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Abstract: Bilateral correlated data frequently arise in medical clinical studies such as otolaryngology
and ophthalmology. Based on an equal correlation coefficient model, this paper mainly aimed to
investigate the statistical inference for the odds ratio of two proportions in bilateral correlated data,
including not only three test procedures but also four confidence interval (CI) constructions. Through
iterative algorithms, all unknown parameters are estimated in order to construct the likelihood ratio,
score and Wald-type tests. Furthermore, the profile likelihood CI, score CI, and Wald-type CI are
obtained by the bisection root-finding algorithm. We provided another Wald-type CI based on an
asymptotic normality property. The performance of the proposed tests were investigated with regard
to empirical type I error rate and power, and CI methods were compared in terms of mean coverage
probability and mean interval width. Numerical simulations show that the score test is more robust,
and has higher power than other tests. The score CI also has a shorter interval width, and its coverage
probability is closer to 0.95. A real example is used to illustrate the proposed methods.

Keywords: correlation coefficient model; odds ratio; likelihood ratio test; score test; Wald-type test;
confidence interval

1. Introduction

Binary data are often encountered when an investigator takes measurements from
the paired organs of a patient. Observations may be related because they come from
the same patient, such as both eyes, hands, arms, legs, or sides of the face [1–4]. For
example, Mandel et al. [5] conducted a double-blind randomized clinical trial to compare
cefaclor and amoxicillin for the treatment of otitis media with effusion in children with
bilateral tympanocentesis. Sainani [6] reviewed some examples of correlated data and
demonstrated that errors arise when correlations are ignored. Therefore, the misleading
statistical inference may be obtained from ignoring the correlation between the responses
of paired organs [7,8].

For the correlated binary outcomes, we briefly reviewed the developments of three
main statistical models: Ronser’s model, Dallal’s model, and Donner’s model. An interclass
correlation model was proposed by Ronser [9] based on the assumption that the probability
of a response at one side given a response at the other side is proportional to the prevalence
rate of the corresponding group. Ma et al. [10] analyzed the equality of the response rates
for multiple groups under Ronser’s model. Tang et al. [11,12] proposed the test procedures
and asymptotic confidence intervals (CIs) about risk differences based on Ronser’s model.
Dallal [13] pointed out that Ronser’s model will give a poor fit if the characteristic is
almost certain to occur bilaterally with widely varying group-specific prevalence and then
considered that the probability of a response at one side given a response at the other
side to be constant. Under Dallal’s model, Sun et al. [14] derived risk difference tests
for stratified binary data. However, Dallal’s model had its own limitation. Furthermore,
Donner [15] established an alternative model when the correlation coefficient between two
paired organs is a fixed constant ρ. Liu et al. [16] derived several statistics from testing
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the equality of correlation coefficients for paired binary data. Pei et al. [17] constructed
CI methods for risk differences under Donner’s model. Under these models, the risk
difference, relative risk ratio, and odds ratio are the three most used methods to compare
disease risk among different groups. In the first two forms, various approaches were used
to describe and quantify the statistical inference in a given population. For more details
about this topic, we refer the reader to [18–23]. However, the research into the odds ratio is
still in its infancy and has had fewer achievements for the bilateral correlated data.

It is noteworthy that the odds ratio is a preferred measure of association in prospective,
retrospective, or cross-sectional sampling designs. However, most of the aforementioned
results usually focus on the test or CI problems of risk difference and relative risk ratio. In
this paper, we focused on the study of statistical inference for the odds ratio of two pro-
portions in bilateral correlated data. Under Donner’s model, the novelty and contribution
embody several aspects: (i) three statistics are proposed to test whether the odds ratio δ of
response rates equals a specific value δ0. The performance of these statistics is investigated
in terms of type I error rate and power. (ii) We propose the use of CI methods for any
specific value δ0. These intervals have some advantages; they contain the true value with
a given probability. In addition, these can answer the testing problem and give a range
of values for δ0. The remainder of the paper is organized as follows. In Section 2, we
briefly review some notations, data structure, and Donner’s model. The unconstrained and
constrained MLEs are obtained in Section 3. Three different test procedures are proposed
in Section 4, and four asymptotic CI methods are provided in Section 5. In Section 6,
the simulation studies were conducted to investigate the performance of three tests and
four CIs. A real example is used to illustrate our proposed methods in Section 7, and we
conclude in Section 8.

2. Data Structure and Donner’s Model

We randomly allocate a total of N patients into control and treatment groups. In
the comparative experiments, the control group members receive a standard treatment, a
placebo, or no treatment at all. The recorded outcome would be none cured (no response),
unilateral cured (one response), or bilateral cured (two responses). Let mli be the number of
patients with l(l = 0, 1, 2) response(s) in the ith group, where l = 0, 1, 2 and i = 1, 2. Denote
the number of patients who have exactly l responses for l = 0, 1, 2 by ml+ = ∑2

i=1 mli.
Obviously, N = ∑2

l=0 ∑2
i=1 mli = m0+ + m1+ + m2+ = m+1 + m+2. Table 1 list the data

structure.

Table 1. Data structure for bilateral binary data.

Number of Responses (l)
Group (i)

Total
1 2

0 m01(p01) m02(p02) m0+
1 m11(p11) m12(p12) m1+
2 m21(p21) m22(p22) m2+

Total m+1 m+2 N

Let Xli be a random variable and represent the number of patients who have l(l = 0, 1, 2)
response(s) in the ith group, and pli be the probability that a patient in the ith group has ex-
actly l responses (l = 0, 1, 2, i = 1, 2). Denote Xi = (X0i, X1i, X2i) and mi = (m0i, m1i, m2i).
Thus, Xi follows a trinomial distribution with unknown parameter vector θ and its proba-
bility function satisfies

pi(mi; θ) = Pr(Xi = mi) = Pr(X0i = m0i, X1i = m1i, X2i = m2i)

=
m+i!

m0i!m1i!m2i!
pm0i

0i pm1i
1i pm2i

2i ,
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where p0i + p1i + p2i = 1 and m+i = ∑2
l=0 mli for i = 1, 2.

In clinical research, bilateral correlated data often arise when investigators collect
information from paired organs (or body parts). Donner’s model can be used to capture
the intraclass correlation between observations. Let Zijk = 1 if there exists a response for
the kth organ (k = 1, 2) of the jth patient (j = 1, 2, . . . , m+i) in the ith group (i = 1, 2);
otherwise, Zijk = 0. Suppose that

Pr(Zijk = 1) = πi, Corr(Zij1, Zij2) = ρ (1)

for 0 ≤ πi ≤ 1 and 0 ≤ ρ ≤ 1, where πi represents the probability that the kth organ
of the jth patient in the ith group has a response, and ρ denotes the common correlation
coefficient between the two random variables Zij1 and Zij2 for i = 1, 2, j = 1, 2, . . . , m+i.
From (1), we have

p0i = (1− πi)(ρπi − πi + 1), p1i = 2πi(1− ρ)(1− πi), p2i = π2
i + ρπi(1− πi). (2)

The probability function of Xi satisfies

pi(mi; θ) =
m+i!

m0i!m1i!m2i!
[(1− πi)(ρπi − πi + 1)]m0i [2πi(1− ρ)(1− πi)]

m1i

×[π2
i + ρπi(1− πi)]

m2i , (3)

where θ = (π1, π2, ρ). It follows that the expectation vector E(Xi) = (EX0i, EX1i, EX2i),
where E(Xli) = m+i pli for l = 0, 1, 2 and i = 1, 2. Under the condition that the control
and treatment groups are independent of each other, the joint probability function of the
random vector X = (X1, X2) can be given by

pX(m1, m2; θ) =
2

∏
i=1

pi(mi; θ) =
2

∏
i=1

m+i!
m0i!m1i!m2i!

pm0i
0i pm1i

1i pm2i
2i ,

where pli(l = 0, 1, 2; i = 1, 2) are defined in (2).
Following Edwards [24], the odds is the probability of an event occurring, divided

by the probability of that event not occurring. An odds ratio (OR) is the ratio of two odds.
Define the odds ratio as δ = π2/(1−π2)

π1/(1−π1)
. If δ = 1, the condition or event under study is

equally likely to occur in both groups. That is to say, π2 = π1. If δ > 1, it reflects that the
condition or event is more likely to occur in the second group. Otherwise, the condition or
event is less likely to happen in the second group. In this work, we are interested in testing
whether the odds ratio δ of the two groups is equal to a specific value, that is

H0 : δ = δ0 vs. Ha : δ 6= δ0,

and constructing its confidence intervals.

