left(\mathcal{M}_{1}, \phi, \xi, \eta, g_{1}\right)$ to a Riemannian manifold $\left(\mathcal{M}_{2}, g_{2}\right)$. Then, we say that Π is an SIR map if there is a distribution $\mathfrak{D}_{1} \subseteq \operatorname{ker} \Pi_{*}$ such that

$$
\operatorname{ker} \Pi_{*}=\mathfrak{D}_{1} \oplus \mathfrak{D}_{2}, \phi\left(\mathfrak{D}_{1}\right)=\mathfrak{D}_{1}, \phi\left(\mathfrak{D}_{2}\right) \subseteq\left(\operatorname{ker} \Pi_{*}\right)^{\perp}
$$

where \mathfrak{D}_{1} and \mathfrak{D}_{2} are mutually orthogonal distributions in $\left(\operatorname{ker} \Pi_{*}\right)$.
Let μ denote the complementary orthogonal subbundle to $\phi\left(\mathfrak{D}_{2}\right)$ in $\left(\operatorname{ker} \Pi_{*}\right)^{\perp}$. Then, we have

$$
\left(\operatorname{ker} \Pi_{*}\right)^{\perp}=\phi\left(\mathfrak{D}_{2}\right) \oplus \mu .
$$

Obviously, μ is an invariant subbundle of $\left(\operatorname{ker} \Pi_{*}\right)^{\perp}$ with respect to the contact structure ϕ. We say that an SIR map $\Pi: \mathcal{M}_{1} \rightarrow \mathcal{M}_{2}$ admits a vertical Reeb vector field ξ if it is tangent to $\left(\operatorname{ker} \Pi_{*}\right)$ and it admits a horizontal Reeb vector field ξ if it is normal to $\left(\operatorname{ker} \Pi_{*}\right)$. It is easy to see that μ contains the Reeb vector field in case the Riemannian map admits horizontal Reeb vector field.

Now, we define the notion of the CSIR map in contact manifolds as follows:
Definition 2. An SIR map from a cosymplectic manifold $\left(\mathcal{M}_{1}, \phi, \xi, \eta, g_{1}\right)$ to a Riemannian manifold $\left(\mathcal{M}_{2}, g_{2}\right)$ is called a CSIR map if it satisfies the condition of a Clairaut Riemannian map.

For any vector field $Z_{1} \in \Gamma\left(\operatorname{ker} \Pi_{*}\right)$, we input

$$
\begin{equation*}
Z_{1}=P Z_{1}+Q Z_{1} \tag{22}
\end{equation*}
$$

where P and Q are projection morphisms [36] of $\operatorname{ker} \Pi_{*}$ onto \mathfrak{D}_{1} and \mathfrak{D}_{2}, respectively.
For any $V_{1} \in\left(\operatorname{ker} \Pi_{*}\right)$, we obtain

$$
\begin{equation*}
\phi V_{1}=\psi V_{1}+\omega V_{1}, \tag{23}
\end{equation*}
$$

where $\psi V_{1} \in \Gamma\left(\mathfrak{D}_{1}\right)$ and $\omega V_{1} \in \Gamma\left(\phi \mathfrak{D}_{2}\right)$. In addition, for $V_{2} \in \Gamma\left(\operatorname{ker} \Pi_{*}\right)^{\perp}$, we have

$$
\begin{equation*}
\phi V_{2}=B V_{2}+C V_{2}, \tag{24}
\end{equation*}
$$

where $B V_{2} \in \Gamma\left(\mathfrak{D}_{2}\right)$ and $C V_{2} \in \Gamma(\mu)$.
Definition 3 ([14]). Let Π be an SIR map from an almost contact metric manifold ($\mathcal{M}_{1}, \phi, \xi, \eta, g_{1}$) to a Riemannian manifold $\left(\mathcal{M}_{2}, g_{2}\right)$. If $\mu=\{0\}$ or $\mu=<\xi>$, i.e., $\left(\operatorname{ker} \Pi_{*}\right)^{\perp}=\phi\left(\mathfrak{D}_{2}\right)$ or $\left(\operatorname{ker} \Pi_{*}\right)^{\perp}=\phi\left(\mathfrak{D}_{2}\right) \oplus<\xi>$, respectively. Then we call ϕ a Lagrangian Riemannian map. In this case, for any horizontal vector field V_{1}, we have

$$
\begin{equation*}
B V_{1}=\phi V_{1} \text { and } C V_{1}=0 . \tag{25}
\end{equation*}
$$

Lemma 2. Let Π be an SIR map from a cosymplectic manifold $\left(\mathcal{M}_{1}, \phi, \xi, \eta, g_{1}\right)$ to a Riemannian manifold $\left(\mathcal{M}_{2}, g_{2}\right)$ admitting vertical or horizontal Reeb vector field. Then, we obtain

$$
\begin{align*}
\mathcal{V} \nabla_{Y_{1}} \psi Y_{2}+\mathcal{T}_{Y_{1}} \omega Y_{2} & =B \mathcal{T}_{Y_{1}} Y_{2}+\psi \mathcal{V} \nabla_{Y_{1}} Y_{2}, \tag{26}\\
\mathcal{T}_{Y_{1}} \psi Y_{2}+\mathcal{H} \nabla_{Y_{1}} \omega Y_{2} & =C \mathcal{T}_{Y_{1}} Y_{2}+\omega \mathcal{V} \nabla_{Y_{1}} Y_{2}, \tag{27}\\
\mathcal{V} \nabla_{V_{1}} B V_{2}+\mathcal{A}_{V_{1}} C V_{2} & =B \mathcal{H} \nabla_{V_{1}} V_{2}+\psi \mathcal{A}_{V_{1}} V_{2}, \tag{28}\\
\mathcal{A}_{V_{1}} B V_{2}+\mathcal{H} \nabla_{V_{1}} C V_{2} & =C \mathcal{H} \nabla_{V_{1}} V_{2}+\omega \mathcal{A}_{V_{1}} V_{2}, \tag{29}\\
\mathcal{V} \nabla_{Y_{1}} B V_{1}+\mathcal{T}_{Y_{1}} C V_{1} & =\psi \mathcal{T}_{Y_{1}} V_{1}+B \mathcal{H} \nabla_{Y_{1} V_{1}}, \tag{30}\\
\mathcal{T}_{Y_{1}} B V_{1}+\mathcal{H} \nabla_{Y_{1}} C V_{1} & =\omega \mathcal{T}_{Y_{1}} V_{1}+C \mathcal{H} \nabla_{Y_{1}} V_{1}, \tag{31}\\
\mathcal{V} \nabla_{V_{1}} \psi Y_{1}+\mathcal{A}_{V_{1}} \omega Y_{1} & =B \mathcal{A}_{V_{1}} Y_{1}+\psi \nabla_{V_{1}} Y_{1}, \tag{32}\\
\mathcal{A}_{V_{1}} \psi Y_{1}+\mathcal{H} \nabla_{V_{1}} \omega Y_{1} & =C \mathcal{A}_{V_{1}} Y_{1}+\omega \mathcal{V} \nabla_{V_{1}} Y_{1}, \tag{33}
\end{align*}
$$

where $Y_{1}, Y_{2} \in \Gamma\left(\operatorname{ker} \Pi_{*}\right)$ and $V_{1}, V_{2} \in \Gamma\left(\operatorname{ker} \Pi_{*}\right)^{\perp}$.
Proof. Using Equations (7), (13)-(16), (23) and (24), we obtain Lemma 2.
Corollary 1. Let Π be a Lagrangian Riemannian map from a cosymplectic manifold ($\mathcal{M}_{1}, \phi, \xi, \eta, g_{1}$) to a Riemannian manifold $\left(\mathcal{M}_{2}, g_{2}\right)$ admitting vertical or horizontal Reeb vector field. Then, we obtain

$$
\begin{gathered}
\mathcal{V} \nabla_{X_{1}} \psi X_{2}+\mathcal{T}_{X_{1}} \omega X_{2}=B \mathcal{T}_{X_{1}} X_{2}+\psi \mathcal{V} \nabla_{X_{1}} X_{2}, \mathcal{T}_{X_{1}} \psi X_{2}+\mathcal{H} \nabla_{X_{1}} \omega X_{2}=\omega \mathcal{V} \nabla_{X_{1} X_{2}}, \\
\mathcal{V} \nabla_{Z_{1}} B Z_{2}=B \mathcal{H} \nabla_{Z_{1}} Z_{2}+\psi \mathcal{A}_{Z_{1}} Z_{2}, \mathcal{A}_{Z_{1}} B Z_{2}=\omega \mathcal{A}_{Z_{1}} Z_{2}, \\
\mathcal{V} \nabla_{X_{1}} B Z_{1}=\psi \mathcal{T}_{X_{1}} Z_{1}+B \mathcal{H} \nabla_{X_{1}} Z_{1}, \mathcal{T}_{X_{1}} B Z_{1}=\omega \mathcal{T}_{X_{1}} Z_{1} \\
\mathcal{V} \nabla_{Z_{1}} \psi X_{1}+\mathcal{A}_{Z_{1}} \omega X_{1}=B \mathcal{A}_{Z_{1}} X_{1}+\psi \mathcal{V} \nabla_{Z_{1}} X_{1}, \mathcal{A}_{Z_{1}} \psi X_{1}+\mathcal{H} \nabla_{Z_{1}} \omega X_{1}=\omega \mathcal{V} \nabla_{Z_{1}} X_{1},
\end{gathered}
$$ where $X_{1}, X_{2} \in \Gamma\left(\operatorname{ker} \Pi_{*}\right)$ and $Z_{1}, Z_{2} \in \Gamma\left(\operatorname{ker} \Pi_{*}\right)^{\perp}$.

