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Abstract: The multi-laminated controlled release system has been widely used in the modern phar-
maceutical industry because of its simple structure and safety, which can control the drug release
behavior by regulating its internal parameters. To achieve three desired drug release behaviors of
constant rate, linear reduction, and nonlinearity, which can be controlled by the optimization of the
controllable parameters in the controlled release system, such as initial concentration and diffusion
coefficient, a new regularization cuckoo search algorithm based on the cuckoo search algorithm
and Tikhonov regularization method is proposed. The numerical examples confirm the stability,
effectiveness, and feasibility of the proposed method. The effect of the number of model layers on the
optimization results is also analyzed.

Keywords: multi-laminated drug-controlled release system; regularization cuckoo search algorithm;
multi-parameter optimization

MSC: 65M32; 35Q93; 68W50

1. Introduction

A controlled release system can control the concentration of the target substance in the
release environment by regulating the release rate of the substance into the environment.
This technology was firstly applied in agriculture for pesticides, fertilizers, herbicides, and
other substances that require controlled release [1]. With the development of controlled
release technology in recent years, it has been widely used in many fields such as drug
delivery, hygiene and disinfection, mold prevention, and odor control because of its safe
and reliable properties [2,3]. Especially in the field of drug delivery, controlled release
technology has been developed rapidly and has a broad development prospect. It has
been found that the drug release behavior is generally characterized by a sudden release
followed by a first-order kinetic release. The sudden release refers to the high release rate
at the beginning of the release, and then the release rate becomes rapidly decreased due
to the decrease of drug concentration in the transport matrix. Sudden release behavior
will bring serious drug side effects. It is also found that the drug release rate can be
controlled by optimizing the initial concentration, diffusion coefficient, and the number
of model layers of multi-laminated drug-controlled release system so as to overcome the
hazards and drug wastage caused by the sudden release behavior and achieve different
drug release behaviors.

At present, for multi-laminated drug-controlled release systems, most investigations
have been conducted on the mechanism of the controlled release system, while relatively
little work has been done to study the drug release behavior. In 1998, Lu et al. [4] de-
signed a multi-laminated system for drug release and obtained an inhomogeneous initial
drug concentration distribution to achieve the desired release rate; in 2001, Georgiadis
and Kostoglou [5] proposed a framework for controlled parameter optimization using an
analytical solution-based optimization method and a dynamic optimization method to
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optimize the design of multiple parameters to make the constant rate release behavior as
expected; in 2010, Nauman et al. [6] optimized the initial drug concentration distribution
of the controlled release system by a stochastic search method to achieve constant release;
in 2014, Huang and Wang et al. [7] optimized the selection of two parameters, diffusion
coefficient and initial drug concentration, in a spherical controlled release system using
a hybrid Newton–Tikhonov method; in 2020, Zhang [8] constructed an inverse problem
solution framework for parameter optimization of multi-laminated drug controlled release
systems and proposed an improved Tikhonov regularization method for the optimization
of initial concentration distribution, which yielded better results. The optimization of
controlled release parameters based on the inverse problem solution framework not only
can give a complete mathematical proof but also can use more efficient inversion methods,
which is an effective way to solve the optimal design of parameters of the multi-laminated
drug-controlled release system. However, the inherent local extremum problem and ill-
posedness of the inverse problem still need to be solved. The regularization technique [9] is
an effective method for solving the ill-posedness of the inverse problem. With the contin-
uous efforts of some scholars, different improved regularization methods with different
characteristics have emerged [10]. We note that the corresponding objective functions of
many of the inverse problems encountered in engineering have a very complicated form or
their analytical expression may be unknown. Recently, intelligence optimization algorithms
have been gradually applied to the numerical solution of inverse problems for their better
global search performance, universal applicability, and no requirement of the knowledge of
the gradient of the objective functions [11–14]. Among them, the cuckoo search algorithm
proposed in 2009 by Yang [15] is an efficient one, which is based on the parasitic brooding
behavior of cuckoos and enhances the search efficiency through the Lévy flight of foraging
and migrating organisms in nature. It has been successfully applied to various fields of
science and engineering [16,17] due to its theoretical simplicity, few model parameters, and
fast search speed.