3. Unconstrained and Constrained MLEs

For each observed data m = (m1, m2), the likelihood function is defined by

L(θ|m) = pX(m1, m2; θ) =
2

∏
i=1

m+i!
m0i!m1i!m2i!

pm0i
0i pm1i

1i pm2i
2i ,

where pli(l = 0, 1, 2; i = 1, 2) are defined in (2) and m+i !
m0i !m1i !m2i !

does not depend on the
unknown parameters π1, π2 and ρ. Thus, the log-likelihood

l(θ|m) =
2

∑
i=1
{m0i ln(1− πi)(ρπi − πi + 1) + m1i ln 2πi(1− ρ)(1− πi)

+m2i ln(π2
i + ρπi(1− πi))}. (4)
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For convenience, denote θ , (θ1, θ2, θ3) and the unknown parameter space

Ω = {θ = (θ1, θ2, θ3) : θi = πi, θ3 = ρ, 0 ≤ πi, ρ ≤ 1, 0 ≤ pli ≤ 1, l = 0, 1, 2, i = 1, 2}.

Regularity conditions are required to ensure the almost definite existence of a strongly
consistent root of the log-likelihood equation. These conditions were first proposed by
Chanda [25]. Hereafter, we assume

(A1) For all θ ∈ Ω, the derivatives ∂l
∂θi

, ∂2l
∂θi∂θk

, ∂3l
∂θ1∂θ2∂θ3

exist for i, k = 1, 2, 3. It is to
ensure the existence of a Taylor expansion.

(A2) For almost all m and every θ ∈ Ω, we have∣∣∣ ∂l
∂θi

∣∣∣ < F1(m),
∣∣∣ ∂2l
∂θi∂θk

∣∣∣ < F2(m),
∣∣∣ ∂3l
∂θ1∂θ2∂θ3

∣∣∣ < F3(m),

where F1 and F2 are finitely integrable functions and Eθ(F3) < ∞ for all θ ∈ Ω. It aims to
justify the interchangeability of integration and differentiation for θ.

(A3) For all θ ∈ Ω, Fisher’s information numbers Iik = −E( ∂2l
∂θi∂θk

)(i, k = 1, 2, 3) are

finite and non-zero. This condition guarantees that the random variables ∂2l
∂θi∂θk

have finite,
positive variances.

Under these regularity assumptions (A1)-(A3), there exists a strongly consistent root
of the log-likelihood ∂l

∂θi
= 0, i = 1, 2, 3. In some situations, we cannot obtain the ex-

plicit expression of MLEs through the log-likelihood equations. Ma, Shan, and Liu [10]
provided a two-step method formed by a third-order polynomial and Newton–Raphson
algorithm to solve the problem. Mou and Li [26] compared three iterative algorithms, in-
cluding the Fisher scoring algorithm, the two-step method, and the generalized expectation-
maximization (GEM) algorithm. The result shows that the GEM algorithm takes more
iterations to converge than the Fisher scoring algorithm and two-step method. Thus, we
will use the Fisher scoring algorithm and two-step method to obtain the corresponding
MLEs in this article.

3.1. Unconstrained MLEs

We first considered the unconstrained MLEs under the alternative hypothesis Ha.
Let π̂i and ρ̂ be the maximum likelihood estimations (MLEs) of unknown parameters
πi(i = 1, 2) and ρ, respectively. Differentiating l to θ = (π1, π2, ρ) yields the score function
Uθ(m) = ( ∂l

∂π1
, ∂l

∂π2
, ∂l

∂ρ ), where

∂l
∂πi

= −m0i(2πi + ρ(1− 2πi)− 2)
(πi − 1)(πi(ρ− 1) + 1)

+
m1i(2πi − 1)
πi(πi − 1)

+
m2i(2πi + ρ(1− 2πi))

πi(πi + ρ(1− πi))
, (5)

∂l
∂ρ

=
2

∑
i=1

( m0iπi
πi(ρ− 1) + 1

+
m1i

ρ− 1
− m2i(πi − 1)

πi − ρ(πi − 1)

)
. (6)

Although the MLE of (π1, π2, ρ) is the solution of the following equations

∂l
∂π1

= 0,
∂l

∂π2
= 0,

∂l
∂ρ

= 0,

there is no closed-form solution for the above equations. A global iterative algorithm is
usually criticized for being time-consuming and unsatisfactory in terms of its convergence
for searching MLEs with high-dimensional parameters. Thus, we adopt the two-step
method proposed by Ma, Shan, and Liu [10] as follows:

Step 1. For the Equation (5), we transform them into the forms of a third-order
polynomial
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m+i(2ρ2 − 4ρ + 2)π3
i − [3m+iρ

2 − (5m0i + 6m1i + 7m2i)ρ + 2m0i + 3m1i + 4m2i]π
2
i

+[m+i(ρ
2 − 4ρ) + 2m0iρ + m1i + 2m2i]πi + (m2i + m1i)ρ = 0, i = 1, 2. (7)

Step 2. The iteration procedures are formed in three stages as follows:

(i) The initial value of ρ can be taken as ρ(0) =
4m0+m2+−m2

1+
(m1++2m0+)(m1++2m2+)

, which is the

same as the estimate under H0 : δ = 1 [27]. Based on the initial value ρ(0), it can reduce
iteration and enhance the algorithm’s stability.

(ii) For a given ρ(t), we can obtain the solutions of (7), denoted by π
(t)
1 and π

(t)
2 .

(iii) Given π
(t)
i (i = 1, 2) and ρ(t), the (t + 1)th approximate of ρ can be derived by the

Newton–Raphson algorithm

ρ(t+1) = ρ(t) −
( ∂2l

∂ρ2 (π
(t)
1 , π

(t)
2 , ρ(t))

)−1 ∂l
∂ρ

(π
(t)
1 , π

(t)
2 , ρ(t)),

where ∂l/∂ρ is given in (6), and

∂2l
∂ρ2 = −

2

∑
i=1

[ m0iπ
2
i

(πiρ− πi + 1)2 +
m1i

(ρ− 1)2 +
m2i(πi − 1)2

(πi − ρ(πi − 1))2

]
. (8)

Repeat steps (ii) and (iii) until convergence and yield global MLEs π̂i(i = 1, 2) and ρ̂.

3.2. Constrained MLEs

In this subsection, we consider the constrained MLEs under the null hypothesis
H0 : δ = δ0. Let π̃i(i = 1, 2) and ρ̃ be the constrained MLEs of πi(i = 1, 2) and ρ,
respectively. Since δ = π2/(1−π2)

π1/(1−π1)
, we have π2 = δπ1

1−π1+δπ1
. From (4), the log-likelihood l

can be written by

l1(θ1|m) = m01 ln((1− π1)(π1(ρ− 1) + 1)) + m11 ln(2π1(π1 − 1)(ρ− 1))

+m21 ln(π2
1 − π1ρ(π1 − 1)) + m02 ln

(1− π1)(π1(δρ− 1) + 1)
(π1(δ− 1) + 1)2

+m12 ln
2δπ1(π1 − 1)(ρ− 1)
(π1(δ− 1) + 1)2 + m22 ln

δπ1(ρ + π1(δ− ρ))

(π1(δ− 1) + 1)2 .

There is no explicit solution for the two equations below

∂l1
∂π1

∣∣∣
δ=δ0

= 0,
∂l1
∂ρ

∣∣∣
δ=δ0

= 0.

Next, we use the Fisher scoring algorithm for solving the constrained MLEs. To reduce its
iteration and enhance its stability, we take the initial values π

(0)
1 = π̂1 and ρ(0) = ρ̂, where

π̂1 and ρ̂ are unconstrained MLEs of π1 and ρ. The Fisher scoring algorithm can obtain the
constrained MLEs of π1 and ρ as follows

[
π
(t+1)
1

ρ(t+1)

]
=

[
π
(t)
1

ρ(t)

]
+
[

I(π(t)
1 , ρ(t))

]−1


∂lH0((δ, π

(t)
1 , ρ(t))|m)

∂π1
∂lH0((δ, π

(t)
1 , ρ(t))|m)

∂ρ

∣∣∣δ=δ0
,
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where I−1 is the inverse matrix of the Fisher information matrix I for π1 and ρ, defined by

I(π1, ρ) ,
[

I11 I12
I12 I22

]
=

 −E
(

∂2l1
∂π2

1

)
−E
(

∂2l1
∂π1∂ρ

)
−E
(

∂2l1
∂π1∂ρ

)
−E
(

∂2l1
∂ρ2

)
.