Lemma 3. Let Π be an SIR map from a cosymplectic manifold $\left(\mathcal{M}_{1}, \phi, \xi, \eta, g_{1}\right)$ to a Riemannian manifold $\left(\mathcal{M}_{2}, g_{2}\right)$ admitting vertical or horizontal Reeb vector field. Then, we have

$$
\begin{align*}
& \mathcal{T}_{U_{1}} \xi=0 \tag{34}\\
& \mathcal{A}_{U_{2}} \xi=0 \tag{35}
\end{align*}
$$

for $U_{1} \in \Gamma\left(\operatorname{ker} \Pi_{*}\right)^{\perp}$ and $U_{2} \in \Gamma\left(\operatorname{ker} \Pi_{*}\right)^{\perp}$.
Proof. Using Equations (8), (14) and (16), we obtain Lemma 3.
Lemma 4. Let Π be an SIR map from a cosymplectic manifold $\left(\mathcal{M}_{1}, \phi, \xi, \eta, g_{1}\right)$ to a Riemannian manifold $\left(\mathcal{M}_{2}, g_{2}\right)$. If $\alpha: I_{2} \subset R \rightarrow \mathcal{M}_{1}$ is a regular curve and $Y_{1}(t)$ and $Y_{2}(t)$ are the vertical
and horizontal components of the tangent vector field $\dot{\alpha}=E$ of $\alpha(t)$, respectively, then α is a geodesic if and only if along α the following relations hold:

$$
\begin{align*}
& \mathcal{V} \nabla_{\dot{\alpha}} B Y_{2}+\mathcal{V} \nabla_{\dot{\alpha}} \psi Y_{1}+\left(\mathcal{T}_{Y_{1}}+\mathcal{A}_{Y_{2}}\right) C Y_{2}+\left(\mathcal{T}_{Y_{1}}+\mathcal{A}_{Y_{2}}\right) \omega Y_{1}=0, \tag{36}\\
& \mathcal{H} \nabla_{\dot{\alpha}} C Y_{2}+\mathcal{H} \nabla_{\dot{\alpha}} \omega Y_{1}+\left(\mathcal{T}_{Y_{1}}+\mathcal{A}_{Y_{2}}\right) B Y_{2}+\left(\mathcal{A}_{Y_{2}}+\mathcal{T}_{Y_{1}}\right) \psi Y_{1}=0 . \tag{37}
\end{align*}
$$

Proof. Let $\alpha: I_{2} \rightarrow \mathcal{M}_{1}$ be a regular curve on \mathcal{M}_{1}. Since $Y_{1}(t)$ and $Y_{2}(t)$ are the vertical and horizontal parts of the tangent vector field $\dot{\alpha}(t)$, i.e., $\dot{\alpha}(t)=Y_{1}(t)+Y_{2}(t)$, from Equations (2), (7), (13)-(16), (23) and (24), we obtain

$$
\begin{aligned}
\phi \nabla_{\dot{\alpha}}^{\dot{\alpha}}= & \nabla_{\dot{\alpha}} \phi \dot{\alpha} \\
= & \nabla_{Y_{1}} \psi Y_{1}+\nabla_{Y_{1}} \omega Y_{1}+\nabla_{Y_{2}} \psi Y_{1}+\nabla_{Y_{2}} \omega Y_{1} \\
& +\nabla_{Y_{1}} B Y_{2}+\nabla_{Y_{1}} C Y_{2}+\nabla_{Y_{2}} B Y_{2}+\nabla_{Y_{2}} C Y_{2} \\
= & \mathcal{V} \nabla_{\dot{\alpha}} B Y_{2}+\mathcal{V} \nabla_{\dot{\alpha}} \psi Y_{1}+\left(\mathcal{T}_{Y_{1}}+\mathcal{A}_{Y_{2}}\right) C Y_{2}+\left(\mathcal{T}_{Y_{1}}+\mathcal{A}_{Y_{2}}\right) \omega Y_{1} \\
& +\mathcal{H} \nabla_{\dot{\alpha}} C Y_{2}+\mathcal{H} \nabla_{\dot{\alpha}} \omega Y_{1}+\left(\mathcal{T}_{Y_{1}}+\mathcal{A}_{Y_{2}}\right) B Y_{2}+\left(\mathcal{A}_{Y_{2}}+\mathcal{T}_{Y_{1}}\right) \psi Y_{1} .
\end{aligned}
$$

Taking the vertical and horizontal components in the above equation, we have

$$
\begin{aligned}
& \mathcal{V} \phi \nabla_{\dot{\alpha}} \dot{\alpha}=\mathcal{V} \nabla_{\dot{\alpha}} B Y_{2}+\mathcal{V} \nabla_{\dot{\alpha}} \psi Y_{1}+\left(\mathcal{T}_{Y_{1}}+\mathcal{A}_{Y_{2}}\right) C Y_{2}+\left(\mathcal{T}_{Y_{1}}+\mathcal{A}_{Y_{2}}\right) \omega Y_{1}, \\
& \mathcal{H} \phi \nabla_{\dot{\alpha}} \dot{\alpha}=\mathcal{H} \nabla_{\dot{\alpha}} C Y_{2}+\mathcal{H} \nabla_{\dot{\alpha}} \omega Y_{1}+\left(\mathcal{T}_{Y_{1}}+\mathcal{A}_{Y_{2}}\right) B Y_{2}+\left(\mathcal{A}_{Y_{2}}+\mathcal{T}_{Y_{1}}\right) \psi Y_{1} .
\end{aligned}
$$

Thus, α is a geodesic on \mathcal{M}_{1} if and only if $\mathcal{V} \phi \nabla_{\dot{\alpha}} \dot{\alpha}=0$ and $\mathcal{H} \phi \nabla_{\dot{\alpha}} \dot{\alpha}=0$; this completes the proof.

Theorem 2. Let Π be an SIR map from a cosymplectic manifold $\left(\mathcal{M}_{1}, \phi, \xi, \eta, g_{1}\right)$ to a Riemannian manifold $\left(\mathcal{M}_{2}, g_{2}\right)$. Then, Π is a CSIR map with $r=e^{f}$ if and only if

$$
\begin{aligned}
& g_{1}\left(\nabla f, V_{2}\right)\left\|V_{1}\right\|^{2} \\
= & \left.g_{1}\left(\mathcal{V} \nabla_{\dot{\alpha}} B V_{2}, \psi V_{1}\right)+g_{1}\left(\mathcal{T}_{V_{1}}+\mathcal{A}_{V_{2}}\right) C V_{2}, \psi V_{1}\right) \\
& +g_{1}\left(\mathcal{H} \nabla_{\dot{\alpha}} C V_{2}, \omega V_{1}\right)+g_{1}\left(\left(\mathcal{T}_{V_{1}}+\mathcal{A}_{V_{2}}\right) B V_{2}, \omega V_{1}\right),
\end{aligned}
$$

where $\alpha: I_{2} \rightarrow \mathcal{M}_{1}$ is a geodesic on $\mathcal{M}_{1} ; V_{1}(t)$ and $V_{2}(t)$ are vertical and horizontal components of $\dot{\alpha}(t)$, respectively.

Proof. Let $\alpha: I_{2} \rightarrow \mathcal{M}_{1}$ be a geodesic on \mathcal{M}_{1} with $V_{1}(t)=\mathcal{V} \dot{\alpha}(t)$ and $V_{2}(t)=\mathcal{H} \dot{\alpha}(t)$. We denote the angle in $[0, \pi]$ between $\dot{\alpha}(t)$ and $V_{2}(t)$ by $\theta(t)$. Assuming $v=\|\dot{\alpha}(t)\|^{2}$, then we obtain

$$
\begin{align*}
& g_{1}\left(V_{1}(t), V_{1}(t)\right)=v \sin ^{2} \theta(t), \tag{38}\\
& g_{1}\left(V_{2}(t), V_{2}(t)\right)=v \cos ^{2} \theta(t) . \tag{39}
\end{align*}
$$

Now, differentiating (38), we obtain

$$
\begin{aligned}
\frac{d}{d t} g_{1}\left(V_{1}(t), V_{1}(t)\right) & =2 v \sin \theta(t) \cos \theta(t) \frac{d \theta}{d t} \\
g_{1}\left(\nabla_{\dot{\alpha}} V_{1}(t), V_{1}(t)\right) & =v \sin \theta(t) \cos \theta(t) \frac{d \theta}{d t}
\end{aligned}
$$

Using Equations (4) and (7) in the above equation, we obtain

$$
\begin{equation*}
g_{1}\left(\nabla_{\dot{\alpha}} \phi V_{1}(t), \phi V_{1}(t)\right)=v \sin \theta(t) \cos \theta(t) \frac{d \theta}{d t} . \tag{40}
\end{equation*}
$$

Thus, we obtain

$$
\begin{align*}
& g_{1}\left(\nabla_{\dot{\alpha}} \phi V_{1}, \phi V_{1}\right) \tag{41}\\
= & g_{1}\left(\mathcal{V} \nabla_{\dot{\alpha}} \psi V_{1}, \psi V_{1}\right)+g_{1}\left(\mathcal{H} \nabla_{\dot{\alpha}} \omega V_{1}, \omega V_{1}\right) \\
& +g_{1}\left(\left(\mathcal{T}_{V_{1}}+\mathcal{A}_{V_{2}}\right) \psi V_{1}, \omega V_{1}\right)+g_{1}\left(\left(\mathcal{T}_{V_{1}}+\mathcal{A}_{V_{2}}\right) \omega V_{1}, \psi V_{1}\right) .
\end{align*}
$$

Using Equations (36) and (37) in (41), we have

$$
\begin{array}{ll}
g_{1}\left(\nabla_{\dot{\alpha}} \phi V_{1}, \phi V_{1}\right) \tag{42}\\
= & \left.-g_{1}\left(\mathcal{V} \nabla_{\dot{\alpha}} B V_{2}, \psi V_{1}\right)-g_{1}\left(\mathcal{T}_{V_{1}}+\mathcal{A}_{V_{2}}\right) C V_{2}, \psi V_{1}\right) \\
& -g_{1}\left(\mathcal{H} \nabla_{\dot{\alpha}} C V_{2}, \omega V_{1}\right)-g_{1}\left(\left(\mathcal{T}_{V_{1}}+\mathcal{A}_{V_{2}}\right) B V_{2}, \omega V_{1}\right) .
\end{array}
$$

From Equations (40) and (42), we have

$$
=\begin{align*}
& v \sin \theta(t) \cos \theta(t) \frac{d \theta}{d t} \tag{43}\\
& \left.-g_{1}\left(\mathcal{V} \nabla_{\dot{\alpha}} B V_{2}, \psi V_{1}\right)-g_{1}\left(\mathcal{T}_{V_{1}}+\mathcal{A}_{V_{2}}\right) C V_{2}, \psi V_{1}\right) \\
& \\
& -g_{1}\left(\mathcal{H} \nabla_{\dot{\alpha}} C V_{2}, \omega V_{1}\right)-g_{1}\left(\left(\mathcal{T}_{V_{1}}+\mathcal{A}_{V_{2}}\right) B V_{2}, \omega V_{1}\right) .
\end{align*}
$$