In this paper, based on the inverse problem solution framework for parameter opti-
mization of multi-laminated drug-controlled release systems, a new regularization cuckoo
search algorithm is proposed by the combination of the cuckoo algorithm with the Tikhonov
regularization technique, and is applied to solve the optimization problem of initial drug
concentration and diffusion coefficient simultaneously. We focus on achieving three desired
release behaviors of constant rate, linear reduction, and nonlinearity approximately by
adjusting the initial drug concentration and diffusion coefficient simultaneously. As far as
we know, there have been no reports on this issue.

In the remainder of the paper, it is organized as follows. We describe the mathematical
model for the multi-laminated drug-controlled release system and the corresponding
inverse problem solution scheme for the optimization of drug controlled release in Section 2.
In Section 3, a regularization cuckoo search algorithm is described in detail. This is followed
by numerical simulation in Section 4. Lastly, the conclusion is indicated in Section 5.

2. Mathematical Model
2.1. Multi-Laminated Drug Diffusion System

Figure 1 shows a multi-laminated drug-controlled release device, which has N layers.
The device has a thickness L and initial drug concentration V(X). It makes contact with the
environment through the rightmost layer and is sealed at the other side by an impermeable
layer. It is assumed that the device is not significantly swelling and eroding during drug
release. Here, Ci (i = 1, 2, · · · , N) are the drug concentrations of each layer, respectively.
The present analysis focuses only on the case of low drug concentration.

According to Fick’s law, the diffusion process of the drug in a system can be described
by the following diffusion equation

∂C
∂τ

=
∂

∂X
(D(X)

∂C
∂X

). (1)
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Figure 1. Drug release from a multi-laminated drug-controlled release device.

Boundary conditions

∂C
∂X

∣∣∣∣
X=0

= 0, C(τ, L) = 0, τ > 0 (2)

Initial conditions
C(0, X) = V(X), τ = 0, 0 < X < L. (3)

The diffusion fluxes:

J(τ, L) = −D(L)
∂C
∂X

∣∣∣∣
X=L

, τ > 0 (4)

where C is the concentration distribution of the drug, τ is the release time, X is the position
in the drug diffusion, D(X) is the diffusion coefficient with spatial distribution, V(X) is
the initial drug concentration of the system, and the thickness of the whole system is L.

The following dimensionless treatment is taken to simplify the computation process

c = C/C0, x = X/L, t = D0τ/L2, j = JL/D0C0, D(x) = D(X)/D0,

where C0 is the reference concentration and D0 is the reference factor.
Thus, the mathematical model for the controlled release system becomes

∂c
∂t

= D(x)
∂2c
∂x2 + D′(x)

∂c
∂x

(5)

Boundary conditions

∂c
∂x

∣∣∣∣
x=0

= 0, c(t, 1) = 0 t > 0 (6)

Initial conditions
c(0, x) = v(x), t = 0, 0 < x < 1 (7)

The diffusion fluxes

j(t, 1) = − ∂c
∂x

∣∣∣∣
x=1

, t > 0 (8)

2.2. Inverse Problem Solution Framework

If the diffusion coefficients and the initial conditions are known, the Equations (5)–(7)
are called the forward problem, which can be solved with the compact finite difference
scheme [18] to obtain the drug concentration. For the case that the diffusion coefficients
and the initial conditions are unknown partially, the Equations (5)–(8) are regarded as the
inverse problem of parameter identification.

For example, if the drug diffusion coefficient D(x) is the parameter to be determined,
the process of parameter identification can be implemented by the following minimization
process of the objective function:

Min‖A(D(x))− j(t, 1)‖ (9)
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where A denotes the forward operator represented by the Equations (5)–(7), and j(t, 1) is
the measurable diffusion flux, called the additional condition. Since there is no analyt-
ical solution for the forward problem, the first-order difference is used to approximate
Equation (8)

j(t, 1) = −
ct

N − ct
N−1

h
(10)

where h is the step size of the spatial discretization, N is the number of spatially discretiza-
tion nodes, ct

N is the drug concentration at x = 1, and ct
N−1 is the drug concentration at

x = (N − 1)h. For the above objective function minimization problem, we can use the
regularization cuckoo search algorithm to solve it.