We provide the detailed process in Appendix A.1.

4. Test Methods
4.1. Likelihood Ratio Test

Let θ̂ = (π̂1, π̂2, ρ̂) and θ̃ = (π̃1, π̃2, ρ̃) be the unconstrained and constrained MLEs of
πi(i = 1, 2) and ρ, respectively. The likelihood ratio test is expressed by

T2
L = 2(l(θ̂|m)− l(θ̃|m)) = 2(l((π̂1, π̂2, ρ̂)|m)− l((π̃1, π̃2, ρ̃)|m)),

where π̃2 = δ0π̃1
1−π̃1+δ0π̃1

. Under the null hypothesis H0 : δ = δ0, T2
L asymptotically follows a

chi-square distribution with one degree of freedom. For a given nominal level α, the null
hypotheses H0 will be rejected if T2

L > χ2
1,1−α, where χ2

1,1−α is the (1− α)th quantile of the
chi-square distribution with one degree of freedom.

4.2. Wald-Type Log-Linear Test

The log-transformed form of the odds ratio δ has an additive structure more rapidly
converging towards normality. It is proper to infer an odds ratio on the log scale. Thus, the
null hypothesis H0 : δ = δ0 is equivalent to ln δ = ln δ0. That is to say,

H0 : ln[π2/(1− π2)]− ln[π1/(1− π1)] = ln δ0,

which reveals the difference between the log-transformed odds. For simplicity, denote
Oi = πi/(1− πi) by i = 1, 2. Thus, ln O2 − ln O1 = ln δ0. The asymptotic distribution of θ

is given by
√

n(θ̂− θ)
d−→ N(0, I−1

θ̂
) under the regularity conditions (A1)–(A3), where I−1

θ

is the inverse matrix of Fisher information Iθ with respect to θ, and

Iθ ,

 Iθ(1, 1) Iθ(1, 2) Iθ(1, 3)
Iθ(2, 1) Iθ(2, 2) Iθ(2, 3)
Iθ(3, 1) Iθ(3, 2) Iθ(3, 3)

 =


−E
(

∂2l
∂π2

1

)
−E
(

∂2l
∂π1∂π2

)
−E
(

∂2l
∂π1∂ρ

)
−E
(

∂2l
∂π2∂π1

)
−E
(

∂2l
∂π2

2

)
−E
(

∂2l
∂π2∂ρ

)
−E
(

∂2l
∂ρ∂π1

)
−E
(

∂2l
∂ρ∂π2

)
−E
(

∂2l
∂ρ2

)
.

We provide the elements Iθ(i, j)(i, j = 1, 2, 3) of Iθ in Appendix A.2.
Denote η = (ln O1, ln O2, ln ρ) and η̂ = (ln Ô1, ln Ô2, ln ρ̂), where Ôi = π̂i/(1− π̂i) for

i = 1, 2. By the Delta method,

√
n(η̂ − η)

d−→ N(0, Jη I−1
θ̂

JT
η ),

where

Jη =


∂ ln O1

∂π1

∂ ln O1
∂π2

∂ ln O1
∂ρ

∂ ln O2
∂π1

∂ ln O2
∂π2

∂ ln O2
∂ρ

∂ ln ρ
∂π1

∂ ln ρ
∂π2

∂ ln ρ
∂ρ

 =


1

π1(1−π1)
0 0

0 1
π2(1−π2)

0
0 0 1

ρ

.
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Denote ∆ = ln δ, ∆0 = ln δ0 and C = (−1, 1, 0). The MLE ∆̂ of ∆ satisfies ∆̂ = ln δ̂ = Cη̂.
Moreover,

Var(∆̂) = Var(Cη̂) = CVar(η̂)CT = CJη̂ I−1
θ̂

JT
η̂ CT

=
I−1
θ̂

(1, 1)

π̂2
1(1− π̂1)2

−
2I−1

θ̂
(1, 2)

π̂1π̂2(1− π̂1)(1− π̂2)
+

I−1
θ̂

(2, 2)

π̂2
2(1− π̂2)2

,

where I−1
θ̂

(1, 1), I−1
θ̂

(1, 2) and I−1
θ̂

(2, 2) are the (1,1)th, (1,2)th and (2,2)th elements of inverse

matrix I−1
θ̂

. Therefore, a Wald log-linear statistic under H0 has the following form

T2
W =

(∆̂− ∆0)
2

Var(∆̂)
=

(ln δ̂− ln δ0)
2

I−1
θ̂

(1,1)

π̂2
1(1−π̂1)2 −

2I−1
θ̂

(1,2)
π̂1π̂2(1−π̂1)(1−π̂2)

+
I−1
θ̂

(2,2)

π̂2
2(1−π̂2)2

,

where let θ̂ = (π̂1, π̂2, ρ̂) be the constrained MLEs of πi(i = 1, 2) and ρ. Similar to the test
statistic T2

L, the asymptotic distribution of T2
W is a chi-square distribution with one degree

of freedom. Reject the null hypothesis H0 if T2
W > χ2

1,1−α, where χ2
1,1−α is the (1− α)th

quantile of the chi-square distribution with one degree of freedom.

4.3. Score Test

Note that π2 = δπ1
1−π1+δπ1

. Under H0 : δ = δ0, δ is the parameter of interest, π1 and

ρ are nuisance parameters. The score function can be written as U = ( ∂l1
∂δ , 0, 0). Denote

θ1 = (δ, π1, ρ). Therefore, the score test is formed by

T2
S = UI−1

θ1
UT
∣∣∣
δ=δ0,π1=π̃1,ρ=ρ̃

=
(∂l1(θ1|m)

∂δ

)2
I−1
θ1

(1, 1)
∣∣∣
δ=δ0,π1=π̃1,ρ=ρ̃

,

where I−1
θ1

(1, 1) is the (1, 1)th element of the inverse matrix of the Fisher information Iθ1 ,
and

Iθ1 ,

 Iθ1(1, 1) Iθ1(1, 2) Iθ1(1, 3)
Iθ1(2, 1) Iθ1(2, 2) Iθ1(2, 3)
Iθ1(3, 1) Iθ1(3, 2) Iθ1(3, 3)

 =


−E
(

∂2l1
∂δ2

)
−E
(

∂2l1
∂δ∂π1

)
−E
(

∂2l1
∂δ∂ρ

)
−E
(

∂2l1
∂π1∂δ

)
−E
(

∂2l1
∂π2

1

)
−E
(

∂2l1
∂π1∂ρ

)
−E
(

∂2l1
∂ρ∂δ

)
−E
(

∂2l1
∂ρ∂π1

)
−E
(

∂2l1
∂ρ2

)
.

Appendix A.3 provides the elements Iθ1(i, j)(i, j = 1, 2, 3) of Iθ1 . Under H0, T2
S asymptoti-

cally follows a chi-square distribution with one degree of freedom. The null hypothesis
H0 will be rejected if T2

S > χ2
1,1−α, where χ2

1,1−α is the (1− α)th quantile of the chi-square
distribution with one degree of freedom.

5. CI methods
5.1. Profile Likelihood CI

In this subsection, we consider the confidence interval procedure of the odds ratio δ by
inverting the likelihood ratio test under the hypotheses H0 : δ = δ0 vs. Ha : δ 6= δ0. Based
on the regularity conditions (A1)–(A3), the likelihood ratio test T2

L = 2(l((π̂1, π̂2, ρ̂)|m)−
l((π̃1, π̃2, ρ̃)|m))

d−→ χ2
1 as m−→ + ∞, where π̂i, ρ̂ and π̃i, ρ̃ be the unconstrained and

constrained MLEs of πi(i = 1, 2) and ρ, respectively. Under H0, we know that δ0 =
π2/(1−π2)
π1/(1−π1)

and δ0 is an unknown constant. Thus, another form of the statistic is

T2
L = 2(l1((δ̂, π̂1, ρ̂)|m)− l1((δ0, π̃1, ρ̃)|m))

d−→ χ2,
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where δ̂ = π̂2/(1−π̂2)
π̂1/(1−π̂1)

. Therefore, the 100(1− α)% likelihood CI of odds ratio δ0 satisfies

CIL(m) = {δ0 : T2
L ≤ χ2

1,1−α} or

CIL(m) = {δ0 : 2(l1((δ̂, π̂1, ρ̂)|m)− l1((δ0, π̃1, ρ̃)|m)) ≤ χ2
1,1−α},

where χ2
1,1−α is the (1− α)th quantile of the chi-square distribution with one degree of

freedom. However, we cannot obtain the explicit upper and lower limits of δ0 through the
set CIL(m).