Moreover, π is a Clairaut semi-invariant Riemannian map with $r=e^{f}$ if and only if $\frac{d}{d t}\left(e^{f \circ \alpha} \sin \theta\right)=0$, i.e., $e^{f \circ \alpha}\left(\cos \theta \frac{d \theta}{d t}+\sin \theta \frac{d f}{d t}\right)=0$, which, by multiplying with nonzero factor $v \sin \theta$, gives

$$
\begin{align*}
-v \cos \theta \sin \theta \frac{d \theta}{d t} & =v \sin ^{2} \theta \frac{d f}{d t} \\
v \cos \theta \sin \theta \frac{d \theta}{d t} & =-g_{1}\left(V_{1}, V_{1}\right) \frac{d f}{d t} \\
v \cos \theta \sin \theta \frac{d \theta}{d t} & =-g_{1}(\nabla f, \dot{\alpha})\left\|V_{1}\right\|^{2} \\
v \cos \theta \sin \theta \frac{d \theta}{d t} & =-g_{1}\left(\nabla f, V_{2}\right)\left\|V_{1}\right\|^{2} . \tag{44}
\end{align*}
$$

Thus, from Equations (43) and (44), we have

$$
\begin{aligned}
& g_{1}\left(\nabla f, V_{2}\right)\left\|V_{1}\right\|^{2} \\
= & \left.g_{1}\left(\mathcal{V} \nabla_{\dot{\alpha}} B V_{2}, \psi V_{1}\right)+g_{1}\left(\mathcal{T}_{V_{1}}+\mathcal{A}_{V_{2}}\right) C V_{2}, \psi V_{1}\right) \\
& +g_{1}\left(\mathcal{H} \nabla_{\dot{\alpha}} C V_{2}, \omega V_{1}\right)+g_{1}\left(\left(\mathcal{T}_{V_{1}}+\mathcal{A}_{V_{2}}\right) B V_{2}, \omega V_{1}\right) .
\end{aligned}
$$

Hence, Theorem 2 is proved.
Corollary 2. Let Π be an SIR map from a cosymplectic manifold $\left(\mathcal{M}_{1}, \phi, \xi, \eta, g_{1}\right)$ to a Riemannian manifold $\left(\mathcal{M}_{2}, g_{2}\right)$ admitting horizontal Reeb vector field. Then, we obtain

$$
g_{1}(\nabla f, \xi)=0 .
$$

Theorem 3. Let Π be a CSIR map from a cosymplectic manifold $\left(\mathcal{M}_{1}, \phi, \xi, \eta, g_{1}\right)$ to a Riemannian manifold $\left(\mathcal{M}_{2}, g_{2}\right)$ with $r=e^{f}$, then at least one of the following statement is true:
(i) f is constant on $\phi\left(\mathfrak{D}_{2}\right)$;
(ii) The fibers are one-dimensional;
(iii) $\stackrel{\Pi}{\nabla}_{\phi U_{1}} \Pi_{*}\left(Z_{1}\right)=-Z_{1}(f) \Pi_{*}\left(\phi U_{1}\right)$, for all $U_{1} \in \Gamma\left(\mathfrak{D}_{2}\right), Z_{1} \in \Gamma(\mu)$ and $\xi \neq Z_{1}$.

Proof. Let Π be a CSIR map from a cosymplectic manifold to a Riemannian manifold. Then, for $V_{1}, V_{2} \in \Gamma\left(\mathfrak{D}_{2}\right)$, using Equation (18) and Theorem 1, we obtain

$$
\begin{equation*}
\mathcal{T}_{V_{1}} V_{2}=-g_{1}\left(V_{1}, V_{2}\right) \operatorname{gradf} . \tag{45}
\end{equation*}
$$

Taking the inner product of Equation (45) with ϕU_{1}, we have

$$
\begin{equation*}
g_{1}\left(\mathcal{T}_{V_{1}} V_{2}, \phi U_{1}\right)=-g_{1}\left(V_{1}, V_{2}\right) g_{1}\left(\text { gradf }, \phi U_{1}\right) \tag{46}
\end{equation*}
$$

for all $U_{1} \in \Gamma\left(\mathfrak{D}_{2}\right)$.
From Equations (4), (7), (13) and (46), we obtain

$$
g_{1}\left(\nabla_{V_{1}} \phi V_{2}, U_{1}\right)=g_{1}\left(V_{1}, V_{2}\right) g_{1}\left(\operatorname{gradf}, \phi U_{1}\right)
$$

Since ∇ is a metric connection, by using Equations (14) and (45) in the above equation, we obtain

$$
\begin{equation*}
g_{1}\left(V_{1}, U_{1}\right) g_{1}\left(\text { gradf }, \phi V_{2}\right)=g_{1}\left(V_{1}, V_{2}\right) g_{1}\left(\text { gradf }, \phi U_{1}\right) . \tag{47}
\end{equation*}
$$

Taking $U_{1}=V_{2}$ and interchanging the role of V_{1} and V_{2}, we obtain

$$
\begin{equation*}
g_{1}\left(V_{2}, V_{2}\right) g_{1}\left(\operatorname{gradf}, \phi V_{1}\right)=g_{1}\left(V_{1}, V_{2}\right) g_{1}\left(\operatorname{gradf}, \phi V_{2}\right) . \tag{48}
\end{equation*}
$$

From Equations (47) and (48), we obtain

$$
\begin{equation*}
g_{1}\left(\operatorname{grad} f, \phi V_{1}\right)=\frac{\left(g_{1}\left(V_{1}, V_{2}\right)\right)^{2}}{\left\|V_{1}\right\|^{2}\left\|V_{2}\right\|^{2}} g_{1}\left(\operatorname{gradf}, \phi V_{1}\right) \tag{49}
\end{equation*}
$$

If gradf $\in \Gamma\left(\phi\left(\mathfrak{D}_{2}\right)\right)$, then Equation (49) and the condition of equality in the Schwarz inequality imply that either f is constant on $\phi\left(\mathfrak{D}_{2}\right)$ or the fibers are one-dimensional. This implies the proof of (i) and (ii).

Now, from Equations (13) and (45), we obtain

$$
\begin{equation*}
g_{1}\left(\nabla_{V_{1}} U_{1}, Z_{1}\right)=-g_{1}\left(V_{1}, U_{1}\right) g_{1}\left(\operatorname{grad} f, Z_{1}\right) \tag{50}
\end{equation*}
$$

for all $Z_{1} \in \Gamma(\mu)$ and $\xi \neq Z_{1}$. Using Equations (4), (7), and (50), we have

$$
g_{1}\left(\nabla_{V_{1}} \phi U_{1}, \phi \mathrm{Z}_{1}\right)=-g_{1}\left(V_{1}, U_{1}\right) g_{1}\left(\operatorname{gradf}, \mathrm{Z}_{1}\right)
$$

which implies

$$
\begin{equation*}
g_{1}\left(\nabla_{\phi U_{1}} V_{1}, \phi \mathrm{Z}_{1}\right)=-g_{1}\left(V_{1}, U_{1}\right) g_{1}\left(\operatorname{gradf}, \mathrm{Z}_{1}\right) \tag{51}
\end{equation*}
$$

Since ∇ is a metric connection, then by using Equations (47) and (51), we have

$$
g_{1}\left(\mathcal{H} \nabla_{\phi U_{1}} Z_{1}, \phi V_{1}\right)=-g_{1}\left(\phi V_{1}, \phi U_{1}\right) g_{1}\left(\operatorname{gradf}, \mathrm{Z}_{1}\right) .
$$

In addition, for the Riemannian map Π, we have

$$
\begin{equation*}
g_{2}\left(\Pi_{*}\left(\nabla_{\phi U_{1}}^{\mathcal{M}_{1}} Z_{1}\right), \Pi_{*}\left(\phi V_{1}\right)\right)=-g_{2}\left(\Pi_{*}\left(\phi V_{1}\right), \Pi_{*}\left(\phi U_{1}\right)\right) g_{1}\left(\operatorname{gradf}, Z_{1}\right) \tag{52}
\end{equation*}
$$

Again, using Equations (19), (21) and (52), we obtain

$$
g_{2}\left(\stackrel{\Pi}{\nabla}_{\phi U_{1}} \Pi_{*}\left(Z_{1}\right), \Pi_{*}\left(\phi V_{1}\right)\right)=-g_{2}\left(\Pi_{*}\left(\phi V_{1}\right), \Pi_{*}\left(\phi U_{1}\right)\right) g_{1}\left(\operatorname{gradf}, \mathrm{Z}_{1}\right)
$$

which implies.

$$
\begin{equation*}
\stackrel{\Pi}{\nabla}_{\phi U_{1}} \Pi_{*}\left(Z_{1}\right)=-Z_{1}(f) \Pi_{*}\left(\phi U_{1}\right) . \tag{53}
\end{equation*}
$$

If gradf $\in \Gamma(\mu) \backslash\{\xi\}$, then (53) implies (iii). This completes the proof.
Corollary 3. Let Π be a CSIR map from a cosymplectic manifold $\left(\mathcal{M}_{1}, \phi, \xi, \eta, g_{1}\right)$ to a Riemannian manifold $\left(\mathcal{M}_{2}, g_{2}\right)$ with $r=e^{f}$ and $\operatorname{dim}\left(D_{2}\right)>1$. Then, the fibers of Π are totally geodesic if and only if $\stackrel{\Pi}{\nabla}_{\phi U_{1}} \Pi_{*}\left(Z_{1}\right)=0 \forall U_{1} \in \Gamma\left(\mathfrak{D}_{2}\right)$ and $Z_{1} \in \Gamma(\mu)$.

Lemma 5. Let Π be a CSIR map from a cosymplectic manifold $\left(\mathcal{M}_{1}, \phi, \xi, \eta, g_{1}\right)$ to a Riemannian manifold $\left(\mathcal{M}_{2}, g_{2}\right)$ with $r=e^{f}$ and $\operatorname{dim}\left(D_{2}\right)>1$. Then, $\stackrel{\Pi}{\nabla}_{Z_{1}} \Pi_{*}\left(\phi X_{1}\right)=Z_{1}(f) \Pi_{*}\left(\phi X_{1}\right)$ $\forall X_{1} \in \Gamma\left(\mathfrak{D}_{2}\right)$ and $Z_{1} \in \Gamma\left(\operatorname{ker} \Pi_{*}\right)^{\perp} \backslash\{\xi\}$.