3. Regularization Cuckoo Search Algorithm

The regularization technique is an effective method for solving the ill-posed problem.
In this paper, a regularization cuckoo search algorithm, as a combination of the Tikhonov
regularization technique and the cuckoo search algorithm, is used to optimize the initial
drug concentration and the diffusion coefficient simultaneously. The solution process is as
follows.

Step 1 Take the Tikhonov generalized function as the new objective function (still
using the diffusion coefficient identification as an example)

Min‖A(D(x))− j(t, 1)‖+ α‖D(x)‖

where α > 0 is the regularization parameter, which can be obtained from experience.
Step 2 Initialize the position Si = (x1, x2, x3, · · · xd)

T(i = 1, 2, 3, · · · n) of n bird nests,
which are generally generated by random method. d represents the dimension of the nests.
The function value of the current objective function is calculated, which is compared with
the function value generated by each nest. The nest position that minimizes the objective
function is selected to enter the subsequent iteration.

Step 3 A new bird’s nest is obtained by using the following Equations (11) and (12).
The objective function value is calculated based on the new nest and compared with the
function value generated in Step 2. The solution that makes the objective function smaller
is selected for the next iteration.

Step 4 The probability value of discarding the current nest r ∈ (0, 1) is randomly
generated, which is compared with the fixed probability pa. When r > pa, the update
of the nest is accepted, and x(t+1)

i is retained. The current global optimal position pb∗t is
obtained by comparing the current objective function value with the previous optimal
objective function value.

Step 5 Determine whether pb∗t satisfies the iterative termination condition. Generally,
it means that a certain number of iterations has been reached or the current optimal solution
makes the objective function value satisfy the requirement. If the requirements are satisfied,
the current one pb∗t is treated as the global optimal solution gb. Otherwise return to Step 3.

The cuckoo search algorithm updates the path and location in the following way

x(t+1)
i = x(t)i + γL(β), i = 1, 2, 3 · · · , n (11)

where x(t)i denotes the i-th dimensional value of the solution at the t-th iteration, γ denotes
the control step parameter, generally taken as γ = 1, L(β) denotes the non-isotropic random
search path obeying Lévy flight.

L(β) = 0.01× u
|v|1/β

×
(

x(t)j − x(t)i

)
, 0 < β ≤ 2 (12)
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where × denotes the dot product, u, v obey the normal distribution, u ∼ N
(
0, δ2

u
)
, and

v ∼ N
(
0, δ2

v
)

with  δu =
{

Γ(1+β) sin(πβ/2)
Γ[(1+β)/2]×2(β−1)/2β

}1/β

δv = 1
(13)

in Equation (13) Γ is the standard gamma function.
The outline of the inverse problem solution scheme with the regularization cuckoo

search algorithm is shown in the Figure 2.
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4. Numerical Simulation

In the following section, three desired drug releases will be examined based on the
requirements of the relevant drug release behavior, which are constant rate release, linearly
decreasing rate release, and nonlinear rate release. The three desired release profiles are
shown in Figure 3. In addition, the regularization parameter is taken as α = 0.00001
empirically. The parameters in the cuckoo search algorithm are chosen as follows: the
number of nests is set to n = 25, the probability pa = 0.05, and the search interval [0,+∞].
In order to eliminate the uncertainty of the stochastic search algorithm, the results are
averaged by considering 50 different executions.
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4.1. Optimization of the Initial Drug Concentration

The objective function is chosen as F =‖ A(v(x)) − j(t, 1) ‖2
2 +α ‖ v(x) ‖2

2, and
the diffusion coefficient in the diffusion equation is D(x) = x. Since the different model
layer means different drug initial concentration distributions, and different drug initial
concentration distributions affect the drug release profile remarkably, the regularization
cuckoo search algorithm is used to inverse the initial drug concentration distribution of the
controlled release system containing different layers.

Case 1. Constant release rate, i.e., j(t, 1) = 1, 0 ≤ t ≤ 0.5.
The statistical analysis of the error between the computational results and the desired

release profile for the drug-controlled release system with different layers is shown in
Table 1.