Then, we apply the bisection root-finding algorithm to search for the likelihood CI
upper (LU) or lower (LL) limits of δ0 satisfying the above inequality. At a confidence level
1− α, the procedure of the CI upper limit is described by the following steps:

(i) Let the initial values π̂
(0)
i = π̂i(i = 1, 2), ρ̂(0) = ρ̂, and δ̂(0) =

π̂
(0)
2 /(1−π̂

(0)
2 )

π̂
(0)
1 /(1−π̂

(0)
1 )

, where

π̂i(i = 1, 2) and ρ̂ are unconstrained MLEs. Take an initial sign=1 and step length=0.1.
(ii) Update δ̂(t+1) = δ̂(t) + sign× step length. Thus, for a given δ̂(t+1), we can obtain

the constrained MLEs π̃
(t+1)
1 and ρ̃(t+1) under H0.

(iii) If sign× 2(l1((δ̂(t+1), π̂
(t+1)
1 , ρ̂(t+1))|m)− l1((δ

(t+1)
0 , π̃

(t+1)
1 , ρ̃(t+1))|m)) ≤ sign×

χ2
1,1−α, return to step (ii). Otherwise, set sign = −sign and step length = 0.1× step length,

and then return to step (ii).
(iv) If the step length becomes small enough and the convergence is satisfactory, the

iteration is stopped. The output δ
(t+1)
0 is the likelihood CI upper limit of odds ratio δ0.

The iteration of the CI lower limit is similar to that of the upper limit besides two points:
(a) set the initial sign = −1 in step (i); (b) for step (iii), if sign× 2(l1((δ̂(t+1), π̂

(t+1)
1 , ρ̂(t+1))|m)−

l1((δ
(t+1)
0 , π̃

(t+1)
1 , ρ̃(t+1))|m)) ≥ sign× χ2

1,1−α, return to step (ii).

5.2. Wald-Type CI

We provide two methods to construct the CIs of odds ratio δ0 based on the Wald-type
statistic. The first method is through the bisection root-finding algorithm. Under H0, the
Wald-type statistic T2

W asymptotically follows a chi-square distribution. Similarly to the
procedure of CI construction in sub-Section 4.1, the 100(1− α)% Wald-type CI of δ0 satisfies
CIW1(m) = {δ0 : T2

W ≤ χ2
1,1−α} or

CIW1(m) =

δ0 :
(ln δ̂− ln δ0)

2

I−1
θ̂

(1,1)

π̂2
1(1−π̂1)2 −

2I−1
θ̂

(1,2)
π̂1π̂2(1−π̂1)(1−π̂2)

+
I−1
θ̂

(2,2)

π̂2
2(1−π̂2)2

≤ χ2
1,1−α

.

A bisection root-finding algorithm obtains the Wald-type CI upper (WU1) and lower (WL1)
limits of δ0, satisfying the above inequality. Given a confidence level of 1− α, the procedure
of the CI upper limit includes steps (i), (ii), (iii)’ and (iv), where:

(iii)’ If sign× T2
W ≤ sign× χ2

1,1−α, return to step (ii). Otherwise, set sign = -sign and
step length = 0.1× step length, and then return to step (ii).

The CI lower limit can be obtained according to the above steps by replacing sign=-1
in step (i) and sign× T2

W ≥ sign× χ2
1,1−α in step (iii)’.

Another method is based on the asymptotic normality distribution of δ̂. Obviously,

we have TW
d−→ N(0, 1) since T2

W
d−→ χ2

1 as m −→ +∞. Thus, the 100(1− α)% Wald-type
CIs of ln δ0 is given by

ln δ̂± z1−α/2

√√√√ I−1
θ̂

(1, 1)

π̂2
1(1− π̂1)2

−
2I−1

θ̂
(1, 2)

π̂1π̂2(1− π̂1)(1− π̂2)
+

I−1
θ̂

(2, 2)

π̂2
2(1− π̂2)2

,
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where z1−α/2 is the (1− α/2)th quantile of the standard normal distribution. The 100(1−
α)% explicit Wald-type CI upper (WU2) and lower (WL2) limits of δ0 are expressed by

WU2 = exp

ln δ̂ + z1−α/2

√√√√ I−1
θ̂

(1, 1)

π̂2
1(1− π̂1)2

−
2I−1

θ̂
(1, 2)

π̂1π̂2(1− π̂1)(1− π̂2)
+

I−1
θ̂

(2, 2)

π̂2
2(1− π̂2)2

,

WL2 = exp

ln δ̂− z1−α/2

√√√√ I−1
θ̂

(1, 1)

π̂2
1(1− π̂1)2

−
2I−1

θ̂
(1, 2)

π̂1π̂2(1− π̂1)(1− π̂2)
+

I−1
θ̂

(2, 2)

π̂2
2(1− π̂2)2

.

The Wald-type CI of δ0 is denoted by CIW2 = [WL2, WU2].

5.3. Score CI

Since the statistic T2
S

d−→ χ2
1, the 100(1− α)% score CI satisfies CIS(m) = {δ0 : T2

S ≤
χ2

1,1−α}; that is,

CIS(m) =

{
δ0 :

(∂l1(θ̃1|m)

∂δ

)2
I−1
θ̃1

(1, 1) ≤ χ2
1,1−α

}
.

For a given confidence level 1− α, the score CI upper (SU) and lower (SL) limits of δ0 can
be obtained by the bisection root-finding algorithm, including steps (i), (ii),(iii)” and (iv),
where:

(iii)” If sign× T2
S ≤ sign× χ2

1,1−α, return to step (ii). Otherwise, set sign = -sign and
step length = 0.1× step length, and then return to step (ii).

The CI lower limit of δ0 can be obtained by replacing sign=-1 in step (i) and sign× T2
S ≥

sign× χ2
1,1−α in step (iii)”.

6. Simulation Studies
6.1. Odds Ratio Test

In this subsection, we investigate the performance of various test statistics for the odds
ratio δ in terms of the behaviors of empirical type I error rates (TIEs) and empirical powers.
10,000 replicates are randomly generated from the null hypothesis H0 or alternative Ha
for each configuration. The empirical TIEs of test T(= T2

L, T2
S , T2

W) at a nominal level α
are computed by dividing the number of times that the null hypothesis is rejected by
10,000 replicates that come from the null hypothesis H0. Following Cochran [28] and
Tang et al. [11], a test at a nominal level 0.05 is said to be liberal if the empirical TIE is
greater than 0.06; conservative if the TIE is less than 0.04; and robust if the TIE is between
0.04 and 0.06.

Under the parameter settings: ρ = 0.4, 0.6, 0.8, π1 = 0.2, 0.4, 0.6 and m , m+1 =
m+2 = 50, 75, 100, and Table 2 provides the empirical TIEs of various tests for H0 : δ0 =
1, 1.5, 2 at a nominal level α = 0.05, respectively. In the table, if the value of the correspond-
ing TIE is less than 0.04, or greater than 0.06, it is highlighted in bold. We observe that
the empirical TIEs of the likelihood ratio and score tests are closer to 0.05. Thus, these
two tests are more robust than the Wald-type test for the specific parameter settings. To
further compare the three test statistics, we randomly choose 1000 parameter settings:
ρ ∈ (0, 1), πi ∈ (0, 1)(i = 1, 2), and m = 50, 100, 200. In Figure 1, a set of boxplots shows
the distribution for the empirical TIEs for tests T2

L , T2
SC, T2

W , respectively. Among these tests,
the score test is the most robust because its TIEs are closer to the pre-specified nominal
level of 0.05, followed by the likelihood ratio test. However, the Wald-type test is liberal
or conservative under certain conditions. Thus, the score test is recommended based on
empirical TIEs.
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Table 2. Empirical TIEs of tests under H0 : δ0 = 1, 1.5, 2.