Proof. Let Π be a CSIR map from a cosymplectic manifold to a Riemannian manifold. From Theorem 1, fibers are totally umbilical with mean curvature vector field $H=-\operatorname{gradf}$, then we have

$$
\begin{aligned}
-g_{1}\left(\nabla_{X_{1}} Z_{1}, X_{2}\right) & =g_{1}\left(\nabla_{X_{1}} X_{2}, Z_{1}\right) \\
-g_{1}\left(\nabla_{X_{1}} Z_{1}, X_{2}\right) & =-g_{1}\left(X_{1}, X_{2}\right) g_{1}\left(\operatorname{gradf}, Z_{1}\right)
\end{aligned}
$$

for all $X_{1}, X_{2} \in \Gamma\left(\mathfrak{D}_{2}\right)$ and $Z_{1} \in \Gamma\left(\operatorname{ker} \Pi_{*}\right)^{\perp} \backslash\{\xi\}$.
Using Equations (4) and (7) in the above equation, we obtain

$$
\begin{equation*}
g_{1}\left(\nabla_{Z_{1}} \phi X_{1}, \phi X_{2}\right)=g_{1}\left(\phi X_{1}, \phi X_{2}\right) g_{1}\left(\operatorname{grad} f, Z_{1}\right) . \tag{54}
\end{equation*}
$$

Since Π is an SIR map, by using Equation (54), we have

$$
\begin{equation*}
g_{2}\left(\Pi_{*}\left(\nabla_{Z_{1}}^{\Pi} \phi X_{1}\right), \Pi_{*}\left(\phi X_{2}\right)\right)=g_{2}\left(\Pi_{*}\left(\phi X_{1}\right), \Pi_{*}\left(\phi X_{2}\right)\right) g_{1}\left(\operatorname{gradf}, Z_{1}\right) \tag{55}
\end{equation*}
$$

From (19) and (55), we obtain

$$
\begin{equation*}
g_{2}\left(\stackrel{\Pi}{\nabla}_{Z_{1}} \Pi_{*}\left(\phi X_{1}\right), \Pi_{*}\left(\phi X_{2}\right)\right)=g_{2}\left(\Pi_{*}\left(\phi X_{1}\right), \Pi_{*}\left(\phi X_{2}\right)\right) g_{1}\left(\operatorname{gradf}, \mathrm{Z}_{1}\right) \tag{56}
\end{equation*}
$$

which implies $\stackrel{\Pi}{\nabla}_{Z_{1}} \Pi_{*}\left(\phi X_{1}\right)=Z_{1}(f) \Pi_{*}\left(\phi X_{1}\right) \forall X_{1} \in \Gamma\left(\mathfrak{D}_{2}\right)$ and $Z_{1} \in \Gamma\left(\operatorname{ker} \Pi_{*}\right)^{\perp} \backslash\{\tilde{\xi}\}$.
Corollary 4. Let Π be a CSIR map from a cosymplectic manifold $\left(\mathcal{M}_{1}, \phi, \xi, \eta, g_{1}\right)$ to a Riemannian manifold $\left(\mathcal{M}_{2}, g_{2}\right)$ with $r=e^{f}$ and $\operatorname{dim}\left(D_{2}\right)>1$. Then, $\stackrel{\Pi}{\nabla}_{Z_{1}} \Pi_{*}\left(\phi X_{1}\right)=0 \forall X_{1} \in \Gamma\left(\mathfrak{D}_{2}\right)$ and $Z_{1}=\xi \in \Gamma\left(\operatorname{ker} \Pi_{*}\right)^{\perp}$.

Theorem 4. Let Π be a CSIR map with $r=e^{f}$ from a cosymplectic manifold $\left(\mathcal{M}_{1}, \phi, \xi, \eta, g_{1}\right)$ to a Riemannian manifold $\left(\mathcal{M}_{2}, g_{2}\right)$. If \mathcal{T} is not identically zero, then the invariant distribution \mathfrak{D}_{1} does not define a totally geodesic foliation on \mathcal{M}_{1}.

Proof. For $V_{1}, V_{2} \in \Gamma\left(\mathfrak{D}_{1}\right)$ and $Z_{1} \in \Gamma\left(\mathfrak{D}_{2}\right)$, using Equations (4), (7), (13) and (18), we obtain

$$
\begin{aligned}
g_{1}\left(\nabla_{V_{1}} V_{2}, \mathrm{Z}_{1}\right) & =g_{1}\left(\nabla_{V_{1}} \phi V_{2}, \phi \mathrm{Z}_{1}\right) \\
& =g_{1}\left(\mathcal{T}_{V_{1}} \phi V_{2}, \phi \mathrm{Z}_{1}\right) \\
& =-g_{1}\left(V_{1}, \phi V_{2}\right) g_{1}\left(\operatorname{gradf}, \phi \mathrm{Z}_{1}\right) .
\end{aligned}
$$

Thus, the assertion can be seen from the above equation and the fact that gradf \in $\phi\left(\mathfrak{D}_{2}\right)$.

Theorem 5. Let Π be a CSIR map with $r=e^{f}$ from a cosymplectic manifold $\left(\mathcal{M}_{1}, \phi, \xi, \eta, g_{1}\right)$ to a Riemannian manifold $\left(\mathcal{M}_{2}, g_{2}\right)$. Then, the fibers of Π are totally geodesic, or anti-invariant distribution \mathfrak{D}_{2} is one-dimensional.

Proof. If the fibers of Π are totally geodesic, it is obvious. For the second one, since Π is a Clairaut proper semi-invariant Riemannian map, then either $\operatorname{dim}\left(\mathfrak{D}_{2}\right)=1$ or $\operatorname{dim}\left(\mathcal{D}_{2}\right)>1$.

If $\operatorname{dim}\left(\mathcal{D}_{2}\right)>1$, then we can choose $V_{1}, V_{2} \in \Gamma\left(\mathfrak{D}_{2}\right)$ such that $\left\{V_{1}, V_{2}\right\}$ is orthonormal. From Equations (14), (23) and (24), we obtain

$$
\begin{aligned}
& \mathcal{T}_{V_{1}} \phi V_{2}+\mathcal{H} \nabla_{V_{1}} \phi V_{2}=\nabla_{V_{1}} \phi V_{2} \\
& \mathcal{T}_{V_{1}} \phi V_{2}+\mathcal{H} \nabla_{V_{1}} \phi V_{2}=B \mathcal{T}_{V_{1}} V_{2}+C \mathcal{T}_{V_{1}} V_{2}+\psi \mathcal{V} \nabla_{V_{1}} V_{2}+\omega \mathcal{V} \nabla_{V_{1}} V_{2} .
\end{aligned}
$$

Taking the inner product of the above equation with V_{1}, we obtain

$$
\begin{equation*}
g_{1}\left(\mathcal{T}_{V_{1}} \phi V_{2}, V_{1}\right)=g_{1}\left(B \mathcal{T}_{V_{1}} V_{2}, V_{1}\right)+g_{1}\left(\psi \mathcal{V} \nabla_{V_{1}} V_{2}, V_{1}\right) . \tag{57}
\end{equation*}
$$

From Equation (7), we have

$$
\begin{equation*}
g_{1}\left(\mathcal{T}_{V_{1}} V_{1}, \phi V_{2}\right)=-g_{1}\left(\mathcal{T}_{V_{1}} \phi V_{2}, V_{1}\right)=g_{1}\left(\mathcal{T}_{V_{1}} V_{2}, \phi V_{1}\right) \tag{58}
\end{equation*}
$$

Now, using Equations (18) and (58), we obtain

$$
\begin{equation*}
g_{1}\left(\mathcal{T}_{V_{1}} V_{1}, \phi V_{2}\right)=-g_{1}\left(\operatorname{gradf}, \phi V_{2}\right) . \tag{59}
\end{equation*}
$$

From Equations (18), (58) and (59), we obtain

$$
\begin{equation*}
-g_{1}\left(\operatorname{gradf}, \phi V_{2}\right)=g_{1}\left(\mathcal{T}_{V_{1}} V_{1}, \phi V_{2}\right)=-g_{1}\left(\mathcal{T}_{V_{1}} \phi V_{2}, V_{1}\right)=g_{1}\left(\mathcal{T}_{V_{1}} V_{2}, \phi V_{1}\right), \tag{60}
\end{equation*}
$$

from which we obtain

$$
\begin{aligned}
& g_{1}\left(\text { gradf }, \phi V_{2}\right)=-g_{1}\left(\mathcal{T}_{V_{1}} V_{2}, \phi V_{1}\right) \\
& g_{1}\left(\text { gradf }, \phi V_{2}\right)=g_{1}\left(V_{1}, V_{2}\right) g_{1}\left(\text { gradf }, \phi V_{1}\right) \\
& g_{1}\left(\text { gradf }, \phi V_{2}\right)=0 .
\end{aligned}
$$

Thus, we obtain

$$
\operatorname{gradf} \perp \phi\left(\mathfrak{D}_{2}\right)
$$

Therefore, the dimension of \mathfrak{D}_{2} must be one.
Theorem 6. Let Π be a CSIR map from a cosymplectic manifold $\left(\mathcal{M}_{1}, \phi, \xi, \eta, g_{1}\right)$ to a Riemannian manifold $\left(\mathcal{M}_{2}, g_{2}\right)$ with $r=e^{f}$ and $\operatorname{dim}\left(D_{2}\right)>1$. Then, we obtain

$$
\begin{gather*}
\sum_{\kappa=1}^{\omega} g_{1}\left(\mathcal{A}_{X_{1}} x_{\kappa}, \mathcal{A}_{X_{1}} x_{\kappa}\right)=\sum_{\kappa=1}^{\omega} g_{2}\left(\nabla_{X_{1}}^{\Pi} \Pi_{*}\left(\phi x_{\kappa}\right), \nabla_{X_{1}}^{\Pi} \Pi_{*}\left(\phi x_{\kappa}\right)\right), \tag{61}\\
\sum_{i=1}^{\beta+\int} g_{2}\left(\left(\nabla \Pi_{*}\right)\left(F_{i}, X_{1}\right),\left(\nabla \Pi_{*}\right)\left(X_{1}, F_{i}\right)\right)=\sum_{l=1}^{\int} g_{2}\left(\left(\nabla \Pi_{*}\right)\left(\vartheta_{l}, X_{1}\right),\left(\nabla \Pi_{*}\right)\left(X_{1}, \vartheta_{l}\right)\right), \tag{62}\\
\sum_{j=1}^{\beta} g_{1}\left(\mathcal{A}_{X_{1}} w_{j}, \mathcal{A}_{X_{1}} w_{j}\right)=\left(X_{1}(f)\right)^{2} \sum_{j=1}^{\beta} g_{1}\left(w_{j}, w_{j}\right), \tag{63}
\end{gather*}
$$