Table 1. Statistical analysis of the error for optimization of the initial drug concentration (Case 1).

Number of Model Layers (NL) Minimum Error Maximum Error Average Error Standard Deviation (STD)

10 4.6868 × 10−2 5.2840 × 10−2 4.9685 × 10−2 2.2731 × 10−3

9 4.6877 × 10−2 5.2921 × 10−2 4.9782 × 10−2 2.2700 × 10−3

8 4.7442 × 10−2 5.3294 × 10−2 5.0374 × 10−2 2.1873 × 10−3

7 4.8341 × 10−2 5.6383 × 10−2 5.2114 × 10−2 3.0494 × 10−3

6 4.9309 × 10−2 5.7675 × 10−2 5.3654 × 10−2 3.0424 × 10−3

5 5.1370 × 10−2 5.8238 × 10−2 5.4712 × 10−2 2.4912 × 10−3

4 6.6118 × 10−2 7.2368 × 10−2 6.9111 × 10−2 2.2676 × 10−3

3 8.5613 × 10−2 9.6726 × 10−2 9.1050 × 10−2 3.9440 × 10−3

2 8.8341 × 10−2 9.8625 × 10−2 9.3813 × 10−2 3.7459 × 10−3

As shown in Table 1, the model layers number has a remarkable influence on the drug
release profile. When the number of model layers reaches a certain number (for example,
five), the error tends to stabilize with a small decrement. Meanwhile, if the number of
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model layers is less than five, the error is relatively larger. In order to further demonstrate
the effect of the number of model layers on the drug release profile, the computational drug
release flux for three different layer numbers, NL = 2, 4, 8, are shown in Figure 4. As we can
see in Figure 4, when the number of model layers is equal to two or four, the computational
drug release profile seems to be stable in the middle and last stages. However, the initial
drug release curve oscillates seriously. If the number of model layers increases to eight, the
drug release profile is closer to the desired release profile, and the drug release curve is
relatively more stable. As a result, we seem to conclude that the increment of the number
of model layers can improve computational precision. We think that maybe this is because
we can control the initial drug concentration in the model more finely as the number of
model layers increases. However, the number of model layers is not the more the better. It
is seen that from Table 1 when the number of model layers is greater than or equal to five,
there exists little difference between the errors of different model layers.
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Therefore, based on the principle that the drug release model is as simple as possible
and easy to implement, for obtaining the constant release rate, we choose NL = 9, namely,
the controlled release system contains nine different initial concentrations of drugs, which
are shown in Table 2.

Table 2. Initial drug concentration at each layer of the drug-controlled release system with NL = 9
(Case 1).

Layer Initial Drug Concentration Layer Initial Drug Concentration

1 5.1889 6 0.8378

2 8.8675 × 10−8 7 0.2367

3 7.2938 × 10−5 8 0.1851

4 1.4546 × 10−6 9 0.0015

5 1.1741 × 10−5 — —

Case 2. Linearly decreasing release rate, i.e., j(t) = 1.5− 2t, 0 ≤ t ≤ 0.5.
An approximately linearly increasing profile may be desired in some cases, e.g., to

build up a tolerance for the chemical being delivered. In the previous case, we know that
the desired release profile is not ideal when the number of model layers is less than five.
Thus, in this case, only the numbers of model layers greater than five are considered. Table 3
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gives the statistical analysis of the error between the computational release profiles and the
desired release profile for different layers. Figure 5 gives the computational drug release
flux for three different layer numbers (NL = 8, 9, 10). As was expected, the computational
release profiles are in good agreement with the desired release profile. It is also seen from
Figure 5 and Table 3 that the error does not decrease significantly as the number of layers
increases to a certain level. Therefore, we chose the number of layers NL = 9, i.e., the
controlled release system contains nine layers. The drug initial concentrations of each layer
are shown in Table 4.

Table 3. Statistical analysis of the error for optimization of the initial drug concentration (Case 2).