ρ π1 δ0
m = 50 m = 75 m = 100

T2
L T2

S T2
W T2

L T2
S T2

W T2
L T2

S T2
W

0.2
1.0 0.0548 0.0527 0.0586 0.0513 0.0496 0.0533 0.0551 0.0546 0.0570
1.5 0.0530 0.0514 0.0521 0.0507 0.0492 0.0468 0.0512 0.0494 0.0471
2.0 0.0485 0.0470 0.0408 0.0522 0.0511 0.0422 0.0492 0.0481 0.0386

0.4
1.0 0.0538 0.0524 0.0548 0.0529 0.0521 0.0542 0.0511 0.0501 0.0519

0.4 1.5 0.0484 0.0474 0.0498 0.0509 0.0509 0.0511 0.0504 0.0498 0.0513
2.0 0.0481 0.0474 0.0494 0.0513 0.0502 0.0517 0.0540 0.0526 0.0546

0.6
1.0 0.0543 0.0526 0.0555 0.0517 0.0509 0.0526 0.0498 0.0495 0.0503
1.5 0.0512 0.0502 0.0513 0.0476 0.0471 0.0467 0.0498 0.0493 0.0485
2.0 0.0508 0.0495 0.0464 0.0505 0.0502 0.0437 0.0497 0.0496 0.0440

0.2
1.0 0.0540 0.0522 0.0594 0.0509 0.0492 0.0544 0.0522 0.0508 0.0543
1.5 0.0532 0.0520 0.0525 0.0504 0.0493 0.0472 0.0509 0.0504 0.0481
2.0 0.0487 0.0462 0.0404 0.0509 0.0491 0.0408 0.0514 0.0501 0.0405

0.4
1.0 0.0519 0.0507 0.0540 0.0500 0.0492 0.0513 0.0502 0.0495 0.0512

0.6 1.5 0.0499 0.0485 0.0515 0.0514 0.0511 0.0522 0.0526 0.0519 0.0529
2.0 0.0496 0.0483 0.0518 0.0521 0.0511 0.0515 0.0508 0.0516 0.0511

0.6
1.0 0.0525 0.0510 0.0543 0.0517 0.0512 0.0530 0.0503 0.0499 0.0516
1.5 0.0484 0.0469 0.0489 0.0525 0.0515 0.0513 0.0480 0.0475 0.0472
2.0 0.0524 0.0500 0.0468 0.0498 0.0496 0.0444 0.0512 0.0511 0.0453

0.2
1.0 0.0533 0.0505 0.0607 0.0533 0.0518 0.0572 0.0522 0.0508 0.0544
1.5 0.0552 0.0530 0.0544 0.0527 0.0515 0.0511 0.0493 0.0485 0.0467
2.0 0.0496 0.0477 0.0422 0.0520 0.0507 0.0448 0.0544 0.0536 0.0442

0.4
1.0 0.0500 0.0493 0.0522 0.0496 0.0491 0.0508 0.0498 0.0495 0.0509

0.8 1.5 0.0527 0.0519 0.0533 0.0509 0.0505 0.0523 0.0557 0.0550 0.0556
2.0 0.0532 0.0523 0.0564 0.0526 0.0540 0.0537 0.0514 0.0525 0.0522

0.6
1.0 0.0528 0.0517 0.0557 0.0526 0.0520 0.0536 0.0524 0.0522 0.0531
1.5 0.0504 0.0489 0.0518 0.0520 0.0509 0.0520 0.0534 0.0525 0.0533
2.0 0.0532 0.0514 0.0511 0.0511 0.0522 0.0445 0.0514 0.0521 0.0460
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Figure 1. Boxplots of empirical TIEs for 1000 parameter settings.

We evaluate the empirical powers of the three proposed test statistics by the percentage
of rejecting H0 with 10,000 replicates that come from the alternative hypothesis Ha. Under
H0 : δ = 1 vs. Ha : δa = 1.2, 1.5, 2 at α = 0.05, we still use the parameter settings ρ =
0.4, 0.6, 0.8, π1 = 0.2, 0.4, 0.6 and m = 50, 75, 100. Table 3 displays the empirical powers
of T2

L, T2
S and T2

W under the given settings. The power values of the three tests increase
when the sample size m or δa increases. Given ρ, π1, δa and m, if the power is the largest
in the table, it is highlighted in bold. Compared with these tests, the largest powers are
mostly found in the score test, the Wald-type test, and the likelihood ratio test. On the
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other hand, we chose some new settings of parameters to illustrate the powers of the
above tests: ρ = 0.6 and π1 = 0.3, 0.4, 0.5 for m = 20, 40, ..., 300 under H0 : δ0 = 1 and
Ha : δa = 1.2, 1.5, 2. Figure 2 shows the trajectories of empirical powers for our proposed
tests T2

L , T2
SC and T2

W . As expected, the empirical powers of all tests are larger as the sample
size m increases. Moreover, we observed that the powers of the likelihood ratio and the
score tests are close, but the Wald-type test has lower power under specific conditions.

Overall, the score test is more robust with a higher power than the likelihood ratio
and the Wald-type tests. Therefore, the score statistic is recommended for testing whether
the odds ratio δ of response rates is equal to a specific value δ0.

Table 3. Empirical powers of tests under H0 : δ0 = 1 vs. Ha : δa = 1.2, 1.5, 2.

ρ π1 δa
m = 50 m = 75 m = 100

T2
L T2

S T2
W T2

L T2
S T2

W T2
L T2

S T2
W

0.2
1.2 0.0749 0.0741 0.0768 0.0837 0.0831 0.0834 0.1056 0.1057 0.1036
1.5 0.1702 0.1720 0.1522 0.2399 0.2439 0.2141 0.2846 0.2886 0.2591
2.0 0.3854 0.3941 0.2991 0.5362 0.5458 0.4463 0.6566 0.6654 0.5696

0.4
1.2 0.0859 0.0851 0.0862 0.0983 0.0979 0.0981 0.1205 0.1203 0.1199

0.4 1.5 0.2147 0.2158 0.2101 0.3190 0.3212 0.3125 0.3920 0.3939 0.3849
2.0 0.5164 0.5216 0.4964 0.6908 0.6954 0.6742 0.8183 0.8214 0.8067

0.6
1.2 0.0855 0.0850 0.0859 0.1007 0.1007 0.1000 0.1226 0.1223 0.1220
1.5 0.2188 0.2201 0.2135 0.3152 0.3169 0.3084 0.3858 0.3879 0.3788
2.0 0.5193 0.5242 0.4984 0.6957 0.6999 0.6809 0.8145 0.8173 0.8042

0.2
1.2 0.0718 0.0707 0.0748 0.0770 0.0765 0.0777 0.0967 0.0962 0.0960
1.5 0.1552 0.1575 0.1401 0.2133 0.2168 0.1923 0.2566 0.2606 0.2302
2.0 0.3449 0.3544 0.2607 0.4828 0.4932 0.3942 0.6006 0.6100 0.5140

0.4
1.2 0.0845 0.0836 0.0850 0.0915 0.0911 0.0915 0.1152 0.1152 0.1154

0.6 1.5 0.1976 0.1988 0.1930 0.2826 0.2844 0.2769 0.3503 0.3516 0.3424
2.0 0.4656 0.4714 0.4457 0.6384 0.6430 0.6185 0.7607 0.7643 0.7456

0.6
1.2 0.0854 0.0842 0.0866 0.0936 0.0929 0.0935 0.1164 0.1162 0.1160
1.5 0.1908 0.1913 0.1863 0.2825 0.2838 0.2760 0.3495 0.3513 0.3433
2.0 0.4654 0.4729 0.4452 0.6350 0.6425 0.6163 0.7626 0.7675 0.7493

0.2
1.2 0.0695 0.0679 0.0731 0.0751 0.0747 0.0768 0.0926 0.0925 0.0932
1.5 0.1403 0.1427 0.1276 0.1941 0.1974 0.1724 0.2305 0.2342 0.2097
2.0 0.3112 0.3239 0.2377 0.4344 0.4457 0.3500 0.5510 0.5605 0.4567

0.4
1.2 0.0771 0.0766 0.0785 0.0859 0.0856 0.0868 0.1025 0.1023 0.1024

0.8 1.5 0.1816 0.1827 0.1786 0.2417 0.2440 0.2372 0.3186 0.3210 0.3136
2.0 0.4328 0.4378 0.4141 0.5952 0.6012 0.5769 0.7183 0.7242 0.7031

0.6
1.2 0.0792 0.0783 0.0809 0.0887 0.0886 0.0894 0.1052 0.1052 0.1054
1.5 0.1838 0.1849 0.1808 0.2459 0.2478 0.2399 0.3180 0.3204 0.3117
2.0 0.4282 0.4350 0.4070 0.5946 0.6019 0.5750 0.7178 0.7256 0.7004
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Figure 2. Curves of empirical powers under H0 : δ0 = 1.