$\forall X_{1} \in \Gamma\left(\operatorname{ker} \Pi_{*}\right)^{\perp} \backslash\{\tilde{\zeta}\}$, where $\left\{x_{1}, x_{2}, \ldots ., x_{\omega}\right\},\left\{w_{1}, w_{2}, \ldots ., w_{\beta}\right\},\left\{F_{1}, F_{2}, \ldots ., F_{\beta+\rho}\right\}$ and $\left\{\vartheta_{1}, \vartheta_{2}, \ldots . \vartheta_{\rho}\right\}$ are orthonormal frames of $\mathfrak{D}_{1}, \mathfrak{D}_{2}, \phi\left(\mathfrak{D}_{2}\right)^{\perp} \oplus \mu$ and μ, respectively.

Proof. Let $\Pi:\left(\mathcal{M}_{1}, \phi, \xi, \eta, g_{1}\right) \rightarrow\left(\mathcal{M}_{2}, g_{2}\right)$ be a CSIR map, then for all $X_{1} \in \Gamma\left(\operatorname{ker} \Pi_{*}\right)^{\perp} \backslash\{\xi\}$, we have

$$
\begin{equation*}
\sum_{\kappa=1}^{\omega} g_{1}\left(\mathcal{A}_{X_{1}} x_{\kappa}, \mathcal{A}_{X_{1}} x_{\kappa}\right)=\sum_{\kappa=1}^{\omega} g_{1}\left(\mathcal{H} \nabla_{X_{1}} \phi x_{\kappa}, \mathcal{H} \nabla_{X_{1}} \phi x_{\kappa}\right) \tag{64}
\end{equation*}
$$

Since Π is a Riemannian map, in view of Equation (19), Equation (64) transforms to

$$
\begin{aligned}
\sum_{\kappa=1}^{\omega} g_{1}\left(\mathcal{A}_{X_{1}} x_{\kappa}, \mathcal{A}_{X_{1}} x_{\kappa}\right) & =\sum_{\kappa=1}^{\omega} g_{2}\left(\Pi_{*}\left(\nabla_{X_{1}}^{\mathcal{M}_{1}} \phi x_{\kappa}\right), \Pi_{*}\left(\nabla_{X_{1}}^{\mathcal{M}_{1}} \phi x_{\kappa}\right)\right) \\
& =\sum_{\kappa=1}^{\omega} g_{2}\left(\nabla_{X_{1}}^{\Pi} \Pi_{*}\left(\phi x_{\kappa}\right), \nabla_{X_{1}}^{\Pi} \Pi_{*}\left(\phi x_{\kappa}\right)\right)
\end{aligned}
$$

Now, for all $X_{1} \in \Gamma\left(\operatorname{ker} \Pi_{*}\right)^{\perp} \backslash\{\xi\}$, we obtain

$$
\begin{aligned}
& \sum_{i=1}^{\beta+\int} g_{2}\left(\left(\nabla \Pi_{*}\right)\left(F_{i}, X_{1}\right),\left(\nabla \Pi_{*}\right)\left(X_{1}, F_{i}\right)\right) \\
= & \sum_{j=1}^{\beta} \sum_{l=1}^{\oint} g_{2}\left(\left(\nabla \Pi_{*}\right)\left(\phi w_{j}+\vartheta_{l}, X_{1}\right),\left(\nabla \Pi_{*}\right)\left(X_{1}, \phi w_{j}+\vartheta_{l}\right)\right) .
\end{aligned}
$$

Since $\phi w_{j} \in \Gamma\left(\operatorname{ker} \Pi_{*}\right)^{\perp}$ and $\left(\nabla \Pi_{*}\right)$ is linear, from the above equation, we have

$$
\begin{align*}
& \sum_{i=1}^{\beta+\int} g_{2}\left(\left(\nabla \Pi_{*}\right)\left(F_{i}, X_{1}\right),\left(\nabla \Pi_{*}\right)\left(F_{i}, X_{1}\right)\right) \tag{65}\\
= & \sum_{j=1}^{\beta} g_{2}\left(\left(\nabla \Pi_{*}\right)\left(\phi w_{j}, X_{1}\right),\left(\nabla \Pi_{*}\right)\left(X_{1}, \phi w_{j}\right)\right) \\
& +\sum_{j=1}^{\beta} \sum_{l=1}^{\int} g_{2}\left(\left(\nabla \Pi_{*}\right)\left(\vartheta_{l}, X_{1}\right),\left(\nabla \Pi_{*}\right)\left(X_{1}, \phi w_{j}\right)\right) \\
& +\sum_{j=1}^{\beta} \sum_{l=1}^{\int} g_{2}\left(\left(\nabla \Pi_{*}\right)\left(\phi w_{j}, X_{1}\right),\left(\nabla \Pi_{*}\right)\left(X_{1}, \vartheta_{l}\right)\right) \\
& +\sum_{l=1}^{\int} g_{2}\left(\left(\nabla \Pi_{*}\right)\left(\vartheta_{l}, X_{1}\right),\left(\nabla \Pi_{*}\right)\left(X_{1}, \vartheta_{l}\right)\right) .
\end{align*}
$$

Thus, (61) holds.
On the other side, using (19) in the first term of the right-hand side of (65), we have

$$
\begin{aligned}
& \sum_{j=1}^{\beta} g_{2}\left(\left(\nabla \Pi_{*}\right)\left(\phi w_{j}, X_{1}\right),\left(\nabla \Pi_{*}\right)\left(X_{1}, \phi w_{j}\right)\right) \\
= & \sum_{j=1}^{\beta} g_{2}\left(\left(\nabla \Pi_{*}\right)\left(\phi w_{j}, X_{1}\right), \nabla_{X_{1}}^{\Pi} \Pi_{*}\left(\phi w_{j}\right)-\Pi_{*}\left(\nabla_{X_{1}}^{\mathcal{M}_{1}} \phi w_{j}\right)\right),
\end{aligned}
$$

which, by using Equations (4), (7), and (65), turns into

$$
\begin{align*}
& \sum_{j=1}^{\beta} g_{2}\left(\left(\nabla \Pi_{*}\right)\left(\phi w_{j}, X_{1}\right),\left(\nabla \Pi_{*}\right)\left(X_{1}, \phi w_{j}\right)\right) \tag{66}\\
= & \sum_{j=1}^{\beta} g_{2}\left(\left(\nabla \Pi_{*}\right)\left(\phi w_{j}, X_{1}\right), \nabla_{X_{1}}^{\Pi} \Pi_{*}\left(\phi w_{j}\right)\right) .
\end{align*}
$$

Now, by using Lemma 4 in (66), we obtain

$$
\sum_{j=1}^{\beta} g_{2}\left(\left(\nabla \Pi_{*}\right)\left(\phi w_{j}, X_{1}\right),\left(\nabla \Pi_{*}\right)\left(X_{1}, \phi w_{j}\right)\right)=\sum_{j=1}^{\beta} g_{2}\left(\left(\nabla \Pi_{*}\right)\left(\phi w_{j}, X_{1}\right), X_{1}(f) \Pi_{*}\left(\phi w_{j}\right)\right)
$$

This implies that

$$
\sum_{j=1}^{\beta} g_{2}\left(\left(\nabla \Pi_{*}\right)\left(\phi w_{j}, X_{1}\right),\left(\nabla \Pi_{*}\right)\left(X_{1}, \phi w_{j}\right)\right)=\sum_{j=1}^{\beta} X_{1}(f) g_{2}\left(\left(\nabla \Pi_{*}\right)\left(\phi w_{j}, X_{1}\right), \Pi_{*}\left(\phi w_{j}\right)\right) .
$$

By using Equation (20) in the above equation, it follows that

$$
\begin{equation*}
\sum_{j=1}^{\beta} g_{2}\left(\left(\nabla \Pi_{*}\right)\left(\phi w_{j}, X_{1}\right),\left(\nabla \Pi_{*}\right)\left(X_{1}, \phi w_{j}\right)\right)=0 \tag{67}
\end{equation*}
$$

Similarly, we find

$$
\begin{align*}
& \sum_{j=1}^{\beta} \sum_{l=1}^{\int} g_{2}\left(\left(\nabla \Pi_{*}\right)\left(\vartheta_{l}, X_{1}\right),\left(\nabla \Pi_{*}\right)\left(X_{1}, \phi w_{j}\right)\right)=0, \tag{68}\\
& \sum_{j=1}^{\beta} \sum_{l=1}^{f} g_{2}\left(\left(\nabla \Pi_{*}\right)\left(\phi w_{j}, X_{1}\right),\left(\nabla \Pi_{*}\right)\left(X_{1}, \vartheta_{l}\right)\right)=0 . \tag{69}
\end{align*}
$$

Thus, by using Equations (67)-(69) in Equation (65), we obtain (62).
Further, for $X_{1} \in \Gamma\left(\operatorname{ker} \Pi_{*}\right)^{\perp} \backslash\{\xi\}$, we obtain

$$
\begin{aligned}
\sum_{j=1}^{\beta} g_{1}\left(\mathcal{A}_{X_{1}} w_{j}, \mathcal{A}_{X_{1}} w_{j}\right) & =\sum_{j=1}^{\beta} g_{1}\left(\mathcal{H} \nabla_{X_{1}} w_{j}, \mathcal{H} \nabla_{X_{1}} w_{j}\right) \\
& =\sum_{j=1}^{\beta} g_{1}\left(\mathcal{H} \nabla_{X_{1}} \phi w_{j}, \mathcal{H} \nabla_{X_{1}} \phi w_{j}\right) .
\end{aligned}
$$