Number of Model Layers Minimum Error Maximum Error Average Error Standard Deviation (STD)

10 6.9173 × 10−3 7.5383 × 10−3 7.2307 × 10−3 2.2966 × 10−4

9 6.9279 × 10−3 7.5235 × 10−3 7.2310 × 10−3 2.2516 × 10−4

8 7.4410 × 10−3 8.0454 × 10−3 7.7378 × 10−3 2.2387 × 10−4

7 8.6647 × 10−3 9.1385 × 10−3 8.9192 × 10−3 1.8004 × 10−4

6 1.0437 × 10−2 1.6389 × 10−2 1.3515 × 10−2 2.1783 × 10−3
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Table 4. Initial drug concentration at each layer of the drug-controlled release system with NL = 9
(Case 2).

Layer Initial Drug Concentration Layer Initial Drug Concentration

1 3.3311 6 0.2843

2 0.0113 7 0.5049

3 4.671 × 10−3 8 0.2688

4 0.7379 9 0.0023

5 1.2939 — —

Case 3. Non-linear release rate, i.e., j(t) =

{
24t 0 ≤ t ≤ 0.05
1.2 0.05 < t ≤ 0.5

.
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Some situations demand a nonlinearly release rate, e.g., linearly increasing followed
by a constant release, and without burst. A typical example is the delivery of some
anticancer drugs. Similar to the previous two cases, Table 5 shows the statistical analysis
of the error between the computational release profiles and the desired release profiles
and Figure 6 gives the computational release profiles obtained by our algorithm. From
the results of Table 5 and Figure 6, we can see that the error for NL = 8 is relatively
smaller. Therefore, based on the comprehensive consideration of the computational cost
and numerical accuracy, the drug-controlled release model can be chosen with NL = 8,
namely, the drug-controlled release system contains eight layers. The initial concentrations
of the drug at each layer are given in Table 6.

Table 5. Statistical analysis of the error for optimization of the initial drug concentration (Case 3).

Number of Model Layers (NL) Minimum Error Maximum Error Average Error Standard Deviation (STD)

10 6.3931× 10−2 6.9385 × 10−2 6.6460 × 10−2 2.0571 × 10−3

9 6.3957 × 10−2 6.9250 × 10−2 6.6455 × 10−2 2.0115 × 10−3

8 6.3907 × 10−2 6.8380 × 10−2 6.6139 × 10−2 1.7322 × 10−3

7 6.44304 × 10−2 7.0354 × 10−2 6.7909 × 10−2 2.3032 × 10−3

6 6.45556 × 10−2 7.1835 × 10−2 6.8771 × 10−2 2.7515 × 10−3
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Table 6. Initial drug concentration at each layer of the drug-controlled release system with NL = 8
(Case 3).

Layer Initial Drug Concentration Layer Initial Drug Concentration

1 5.6699 5 1.100480

2 0 6 2.5771 ×10−13

3 2.9026 × 10−10 7 2.0444 × 10−2

4 7.0453 × 10−8 8 3.5613 × 10−14

Through the previous numerical results, we know that for the drug initial concentra-
tion optimization, all three desired release profiles are obtained to some extent by adjusting
the initial drug concentration of the controlled release system. The best results are achieved
when the desired release profile is linearly decreasing.
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4.2. Optimization of Initial Drug Concentration and Diffusion Coefficient

As another example, in this section, we optimize both the initial drug concentration
and the diffusion coefficient simultaneously and also consider the effect of different model
layers on the drug release behavior. The objective function is set as

F
(

D(x)
v(x)

)
=‖ A

(
D(x)
v(x)

)
− j(t, 1) ‖2

2 +α(‖ D(x)
v(x)

‖2
2)

Case 1. Constant release rate.
Table 7 shows the statistical analysis of the error between the computational release

profiles and the desired release profile, and Figure 7 gives the computational release profiles
obtained by using the regularization cuckoo search algorithm for three different model
layers. As shown in Figure 7 and Table 7, when the number of model layers is greater than
five, the errors are all close to 0 and the computational release profiles are very close to the
desired release profiles. However, the error does not decrease significantly as the number
of model layers increases, and the error reaches the minimum for NL = 8. Therefore, the
drug-controlled release model with NL = 8 is taken as the suitable model. Table 8 shows
the initial drug concentration and diffusion coefficient at each layer of the suitable model.

Table 7. Statistical analysis of the error for optimization of the initial drug concentration and diffusion
coefficient (Case 1).