6.2. CI Construction

In this subsection, we compared the four CI methods through the empirical mean
coverage probability (MCP) and empirical mean interval width (MIW). Under H0, the MCP
is defined as the proportions of samples that true odds ratio δ falls within the constructed
CI, and the MIW is computed by dividing the sum of all widths by the total number of
replicates. For the observed data m, let δU(m) and δL(m) be the estimators of the CI lower
limit and upper limit of δ0, respectively. The formula of MCP and MIW is expressed by

MCP =
1
N

N

∑
k=1

I{δ0 ∈ [δL(m(k), δU(m(k))]},

MIW =
1
N

N

∑
k=1

[δU(m(k))− δL(m(k)],

where m(k) is the kth sample in the bilateral design, and I(·) is an indicator function. Here,
the number of replicates N = 10, 000.

We consider the exact sample sizes and parameter setups for calculating the empirical
TIE and power. Ten thousand replicates are generated from a trinomial distribution for
each configuration, upon which MCP and MIW are computed. We list the performance of
four CI methods in Table 4. In the table, if the value of MCPs is less than 0.94, or greater
than 0.96, then it is bold. We observed that the MCPs of CIL, CIS, and CIW2 are close to
the confidence level of 0.95. Some MCPs of the CIW1 method are slightly conservative, i.e.,
slightly above 0.95. On the other hand, the CIS method has the shortest MIWs, followed by
CIL, then CIW2 and CIW2 . Although the CIW1 method is slightly more conservative than
CIW2 , it has shorter MIWs than CIW2 . The result reveals that the bisection root-finding
algorithm is more effective than the asymptotic normality method in constructing the
interval.

In conclusion, the CIS method performs better with the satisfactory MCPs and the
shortest MIWs among the proposed methods. Thus, the CI method based on the score
statistic is recommended to construct the interval of odds ratio δ0.
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Table 4. MCPs and MIWs of CI methods.

ρ π1 δ0 m
MCPs MIWs

CIL CIS CIW1 CIW2 CIL CIS CIW1 CIW2

0.2

1.0
50 0.9493 0.9523 0.9830 0.9452 2.0316 1.9674 2.1187 5.5245
75 0.9453 0.9466 0.9704 0.9423 1.5344 1.5018 1.5711 2.9333

100 0.9442 0.9448 0.9649 0.9425 1.2713 1.2512 1.2923 1.7555

1.5
50 0.9475 0.9492 0.9745 0.9492 2.9290 2.8005 3.1746 8.2801
75 0.9449 0.9463 0.9654 0.9479 2.2036 2.1224 2.3304 4.8852

100 0.9460 0.9467 0.9624 0.9488 1.8224 1.7568 1.9075 2.9070

2.0
50 0.9472 0.9501 0.9726 0.9555 3.8250 3.5607 4.3147 10.725
75 0.9456 0.9464 0.9680 0.9539 2.8792 2.6584 3.1555 6.7246

100 0.9453 0.9460 0.9645 0.9566 2.3808 2.1818 2.5795 4.1505

1.0
50 0.9485 0.9496 0.9518 0.9473 1.5394 1.5225 1.5367 1.6188
75 0.9468 0.9474 0.9488 0.9460 1.1985 1.1902 1.1969 1.2290

100 0.9458 0.9469 0.9479 0.9451 1.0129 1.0080 1.0119 1.0303

1.5
50 0.9481 0.9493 0.9499 0.9472 2.3032 2.2362 2.3022 2.4288

0.4 0.4 75 0.9448 0.9458 0.9462 0.9451 1.7860 1.7360 1.7889 1.8407
100 0.9473 0.9479 0.9489 0.9469 1.5066 1.4641 1.5100 1.5401

2.0
50 0.9478 0.9487 0.9498 0.9473 3.1016 2.9648 3.1195 3.3004
75 0.9449 0.9456 0.9458 0.9452 2.3874 2.2899 2.4076 2.4824

100 0.9447 0.9442 0.9451 0.9442 2.0080 1.9323 2.0304 2.0740

0.6

1.0
50 0.9477 0.9503 0.9534 0.9463 1.5410 1.5188 1.5399 1.6211
75 0.9479 0.9485 0.9498 0.9470 1.1945 1.1820 1.1943 1.2265

100 0.9475 0.9479 0.9493 0.9468 1.0104 1.0025 1.0103 1.0287

1.5
50 0.9686 0.9694 0.9779 0.9568 2.3816 2.3061 2.4202 3.0219
75 0.9488 0.9497 0.9541 0.9496 1.8622 1.8107 1.8940 2.0624

100 0.9447 0.9448 0.9505 0.9453 1.5702 1.5296 1.5959 1.6858

2.0
50 0.9522 0.9507 0.9542 0.9504 3.3840 3.3309 3.4267 3.6675
75 0.9488 0.9436 0.9502 0.9470 2.6095 2.5402 2.6397 2.7368

100 0.9508 0.9421 0.9623 0.9421 2.1988 2.1379 2.3058 2.1379

0.2

1.0
50 0.9499 0.9522 0.9897 0.9450 2.2557 2.1620 2.3876 7.2516
75 0.9428 0.9447 0.9747 0.9388 1.6813 1.6380 1.7318 4.0515

100 0.9475 0.9488 0.9693 0.9455 1.3810 1.3539 1.4082 2.2598

1.5
50 0.9505 0.9526 0.9777 0.9519 3.2400 3.0097 3.5806 10.147
75 0.9439 0.9454 0.9684 0.9473 2.4165 2.2439 2.5794 6.4631

100 0.9457 0.9467 0.9653 0.9490 1.9799 1.8306 2.0828 3.8025

2.0
50 0.9473 0.9496 0.9731 0.9550 4.2432 3.6543 4.9050 12.504
75 0.9438 0.9453 0.9681 0.9543 3.1368 2.6729 3.4960 8.4027

100 0.9455 0.9465 0.9660 0.9559 2.5611 2.1940 2.8188 5.3252

1.0
50 0.9484 0.9497 0.9535 0.9471 1.6799 1.6372 1.6812 1.7960
75 0.9465 0.9472 0.9488 0.9438 1.2961 1.2737 1.2967 1.3371

100 0.9454 0.9460 0.9481 0.9446 1.0922 1.0775 1.0926 1.1152

1.5
50 0.9485 0.9499 0.9524 0.9474 2.4973 2.3678 2.5249 2.6951

0.6 0.4 75 0.9463 0.9472 0.9480 0.9452 1.9173 1.8280 1.9388 2.0037
100 0.9471 0.9474 0.9484 0.9468 1.6092 1.5373 1.6314 1.6683

2.0
50 0.9491 0.9499 0.9514 0.9483 3.3828 3.2200 3.4235 3.6697
75 0.9480 0.9477 0.9496 0.9470 2.5817 2.4907 2.6138 2.7080

100 0.9455 0.9446 0.9465 0.9444 2.1741 2.1157 2.1988 2.2527

0.6

1.0
50 0.9521 0.9530 0.9573 0.9500 1.6774 1.6321 1.6835 1.7933
75 0.9471 0.9471 0.9503 0.9465 1.2904 1.2657 1.2941 1.3347

100 0.9494 0.9494 0.9515 0.9483 1.0904 1.0734 1.0936 1.1162

1.5
50 0.9508 0.9500 0.9568 0.9587 2.5422 2.4373 2.5845 3.1324
75 0.9483 0.9488 0.9544 0.9483 2.0101 1.9410 2.0545 2.2830

100 0.9474 0.9477 0.9535 0.9481 1.6926 1.6416 1.7286 1.8467
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Table 4. Cont.