Since Π is a Riemannian map, in view of Equation (19), the above equation becomes

$$
\begin{align*}
& \sum_{j=1}^{\beta} g_{1}\left(\mathcal{A}_{X_{1}} w_{j}, \mathcal{A}_{X_{1}} w_{j}\right) \tag{70}\\
= & \sum_{j=1}^{\beta}\left\{g_{2}\left(\left(\nabla \Pi_{*}\right)\left(X_{1}, \phi w_{j}\right),\left(\nabla \Pi_{*}\right)\left(X_{1}, \phi w_{j}\right)\right)\right. \\
& -2 g_{2}\left(\left(\nabla \Pi_{*}\right)\left(X_{1}, \phi w_{j}\right), \nabla_{X_{1}} \Pi_{*}\left(\phi w_{j}\right)\right) \\
& \left.+g_{2}\left({\stackrel{\Pi}{X_{1}}}^{\Pi} \Pi_{*}\left(\phi w_{j}\right), \nabla_{X_{1}}^{\Pi} \Pi_{*}\left(\phi w_{j}\right)\right)\right\},
\end{align*}
$$

which, by using Lemma 4 and Equations (21) and (67) in (70), we obtain

$$
\begin{align*}
\sum_{j=1}^{\beta} g_{1}\left(\mathcal{A}_{X_{1}} w_{j}, \mathcal{A}_{X_{1}} w_{j}\right) & =\sum_{j=1}^{\beta} g_{2}\left(X_{1}(f) \Pi_{*}\left(\phi w_{j}\right), X_{1}(f) \Pi_{*}\left(\phi w_{j}\right)\right) \tag{71}\\
& =\left(X_{1}(f)\right)^{2} \sum_{j=1}^{\beta} g_{2}\left(\Pi_{*}\left(\phi w_{j}\right), \Pi_{*}\left(\phi w_{j}\right)\right)
\end{align*}
$$

Since $\phi w_{j} \in \Gamma\left(\operatorname{ker} \Pi_{*}\right)^{\perp}$ and Π is a Riemannian map, from (71) we obtain

$$
\begin{equation*}
\sum_{j=1}^{\beta} g_{1}\left(\mathcal{A}_{X_{1}} w_{j}, \mathcal{A}_{X_{1}} w_{j}\right)=\left(X_{1}(f)\right)^{2} \sum_{j=1}^{\beta} g_{1}\left(w_{j}, w_{j}\right) . \tag{72}
\end{equation*}
$$

Thus, from Equations (4) and (72), we obtain (63).

4. Example

Let \mathcal{M}_{1} be a differentiable manifold given by $\mathcal{M}_{1}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right) \in R^{7}\right.$: $\left.x_{7}>0\right\}$. We define the Riemannian metric g_{1} on \mathcal{M}_{1} by $g_{1}=e^{2 x_{7}} d x_{1}^{2}+e^{2 x_{7}} d x_{2}^{2}+e^{2 x_{7}} d x_{3}^{2}+$ $e^{2 x_{7}} d x_{4}^{2}+e^{2 x_{7}} d x_{5}^{2}+e^{2 x_{7}} d x_{6}^{2}+d x_{7}^{2}$, and the cosymplectic structure $\left(\phi, \xi, \eta, g_{1}\right)$ on \mathcal{M}_{1} is defined as

$$
\begin{array}{r}
\phi\left(x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+x_{3} \frac{\partial}{\partial x_{3}}+x_{4} \frac{\partial}{\partial x_{4}}+x_{5} \frac{\partial}{\partial x_{5}}+x_{6} \frac{\partial}{\partial x_{6}}+x_{7} \frac{\partial}{\partial x_{7}}\right) \\
=\left(x_{4} \frac{\partial}{\partial x_{1}}+x_{5} \frac{\partial}{\partial x_{2}}+x_{6} \frac{\partial}{\partial x_{3}}-x_{1} \frac{\partial}{\partial x_{4}}-x_{2} \frac{\partial}{\partial x_{5}}-x_{3} \frac{\partial}{\partial x_{6}}\right),
\end{array}
$$

$\xi=\frac{\partial}{\partial x_{7}}, \eta=d x_{7}$, and g_{1} was earlier defined.
Let $\mathcal{M}_{2}=\left\{\left(v_{1}, v_{2}, v_{3}, v_{4}\right) \in R^{4}\right\}$ be a Riemannian manifold with Riemannian metric g_{2} on \mathcal{M}_{2} given by $g_{2}=e^{2 x_{7}} d v_{1}^{2}+e^{2 x_{7}} d v_{2}^{2}+e^{2 x_{7}} d v_{3}^{2}+d v_{4}^{2}$. Define a map $\Pi: R^{7} \rightarrow R^{4}$ by

$$
\Pi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)=\left(\frac{x_{2}-x_{5}}{\sqrt{2}}, 101, x_{6}, x_{7}\right)
$$

Then, we have

$$
\operatorname{ker} \Pi_{*}=\mathfrak{D}_{1} \oplus \mathfrak{D}_{2}
$$

where

$$
\mathfrak{D}_{1}=<V_{1}=e_{1}, V_{2}=e_{4}>, \mathfrak{D}_{2}=<V_{3}=e_{2}+e_{5}, V_{4}=e_{3}>,
$$

and

$$
\left(\operatorname{ker} \Pi_{*}\right)^{\perp}=<H_{1}=e_{2}-e_{5}, H_{2}=e_{6}, H_{3}=e_{7}>
$$

where $\left\{e_{1}=e^{-x_{7}} \frac{\partial}{\partial x_{1}}, e_{2}=e^{-x_{7}} \frac{\partial}{\partial x_{2}}, e_{3}=e^{-x_{7}} \frac{\partial}{\partial x_{3}}, e_{4}=e^{-x_{7}} \frac{\partial}{\partial x_{4}}, e_{5}=e^{-x_{7}} \frac{\partial}{\partial x_{5}}, e_{6}=e^{-x_{7}} \frac{\partial}{\partial x_{6}}\right.$, $\left.e_{7}=\frac{\partial}{\partial x_{7}}\right\},\left\{e_{1}^{*}=\frac{\partial}{\partial v_{1}}, e_{2}^{*}=\frac{\partial}{\partial v_{2}}, e_{3}^{*}=\frac{\partial}{\partial v_{3}}, e_{4}^{*}=\frac{\partial}{\partial v_{4}}\right\}$ are bases on $T_{p} \mathcal{M}_{1}$ and $T_{\Pi(p)} \mathcal{M}_{2}$, respectively, for all $p \in \mathcal{M}_{1}$. By direct computations, we can see that $\Pi_{*}\left(H_{1}\right)=\sqrt{2} e^{-x_{7}} e_{1}^{*}$, $\Pi_{*}\left(H_{2}\right)=e^{-x_{7}} e_{2}^{*}, \Pi_{*}\left(H_{3}\right)=e_{3}^{*}$ and $g_{1}\left(H_{i}, H_{j}\right)=g_{2}\left(\Pi_{*} H_{i}, \Pi_{*} H_{j}\right)$ for all $H_{i}, H_{j} \in$ $\Gamma\left(\operatorname{ker} \Pi_{*}\right)^{\perp}, i, j=1,2,3$. Thus, Π is a Riemannian map with $\left(\operatorname{range} \Pi_{*}\right)^{\perp}=<e_{4}^{*}>$. Moreover, it is easy to see that $\phi V_{3}=H_{1}$ and $\phi V_{4}=H_{2}$. Therefore, Π is an SIR map.

Now, we will find the smooth function f on \mathcal{M}_{1} satisfying $T_{V} V=g_{1}(V, V) \nabla f$ $\forall V \in \Gamma\left(\operatorname{ker} \Pi_{*}\right)$. The covariant derivative for the vector fields $E=E_{i} \frac{\partial}{\partial x_{i}}, F=F_{j} \frac{\partial}{\partial x_{j}}$ on \mathcal{M}_{1} is defined as

$$
\begin{equation*}
\nabla_{E} F=E_{i} F_{j} \nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{j}}+E_{i} \frac{\partial F_{j}}{\partial x_{i}} \frac{\partial}{\partial x_{j}}, \tag{73}
\end{equation*}
$$

where the covariant derivative of basis vector fields $\frac{\partial}{\partial x_{j}}$ and $\frac{\partial}{\partial x_{i}}$ is defined by

$$
\begin{equation*}
\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{j}}=\Gamma_{i j}^{k} \frac{\partial}{\partial x_{k}}, \tag{74}
\end{equation*}
$$

and Christoffel symbols are defined by

$$
\begin{equation*}
\Gamma_{i j}^{k}=\frac{1}{2} g^{k l}\left(\frac{\partial g_{1 j l}}{\partial x_{i}}+\frac{\partial g_{1 i l}}{\partial x_{j}}-\frac{\partial g_{1 i j}}{\partial x_{l}}\right) . \tag{75}
\end{equation*}
$$

Thus, we obtain

$$
\begin{align*}
g_{1 i j} & =\left[\begin{array}{ccccccc}
e^{2 x_{7}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & e^{2 x_{7}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & e^{2 x_{7}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & e^{2 x_{7}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & e^{2 x_{7}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & e^{2 x_{7}} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \tag{76}\\
g_{1}^{i j} & =\left[\begin{array}{ccccccc}
e^{-2 x_{7}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & e^{-2 x_{7}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & e^{-2 x_{7}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & e^{-2 x_{7}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & e^{-2 x_{7}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & e^{-2 x_{7}} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
\end{align*}
$$