ρ π1 δ0 m
MCPs MIWs

CIL CIS CIW1 CIW2 CIL CIS CIW1 CIW2

2.0
50 0.9498 0.9509 0.9677 0.9435 3.8470 3.6810 4.1480 4.3245
75 0.9462 0.9426 0.9619 0.9534 2.8526 2.7697 3.0117 3.4562

100 0.9552 0.9417 0.9686 0.9579 2.3734 2.3234 2.4872 2.9232

0.2

1.0
50 0.9528 0.9555 0.9922 0.9464 2.5289 2.3713 2.7335 8.7236
75 0.9463 0.9479 0.9783 0.9425 1.8500 1.7662 1.9150 5.3330

100 0.9475 0.9490 0.9715 0.9445 1.5029 1.4441 1.5372 3.0518

1.5
50 0.9501 0.9527 0.9787 0.9490 3.6306 3.1170 4.1349 11.568
75 0.9446 0.9460 0.9705 0.9472 2.6451 2.2278 2.8486 7.9263

100 0.9464 0.9472 0.9660 0.9507 2.1423 1.7948 2.2715 4.9722

2.0
50 0.9491 0.9510 0.9746 0.9551 4.6967 3.5029 5.6867 13.775
75 0.9450 0.9468 0.9689 0.9552 3.3559 2.5244 3.8704 9.9300

100 0.9454 0.9455 0.9674 0.9549 2.6568 2.0836 3.0760 6.6606

1.0
50 0.9500 0.9507 0.9560 0.9478 1.8165 1.7262 1.8307 2.0030
75 0.9453 0.9455 0.9488 0.9434 1.3881 1.3349 1.3975 1.4489

100 0.9473 0.9475 0.9492 0.9462 1.1663 1.1254 1.1726 1.2006

1.5
50 0.9467 0.9485 0.9510 0.9454 2.6973 2.5073 2.7506 2.9965

0.8 0.4 75 0.9471 0.9475 0.9493 0.9457 2.0383 1.9086 2.0880 2.1704
100 0.9447 0.9453 0.9465 0.9445 1.7059 1.6064 1.7512 1.7970

2.0
50 0.9510 0.9520 0.9543 0.9487 3.6860 3.4993 3.7225 4.0628
75 0.9460 0.9441 0.9469 0.9449 2.7847 2.6841 2.8147 2.9357

100 0.9457 0.9435 0.9469 0.9456 2.3368 2.2760 2.3590 2.4272

0.6

1.0
50 0.9501 0.9512 0.9564 0.9462 1.8097 1.7452 1.8189 1.9620
75 0.9483 0.9486 0.9522 0.9466 1.3874 1.3450 1.3960 1.4484

100 0.9468 0.9472 0.9498 0.9461 1.1667 1.1337 1.1736 1.2018
1.5 50 0.9481 0.9494 0.9614 0.9624 2.9340 2.8031 3.0144 3.3773

75 0.9471 0.9476 0.9546 0.9512 2.1868 2.1098 2.2356 2.5099
100 0.9490 0.9498 0.9558 0.9501 1.8275 1.7677 1.8656 2.0184

2.0
50 0.9478 0.9495 0.9684 0.9623 4.2564 4.0509 4.6223 3.3772
75 0.9483 0.9404 0.9639 0.9512 3.1063 3.0129 3.2850 2.5099

100 0.9483 0.9400 0.9612 0.9501 2.5767 2.5198 2.7035 2.0184

7. An Example

Mandel et al. (1982) conducted a double-blinded randomized clinical trial at two sites
comparing cefaclor and amoxicillin for the treatment of acute otitis media with effusion
(OME) in 214 children (293 ears). Each child underwent bilateral tympanocentesis and
was randomly assigned to receive a 14-day course of either cefaclor or amoxicillin. Table 5
shows the OME status at 14 days in 75 children with bilateral OME. In this section, the
real example was used to illustrate the performance of our proposed test statistics and
CI methods (Table 5). According to Table 5, we have m01 = 14, m11 = 9, m21 = 21,
m02 = 15, m12 = 3, m22 = 13 and m+1 = 44, m+2 = 31. At a nominal level α = 0.05, we
have χ2

1,1−α = χ2
1,0.95 = 3.8415 and z1−α/2 = z0.975 = 1.96.

Table 5. OME status after 14-day course of antibiotic treatment.

OME Status
Treatment

Total
Cefaclor Amoxicillin

None cured 14 15 29
Unilateral cured 9 3 12
Bilateral cured 21 13 34

Total 44 31 75

We first tested whether the two cured rates of cefaclor and amoxicillin are clinically
equal; that is, H0 : δ = 1 vs. Ha : δ 6= 1. Under the alternative hypothesis Ha, the
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unconstrained MLEs of ρ and πi(i = 1, 2) are ρ̂ = 0.6747, π̂1 = 0.5767 and π̂2 = 0.4660.
The constrained MLEs under null hypothesis H0 are ρ̃ = 0.6786, π̃1 = π̃2 = 0.5333. The
result reveals that there exists a correlation between the two ears of a patient. Under H0, the
values of the three proposed test statistics are T2

L = 1.0505, T2
S = 1.0305 and T2

W = 1.0717,
and the corresponding p-value p = 0.3054, 0.3100, 0.3006. Since T2

L, T2
S , T2

W < χ2
1,0.95 and

p > 0.05, we failed to reject the null hypothesis H0 at the significance level α = 0.05. Thus,
there are no significant differences between cefaclor and amoxicillin.

Applying the proposed CI procedures, we then obtained four pairs of confidence
limits:

[LL, LU] = [0.2702, 1.5026], [WL1, WU1] = [0.2739, 1.4974],

[SL, SU] = [0.2727, 1.5087], [WL2, WU2] = [0.2638, 1.4939].

The confidence limits contain 1. There are no significant differences between the two
antibiotic treatments based on our proposed tests and CI methods. Through the example,
we note that the same conclusions can explain with test statistics and CI methods. In
addition, the CI methods contain more information than the hypothesis test.

8. Conclusions

In this paper, we proposed three test statistics for testing the odds ratio of two pro-
portions and constructed four pairs of CIs for the ratio. Under an alternative hypothesis,
we obtain the unconstrained MLEs by an iteration procedure through two steps. The con-
strained MLEs under the null hypothesis was given based on the Fisher scoring algorithm.
Given the MLEs, the likelihood ratio test, the score test, and the Wald-type log-linear test
were proposed, which asymptotically followed a chi-square distribution with one degree
of freedom. Four CIs of the odds ratio of two proportions were based on inverting the
three test statistics, including CI based on a likelihood ratio statistic, CI based on a score
test, and two CI methods based on the Wald-type test. The bisection root-finding algorithm
was used to search for the profile likelihood, Wald-type, score CI upper and lower limits of
odds ratios. The asymptotic normality method obtained other CI upper and lower limits of
the Wald-type case. We conducted simulation studies to compare the proposed tests about
the empirical type I error, power, and CI methods in terms of the MCPs and MIEs. The
results revealed that the score test performed better than other statistics, and the CI based
on score statistic is recommended. A real example was provided to illustrate our results.

One of the possible future works is to extend these test statistics and CI methods to
general g(g ≥ 2) cases for bilateral correlated data.
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Appendix A. Derivation and Information Matrix

Appendix A.1. Differential Equations and Information Matrix I

The first-order differential equations of l1 with respect to π1 and ρ yield
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∂l1
∂π1

=
m01(2π1(1− ρ) + ρ− 2)
(1− π1)(π1(ρ− 1) + 1)

+
m11(2π1 − 1)
π1(π1 − 1)

+
m21(2π1(1− ρ) + ρ)

π1(π1(1− ρ) + ρ)

+
m02δ(π1ρ(1 + δ)− ρ− 2π1 + 2)

(π1 − 1)(π1(δ− 1) + 1)(π1(δρ− 1) + 1)
+

m12(π1(1 + δ)− 1)
π1(π1 − 1)(π1(δ− 1) + 1))

+
m22(ρ(1− π1) + δπ1(2− ρ))

π1(ρ(1− π1) + δπ1)(π1(δ− 1) + 1)
,

∂l1
∂ρ

=
2

∑
i=1

m1i
ρ− 1

+
m01π1

π1(ρ− 1) + 1
− m22(π1 − 1)

ρ(1− π1) + δπ1
− m21(π1 − 1)

π1 + ρ(1− π1)
+

δm02π1

π1(δρ− 1) + 1
.

Several second-order differential equations are

∂2l1
∂π2

1
= −

m01((2π2
1 + 1)(ρ− 1)2 − 2π1(ρ− 1)(ρ− 2) + 1)

(π1 − 1)2(π1(ρ− 1) + 1)2 − m11(2π1(π1 − 1) + 1)
π2

1(π1 − 1)2

−
m21(2π2

1(ρ− 1)2 − 2π1ρ(ρ− 1) + ρ2)

π2
1(π1(1− ρ) + ρ)2

+
m12(2π3

1(1− δ2) + π2
1((δ + 1)2 − 6)− 2π1(δ− 2)− 1)

π2
1(π1 − 1)2(π1(δ− 1) + 1)2

−m02

[ 2δ(3δ + 2π1 + ρ− 2δ(π1 + ρ) + π1ρ(δ2 − 1)− 2)
(π1 − 1)(π1(δ− 1) + 1)2(π1(δρ− 1) + 1)

+
δ2(π1ρ(1 + δ)− ρ− 2π1 + 2)

(π1 − 1)2(π1(δ− 1) + 1)2(π1(δρ− 1) + 1)

+
δ2(ρ− 1)(π1ρ(1 + δ)− ρ− 2π1 + 2)

(π1 − 1)(π1(δ− 1) + 1)2(π1(δρ− 1) + 1)2

]
+ m22

[ 2(δ + ρ(1− π1) + 2δ(π1 − ρ)(1− δ))

π1(ρ(1− π1) + δπ1)(π1(δ− 1) + 1)2

− (ρ(1− π1) + δπ1(2− ρ))2

π2
1(ρ(1− π1) + δπ1)2(π1(δ− 1) + 1)2

]
,

∂2l1
∂π1∂ρ

=
m01

(π1(ρ− 1) + 1)2 −
m21

(π1 + ρ(1− π1))2 +
m02δ

(δπ1ρ− π1 + 1)2 −
m22δ

(ρ + δπ1 − π1ρ)2 ,

∂2l1
∂ρ2 = −

2

∑
i=1

m1i

(ρ− 1)2 −
m01π2

1
(π1(ρ− 1) + 1)2 −

m21(π1 − 1)2

(π1 + ρ(1− π1))2 −
m02δ2π2

1
(π1(δρ− 1) + 1)2 −

m22(π1 − 1)2

(ρ(1− π1) + δπ1)2 .

The elements I11, I12, I22 of Fisher information I are given by

I11 = −E
( ∂2l1

∂π2
1

)
= m+1

{ p01((2π2
1 + 1)(ρ− 1)2 − 2π1(ρ− 1)(ρ− 2) + 1)

(π1 − 1)2(π1(ρ− 1) + 1)2 +
p11(2π1(π1 − 1) + 1)

π2
1(π1 − 1)2

+
p21(2π2

1(ρ− 1)2 − 2π1ρ(ρ− 1) + ρ2)

π2
1(π1(1− ρ) + ρ)2

}
−m+2

{ p12(2π3
1(1− δ2) + π2

1((δ + 1)2 − 6)− 2π1(δ− 2)− 1)
π2

1(π1 − 1)2(π1(δ− 1) + 1)2

−p02

[2δ(3δ + 2π1 + ρ− 2δ(π1 + ρ) + π1ρ(δ2 − 1)− 2)
(π1 − 1)(π1(δ− 1) + 1)2(π1(δρ− 1) + 1)

+
δ2(π1ρ(1 + δ)− ρ− 2π1 + 2)

(π1 − 1)2(π1(δ− 1) + 1)2(π1(δρ− 1) + 1)

+
δ2(ρ− 1)(π1ρ(1 + δ)− ρ− 2π1 + 2)

(π1 − 1)(π1(δ− 1) + 1)2(π1(δρ− 1) + 1)2

]
+ p22

[2(δ + ρ(1− π1) + 2δ(π1 − ρ)(1− δ))

π1(ρ(1− π1) + δπ1)(π1(δ− 1) + 1)2

− (ρ(1− π1) + δπ1(2− ρ))2

π2
1(ρ(1− π1) + δπ1)2(π1(δ− 1) + 1)2

]}
,

I12 = −E
( ∂2l1

∂π1∂ρ

)
= − m+1 p01

(π1(ρ− 1) + 1)2 +
m+1 p21

(π1 + ρ(1− π1))2 −
m+2 p02δ

(δπ1ρ− π1 + 1)2

+
m+2 p22δ

(ρ + δπ1 − π1ρ)2 ,

I22 = −E
( ∂2l1

∂ρ2

)
=

2

∑
i=1

m+i p1i
(ρ− 1)2 +

m+1 p01π2
1

(π1(ρ− 1) + 1)2 +
m+1 p21(π1 − 1)2

(π1 + ρ(1− π1))2

+
m+2 p02δ2π2

1
(π1(δρ− 1) + 1)2 +

m+2 p22(π1 − 1)2

(ρ(1− π1) + δπ1)2 ,

where pli are defined in (2) for l = 0, 1, 2 and i = 1, 2.
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Appendix A.2. Differential Equations and Information Matrix Iθ

The second-order differential equations are

∂2l
∂π2

i
= −

m0i((2π2
i + 1)(ρ− 1)2 − 2πi(ρ− 1)(ρ− 2) + 1)

(πi − 1)2(πi(ρ− 1) + 1)2 − m1i(2πi(πi − 1) + 1)
π2

i (πi − 1)2

−
m2i(2π2

i (ρ− 1)2 − 2πiρ(ρ− 1) + ρ2)

π2
i (πi + ρ(1− πi))2

, i = 1, 2,

∂2l
∂π1∂π2

=
∂2l

∂π2∂π1
= 0,

∂2l
∂πi∂ρ

=
m0i(π

2
i (ρ− 1)2 + ρ2 + 2πiρ(1− πi))−m2i(π

2
i (ρ− 1)2 + 2πi(ρ− 1) + 1)

(πi(ρ− 1)2(1− πi) + ρ)2

∂2l
∂ρ2 = −

2

∑
i=1

[ m1i
(ρ− 1)2 +

m0iπ
2
i

(πi(ρ− 1) + 1)2 +
m2i(πi − 1)2

(πi + ρ(1− πi))2

]
.

Through the above equations, all (i, j)th elements Iθ(i, j) of Iθ can be obtained by

Iθ(i, i) = −E
( ∂2l

∂π2
i

)
=

m+i p0i((2π2
i + 1)(ρ− 1)2 − 2πi(ρ− 1)(ρ− 2) + 1)
(πi − 1)2(πi(ρ− 1) + 1)2

+
m+i p1i(2πi(πi − 1) + 1)

π2
i (πi − 1)2

+
m+i p2i(2π2

i (ρ− 1)2 − 2πiρ(ρ− 1) + ρ2)

π2
i (πi + ρ(1− πi))2

, i = 1, 2,

Iθ(1, 2) = Iθ(2, 1) = −E
( ∂2l

∂π1∂π2

)
= 0,

Iθ(i, 3) = Iθ(3, i) = −E
( ∂2l

∂πi∂ρ

)
= −

m+i p0i(π
2
i (ρ− 1)2 + ρ2 + 2πiρ(1− πi))−m+i p2i(π

2
i (ρ− 1)2 + 2πi(ρ− 1) + 1)

(πi(ρ− 1)2(1− πi) + ρ)2 ,

Iθ(3, 3) = −E
( ∂2l

∂ρ2

)
=

2

∑
i=1

[ m+i p1i
(ρ− 1)2 +

m+i p0iπ
2
i

(πi(ρ− 1) + 1)2 +
m+i p2i(πi − 1)2

(πi + ρ(1− πi))2

]
,

where pli is defined in (2) for l = 0, 1, 2 and i = 1, 2.

Appendix A.3. Information Matrix Iθ1

Let A = (δρ(δ− ρ)− δ + ρ)π2
1 + (δρ2 − 2ρ + δ)π1 + ρ and B = π1(δ− 1) + 1. Similar

to those of A.1 and A.2, we have



Axioms 2022, 11, 502 18 of 19

Iθ1 (1, 1) =
1

δAB2 [m+2π1(π1 − 1)(−ρ(π1 − 1)2(ρ− 2)− 2δπ1(π1 − 1)(ρ2 − ρ + 1)− δ2π2
1ρ(ρ− 2))],

Iθ1 (1, 2) = Iθ1 (2, 1) = − 1
AB2 [m+2(−ρ(π1 − 1)2(ρ− 2)− 2δπ1(π1 − 1)(ρ2 − ρ + 1)− δ2π2

1ρ(ρ− 2))],

Iθ1 (1, 3) = Iθ1 (3, 1) =
1

(A− ρ)B
[m+2π1ρ(π1 − 1)(π1(1 + δ)− 1)],

Iθ1 (2, 2) =
m+1((4ρ + 1)(2ρ + 1)π1(1− π1)− (ρ− 1)2 + 1)

π1(π1 − 1)(π1(ρ− 1)2(1− π1) + ρ)

− 1
π1(π1 − 1)AB2 [δm+2(ρ(π1 − 1)2(ρ− 2) + 2δπ1(π1 − 1)(ρ− 1)2 + δ2π2

1ρ(ρ− 2))],

Iθ1 (2, 3) = Iθ1 (3, 2) = − m+1ρ(2π1 − 1)
((ρ− 1)2π1(1− π1) + ρ)

− 1
AB

[m+2δρ(π1 + δπ1 − 1)],

Iθ1 (3, 3) = − m+1π1(π1 − 1)(ρ + 1)
(ρ− 1)(ρ + π1(ρ− 1)2(1− π1))

− m+2δπ1(π1 − 1)(ρ + 1)
(ρ− 1)A

.
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