By using Equations (75) and (76), we find

$$
\begin{aligned}
& \Gamma_{11}^{1}=\Gamma_{11}^{2}=\Gamma_{11}^{3}=\Gamma_{11}^{4}=\Gamma_{11}^{5}=\Gamma_{11}^{6}=0, \Gamma_{11}^{7}=-e^{2 x_{7}}, \\
& \Gamma_{22}^{1}=\Gamma_{22}^{2}=\Gamma_{22}^{3}=\Gamma_{22}^{4}=\Gamma_{22}^{5}=\Gamma_{22}^{6}=0, \Gamma_{22}^{7}=-e^{2 x_{7}}, \\
& \Gamma_{33}^{1}=\Gamma_{33}^{2}=\Gamma_{33}^{3}=\Gamma_{33}^{4}=\Gamma_{33}^{5}=\Gamma_{33}^{6}=0, \Gamma_{33}^{7}=-e^{2 x_{7}}, \\
& \Gamma_{44}^{1}=\Gamma_{44}^{2}=\Gamma_{44}^{3}=\Gamma_{44}^{4}=\Gamma_{44}^{5}=\Gamma_{44}^{6}=0, \Gamma_{44}^{7}=-e^{2 x_{7}}, \\
& \Gamma_{55}^{1}=\Gamma_{55}^{2}=\Gamma_{55}^{3}=\Gamma_{55}^{4}=\Gamma_{55}^{5}=\Gamma_{55}^{6}=0, \Gamma_{55}^{7}=-e^{2 x_{7}}, \\
& \Gamma_{12}^{1}=\Gamma_{12}^{2}=\Gamma_{12}^{3}=\Gamma_{12}^{4}=\Gamma_{12}^{5}=\Gamma_{12}^{6}=\Gamma_{12}^{7}=0, \\
& \Gamma_{21}^{1}=\Gamma_{21}^{2}=\Gamma_{21}^{3}=\Gamma_{21}^{4}=\Gamma_{21}^{5}=\Gamma_{21}^{6}=\Gamma_{21}^{7}=0, \\
& \Gamma_{13}^{1}=\Gamma_{13}^{2}=\Gamma_{13}^{3}=\Gamma_{13}^{4}=\Gamma_{13}^{5}=\Gamma_{13}^{6}=\Gamma_{13}^{7}=0, \\
& \Gamma_{31}^{1}=\Gamma_{31}^{2}=\Gamma_{31}^{3}=\Gamma_{31}^{4}=\Gamma_{31}^{5}=\Gamma_{31}^{6}=\Gamma_{31}^{7}=0, \\
& \Gamma_{14}^{1}=\Gamma_{14}^{2}=\Gamma_{14}^{3}=\Gamma_{14}^{4}=\Gamma_{14}^{5}=\Gamma_{14}^{6}=\Gamma_{14}^{7}=0, \\
& \Gamma_{41}^{1}=\Gamma_{41}^{2}=\Gamma_{41}^{3}=\Gamma_{41}^{4}=\Gamma_{41}^{5}=\Gamma_{41}^{6}=\Gamma_{41}^{7}=0, \\
& \Gamma_{15}^{1}=\Gamma_{15}^{2}=\Gamma_{15}^{3}=\Gamma_{15}^{4}=\Gamma_{15}^{5}=\Gamma_{15}^{6}=\Gamma_{15}^{7}=0, \\
& \Gamma_{51}^{1}=\Gamma_{51}^{2}=\Gamma_{51}^{3}=\Gamma_{51}^{4}=\Gamma_{51}^{5}=\Gamma_{51}^{6}=\Gamma_{51}^{7}=0, \\
& \Gamma_{23}^{1}=\Gamma_{23}^{2}=\Gamma_{23}^{3}=\Gamma_{23}^{4}=\Gamma_{23}^{5}=\Gamma_{23}^{6}=\Gamma_{23}^{7}=0, \\
& \Gamma_{32}^{1}=\Gamma_{32}^{2}=\Gamma_{32}^{3}=\Gamma_{32}^{4}=\Gamma_{32}^{5}=\Gamma_{32}^{6}=\Gamma_{32}^{7}=0, \\
& \Gamma_{24}^{1}=\Gamma_{24}^{2}=\Gamma_{24}^{3}=\Gamma_{24}^{4}=\Gamma_{24}^{5}=\Gamma_{24}^{6}=\Gamma_{24}^{7}=0, \\
& \Gamma_{42}^{1}=\Gamma_{42}^{2}=\Gamma_{42}^{3}=\Gamma_{42}^{4}=\Gamma_{42}^{5}=\Gamma_{42}^{6}=\Gamma_{42}^{7}=0, \\
& \Gamma_{25}^{1}=\Gamma_{25}^{2}=\Gamma_{25}^{3}=\Gamma_{25}^{4}=\Gamma_{25}^{5}=\Gamma_{25}^{6}=\Gamma_{25}^{7}=0, \\
& \Gamma_{52}^{1}=\Gamma_{52}^{2}=\Gamma_{52}^{3}=\Gamma_{52}^{4}=\Gamma_{52}^{5}=\Gamma_{52}^{6}=\Gamma_{52}^{7}=0, \\
& \Gamma_{34}^{1}=\Gamma_{34}^{2}=\Gamma_{34}^{3}=\Gamma_{34}^{4}=\Gamma_{34}^{5}=\Gamma_{34}^{6}=\Gamma_{34}^{7}=0, \\
& \Gamma_{43}^{1}=\Gamma_{43}^{2}=\Gamma_{43}^{3}=\Gamma_{43}^{4}=\Gamma_{43}^{5}=\Gamma_{43}^{6}=\Gamma_{43}^{7}=0, \\
& \Gamma_{35}^{1}=\Gamma_{35}^{2}=\Gamma_{35}^{3}=\Gamma_{35}^{4}=\Gamma_{35}^{5}=\Gamma_{35}^{6}=\Gamma_{35}^{7}=0, \\
& \Gamma_{53}^{1}=\Gamma_{53}^{2}=\Gamma_{53}^{3}=\Gamma_{53}^{4}=\Gamma_{53}^{5}=\Gamma_{53}^{6}=\Gamma_{53}^{7}=0, \\
& \Gamma_{45}^{1}=\Gamma_{45}^{2}=\Gamma_{45}^{3}=\Gamma_{45}^{4}=\Gamma_{45}^{5}=\Gamma_{45}^{6}=\Gamma_{45}^{7}=0, \\
& \Gamma_{54}^{1}=\Gamma_{54}^{2}=\Gamma_{54}^{3}=\Gamma_{54}^{4}=\Gamma_{54}^{5}=\Gamma_{54}^{6}=\Gamma_{54}^{7}=0, \\
& \hline
\end{aligned}
$$

Using Equations (73), (74) and (77), we calculate

$$
\begin{align*}
\nabla_{e_{1}} e_{1} & =\nabla_{e_{2}} e_{2}=\nabla_{e_{3}} e_{3}=\nabla_{e_{4} e_{4}}=-\frac{\partial}{\partial x_{7}} \tag{78}\\
\nabla_{e_{1}} e_{2} & =\nabla_{e_{1}} e_{3}=\nabla_{e_{1}} e_{4}=\nabla_{e_{2}} e_{1}=\nabla_{e_{2}} e_{3}=\nabla_{e_{2}} e_{4}=0, \\
\nabla_{e_{3}} e_{1} & =\nabla_{e_{3}} e_{2}=\nabla_{e_{3}} e_{4}=\nabla_{e_{4} e_{1}}=\nabla_{e_{4} e_{2}}=\nabla_{e_{4}} e_{3}=0 .
\end{align*}
$$

Thus, we find

$$
\begin{align*}
& \nabla_{V_{1}} V_{1}=\nabla_{e_{1}} e_{1}=-\frac{\partial}{\partial x_{7}}, \nabla_{V_{2}} V_{2}=\nabla_{e_{4}} e_{4}=-\frac{\partial}{\partial x_{7}} \tag{79}\\
& \nabla_{V_{3}} V_{3}=\nabla_{e_{2}+e_{5}} e_{2}+e_{5}=-2 \frac{\partial}{\partial x_{7}}, \nabla_{V_{4}} V_{4}=\nabla_{e_{3}} e_{3}=-\frac{\partial}{\partial x_{7}}
\end{align*}
$$

Now, from

$$
\mathcal{T}_{V} V=\mathcal{T}_{\lambda_{1} V_{1}+\lambda_{2} V_{2}+\lambda_{3} V_{3}+\lambda_{4} V_{4} \lambda_{1} V_{1}+\lambda_{2} V_{2}+\lambda_{3} V_{3}+\lambda_{4} V_{4}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4} \in R, ~}^{\text {and }}
$$

we lead to

$$
\begin{align*}
\mathcal{T}_{V} V= & \lambda_{1}^{2} \mathcal{T}_{V_{1}} V_{1}+\lambda_{2}^{2} \mathcal{T}_{V_{2}} V_{2}+\lambda_{3}^{2} \mathcal{T}_{V_{3}} V_{3}+\lambda_{4}^{2} \mathcal{T}_{V_{4}} V_{4} \tag{80}\\
& +2 \lambda_{1} \lambda_{2} \mathcal{T}_{V_{1}} V_{2}+2 \lambda_{1} \lambda_{3} \mathcal{T}_{V_{1}} V_{3}+2 \lambda_{1} \lambda_{4} \mathcal{T}_{V_{1}} V_{4}+2 \lambda_{2} \lambda_{3} \mathcal{T}_{V_{2}} V_{3} \\
& +2 \lambda_{2} \lambda_{4} \mathcal{T}_{V_{2}} V_{4}+2 \lambda_{3} \lambda_{4} \mathcal{T}_{V_{3}} V_{4} .
\end{align*}
$$

From Equations (13) and (79), we obtain

$$
\begin{gather*}
\mathcal{T}_{V_{1}} V_{1}=-\frac{\partial}{\partial x_{7}}, \mathcal{T}_{V_{2}} V_{2}=-\frac{\partial}{\partial x_{7}}, \mathcal{T}_{V_{3}} V_{3}=-2 \frac{\partial}{\partial x_{7}}, \mathcal{T}_{V_{4}} V_{4}=-\frac{\partial}{\partial x_{7}} \tag{81}\\
\mathcal{T}_{V_{1}} V_{2}=0, \mathcal{T}_{V_{1}} V_{3}=0, \mathcal{T}_{V_{1}} V_{4}=0, \mathcal{T}_{V_{2}} V_{3}=0, \mathcal{T}_{V_{2}} V_{4}=0, \mathcal{T}_{V_{3}} V_{4}=0
\end{gather*}
$$

Thus, by using Equations (80) and (81), we obtain

$$
\begin{equation*}
\mathcal{T}_{V} V=-\left(\lambda_{1}^{2}+\lambda_{2}^{2}+2 \lambda_{3}^{2}+\lambda_{1}^{4}\right) \frac{\partial}{\partial x_{7}} . \tag{82}
\end{equation*}
$$

Since $V=\lambda_{1} V_{1}+\lambda_{2} V_{2}+\lambda_{3} V_{3}+\lambda_{4} V_{4}, g_{1}\left(\lambda_{1} V_{1}+\lambda_{2} V_{2}+\lambda_{3} V_{3}+\lambda_{4} V_{4}, \lambda_{1} V_{1}+\lambda_{2} V_{2}+\right.$ $\left.\lambda_{3} V_{3}+\lambda_{4} V_{4}\right)=\lambda_{1}^{2}+\lambda_{2}^{2}+2 \lambda_{3}^{2}+\lambda_{1}^{4}$. For any smooth function f on R^{7}, the gradient of f with respect to the metric g_{1} is given by $\nabla f=\sum_{i, j=1}^{7} g_{1}^{i j} \frac{\partial f}{\partial x_{i}} \frac{\partial}{\partial x_{j}}$. Hence, $\nabla f=e^{-2 x_{7}} \frac{\partial f}{\partial x_{1}} \frac{\partial}{\partial x_{1}}+$ $e^{-2 x_{7}} \frac{\partial f}{\partial x_{2}} \frac{\partial}{\partial x_{2}}+e^{-2 x_{7}} \frac{\partial f}{\partial x_{3}} \frac{\partial}{\partial x_{3}}+e^{-2 x_{7}} \frac{\partial f}{\partial x_{4}} \frac{\partial}{\partial x_{4}}+e^{-2 x_{7}} \frac{\partial f}{\partial x_{5}} \frac{\partial}{\partial x_{5}}+e^{-2 x_{7}} \frac{\partial f}{\partial x_{6}} \frac{\partial}{\partial x_{6}}+\frac{\partial f}{\partial x_{7}} \frac{\partial}{\partial x_{7}}$. Hence, $\nabla f=\frac{\partial}{\partial x_{7}}$ for the function $f=x_{7}$. Then, it is easy to see that $\mathcal{T}_{V} V=-g_{1}(V, V) \nabla f$; thus, by Theorem $1, \Pi$ is a CSIR map from cosymplectic manifold onto Riemannian manifold.

5. Conclusions

In the last few years, Riemannian maps have been extensively studied between different kinds of the manifolds. Recently, a special type of Riemannian map, namely, the "Clairaut Riemannian map" was introduced and studied by Sahin [30]; moreover, he, in [37], gave an open problem to find characterizations for Clairaut Riemannian maps. As a continuation of this study, we tried to study Clairaut semi-invariat Riemannian maps in contact geometry. Here, we investigated the various most fundamental geometric properties on the fibers and distributions of these maps. In the future, we plan to focus on studying Clairaut's semi-slant Riemannian maps, Clairaut's hemi-slant Riemannian maps, and Clairaut's bi-slant Riemannian maps between different kinds of the manifolds.

Author Contributions: Conceptualization, Y.L., R.P., A.H. and S.K. (Sushil Kumar); methodology, Y.L., R.P., A.H. and S.K. (Sumeet Kumar); investigation, R.P., A.H., S.K. (Sushil Kumar) and S.K. (Sumeet Kumar); writing-original draft preparation, Y.L., A.H., S.K. (Sushil Kumar) and S.K. (Sumeet Kumar); writing-review and editing, Y.L., R.P., S.K. (Sushil Kumar) and S.K. (Sumeet Kumar). All authors have read and agreed to the published version of the manuscript.
Funding: This research was funded by National Natural Science Foundation of China (Grant No. 12101168) and Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ22A010014).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Acknowledgments: The authors gratefully thank the reviewers for the constructive comments to improve the quality of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fischer, A.E. Riemannian maps between Riemannian manifolds. Contemp. Math. 1992, 132, 331-366.
2. Şahin, B. Invariant and anti-invariant Riemannian maps to Kahler manifolds. Int. J. Geom. Methods Mod. Phys. 2010, 7, 337-355. [CrossRef]
3. Şahin, B. Semi-invariant Riemannian maps from almost Hermitian manifolds. Indag. Math. 2012, 23, 80-94. [CrossRef]
4. Prasad, R.; Kumar, S. Slant Riemannian maps from Kenmotsu manifolds into Riemannian manifolds. Glob. J. Pure Appl. Math. 2017, 13, 1143-1155.
5. Prasad, R.; Pandey, S. Slant Riemannian maps from an almost contact manifold. Filomat 2017, 31, 3999-4007. [CrossRef]
6. Şahin, B. Slant Riemannian maps from almost Hermitian manifolds. Quaest. Math. 2013, 36, 449-461. [CrossRef]
7. Kumar, S.; Prasad, R. Semi-slant Riemannian maps from Cosymplectic manifolds into Riemannian manifolds. Gulf J. Math. 2020, 9, 62-80. [CrossRef]
8. Park, K.S.; Şahin B. Semi-slant Riemannian maps into almost Hermitian manifolds. Czechoslov. Math. J. 2014, 64, 1045-1061. [CrossRef]
9. Prasad, R.; Kumar, S. Semi-slant Riemannian maps from almost contact metric manifolds into Riemannian manifolds. Tbilisi Math. J. 2018, 11, 19-34. [CrossRef]
10. Şahin, B. Hemi-slant Riemannian Maps. Mediterr. J. Math. 2017, 14, 10. [CrossRef]
11. Prasad, R.; Kumar S.; Kumar S.; Vanli A.T. On quasi-hemi-slant Riemannian maps. Gazi Univ. J. Sci. 2021, 34, 477-491. [CrossRef]
12. Bishop, R.L. Clairaut submersions. In Differential Geometry (In Honor of Kentaro Yano); Kinokuniya: Tokyo, Japan, 1972; pp. 21-31.
13. Lee, J.; Park, J.H.; Şahin, B.; Song, D.Y. Einstein conditions for the base of anti-invariant Riemannian submersions and Clairaut submersions. Taiwan. J. Math. 2015, 19, 1145-1160. [CrossRef]
14. Taştan, H.M. Lagrangian submersions from normal almost contact manifolds. Filomat 2017, 31, 3885-3895. [CrossRef]
15. Taştan, H.M.; Aydin, S.G. Clairaut anti-invariant submersions from cosymplectic manifolds. Honam Math. J. 2019, 41, 707-724.
16. Allison, D. Lorentzian Clairaut submersions. Geom. Dedicata 1996, 63, 309-319. [CrossRef]
17. Aso, K.; Yorozu, S. A generalization of Clairaut's theorem and umbilic foliations. Nihonkai Math. J. 1991, 2, 139-153.
18. Gauchman, H. On a decomposition of Riemannian manifolds. Houst. J. Math. 1981, 7, 365-372.
19. Haseeb, A.; Prasad, R.; Chaubey, S.K.; Vanli, A.T. A note on $*$-conformal and gradient $*$-conformal η-Ricci solitons in α cosymplectic manifolds. Honam Math. J. 2022, 44, 231-243.
20. Kumar, S.; Prasad, R.; Kumar, S. Clairaut semi-invariant Riemannian maps from almost Hermitian manifolds. Turk. J. Math. 2022, 46, 1193-1209. [CrossRef]
21. Li, Y.; Abolarinwa, A.; Azami, S.; Ali, A. Yamabe constant evolution and monotonicity along the conformal Ricci flow. AIMS Math. 2022, 7, 12077-12090. [CrossRef]
22. Li, Y.; Ali, A.; Mofarreh, F.; Abolarinwa, A.; Ali, R. Some eigenvalues estimate for the ϕ-Laplace operator on slant submanifolds of Sasakian space forms. J. Funct. Space 2021, 2021, 6195939.
23. Li, Y.; Ali, A.; Mofarreh, F.; Alluhaibi, N. Homology groups in warped product submanifolds in hyperbolic spaces. J. Math. 2021, 2021, 8554738. [CrossRef]
24. Li, Y.; Alkhaldi, A.H.; Ali, A.; Laurian-Ioan, P. On the topology of warped product pointwise semi-slant submanifolds with positive curvature. Mathematics 2021, 9, 3156. [CrossRef]
25. Li, Y.; Khatri, M.; Singh, J.P.; Chaubey, S.K. Improved Chen's Inequalities for Submanifolds of Generalized Sasakian-Space-Forms. Axioms 2022, 11, 324. [CrossRef]
26. Li, Y.; Lone, M.A.; Wani, U.A. Biharmonic submanifolds of Kähler product manifolds. AIMS Math. 2021, 6, 9309-9321. [CrossRef]
27. Li, Y.; Mofarreh, F.; Dey, S.; Roy, S.; Ali, A. General Relativistic Space-Time with η_{1}-Einstein Metrics. Mathematics 2022, 10, 2530. [CrossRef]
28. Li, Y.; Wang, Z.G.; Zhao, T.H. Geometric Algebra of Singular Ruled Surfaces. Adv. Appl. Clifford Algebr. 2021, 31, 19. [CrossRef]
29. Prasad, R.; Shukla, S.S.; Haseeb, A.; Kumar, S. Quasi hemi-slant submanifolds of Kaehler manifolds. Honam Math. J. 2020, 42, 795-809.
30. Şahin, B. Circles along a Riemannian map and Clairaut Riemannian maps. Bull. Korean Math. Soc. 2017, 54, 253-264. [CrossRef]
31. Taştan, H.M.; Aydin, S.G. Clairaut anti-invariant submersions from Sasakian and Kenmotsu manifolds. Mediterr. J. Math. 2017, 14, 235-249. [CrossRef]
32. Yadav, A.; Meena, K. Clairaut anti-invariant Riemannian maps from Kahler Manifolds. Mediterr. J. Math. 2022, 19, 97. [CrossRef]
33. Şahin, B. Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and Their Applications; Elsevier/Academic Press: Amsterdam, The Netherlands, 2017.
34. Blair, D.E. Contact Manifolds in Riemannian Geometry; Lecture Notes in Math 509; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1976.
35. O'Neill, B. The fundamental equations of a submersion. Mich. Math. J. 1966, 13, 458-469. [CrossRef]
36. Baird, P.; Wood, J.C. Harmonic Morphism Between Riemannian Manifolds; Oxford Science Publications: Oxford, UK, 2003.
37. Sahin, B. A survey on differential geometry of Riemannian maps between Riemannian manifolds. Sci. Ann. Alexandru Ioan Cuza Univ. Iasi (New Ser.) Math. 2017, 63, 151-167.