Number of Model Layers Minimum Error Maximum Error Average Error Standard Deviation (STD)

10 2.2252 × 10−5 2.8253 × 10−5 2.4753 × 10−5 2.5987 × 10−6

9 1.4916 × 10−5 1.9454 × 10−5 1.7185 × 10−5 2.2691 × 10−6

8 4.2095 × 10−6 4.7346 × 10−6 4.4721 × 10−6 2.6252 × 10−7

7 8.3357 × 10−6 8.8566 × 10−6 8.5962 × 10−6 2.6043 × 10−7

6 4.1713 × 10−5 4.8743 × 10−5 4.5228 × 10−5 3.5153 × 10−6

5 4.6155 × 10−4 5.2155 × 10−4 4.8404 × 10−4 2.2776 × 10−5
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Case 2. Linearly decreasing release rate.
The statistical analysis of the error between the computational release profiles and the

desired release profile is shown in Table 9, and Figure 8 shows the computational release
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profiles obtained by using the regularization cuckoo search algorithm for three different
model layers. From Table 9 and Figure 8, we can see that the drug release rate is more stable
and at the same time the error decreases as the number of model layers increases. However,
similar to the previous example, the error has no significant decrement when the number of
model layers exceeds seven. Thus, the model of NL = 7 is taken as the appropriate model,
and Table 10 shows the initial drug concentration and drug diffusion coefficient at each
layer of the appropriate model.

Table 8. The initial drug concentration and diffusion coefficient at each layer of the drug-controlled
release model for NL = 8 (Case 1).

Layer Initial Drug Concentration Diffusion Coefficient Layer Initial Drug Concentration Diffusion Coefficient

1 2.971594 5.680510 5 4.040397 4.532567

2 4.164277 1.788725 6 0.736702 1.311099

3 3.652189 1.549742 7 2.165384 2.337045

4 0.677934 0.012543 8 0.010021 0.000014

Table 9. Statistical analysis of the error for optimization of the initial drug concentration and diffusion
coefficient (Case 2).

Number of Model Layers Minimum Error Maximum Error Average Error Standard Deviation (STD)

10 7.08120 × 10−3 8.23474 × 10−3 7.66596 × 10−3 4.77112 × 10−4

9 7.08071 × 10−3 8.23348 × 10−3 7.66470 × 10−3 4.44708 × 10−4

8 7.08067 × 10−3 8.12348 × 10−3 7.56798 × 10−3 4.24802 × 10−4

7 7.08063 × 10−3 8.07384 × 10−3 7.49849 × 10−3 3.90109 × 10−4

6 1.15463 × 10−2 2.01349 × 10−2 1.17253 × 10−2 6.59277 × 10−3
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Table 10. The initial drug concentration and diffusion coefficient at each layer of the controlled drug
release model for NL = 7 (Case 2).

Layer Initial Drug Concentration Diffusion Coefficient Layer Initial Drug Concentration Diffusion Coefficient

1 0.070579 0.001020 5 0.387654 28.693163

2 0.845192 80.939968 6 3.224124 19.295411

3 8.925855 3.103244 7 0.016351 0.000321

4 88.408474 1.687535 – — —-
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Case 3. Non-linear release rate.
As was expected, from Table 11, it is seen that the error gradually decreases as the

number of model layers increases. However, when the number of model layers is greater
than eight, the computational errors seem to become larger. The computational release
profiles obtained by using the regularization cuckoo search algorithm for three different
model layers in Figure 9 demonstrate that at the initial stage the computational release
profiles are in good agreement with the desired release profile. As time goes on, the
apparent fluctuation appears. The fluctuation is relatively flat. From the results of Table 11
and Figure 9, we choose the model with NL = 8 as the expected model. Table 12 shows
the initial drug concentration and drug diffusion coefficient at each layer of the expected
model.

Table 11. Statistical analysis of the error for optimization of the initial drug concentration and
diffusion coefficient (Case 3).

Number of Model Layers Minimum Error Maximum Error Average Error Standard Deviation (STD)

10 2.8713 × 10−3 3.5749 × 10−3 3.2271 × 10−3 2.8874 × 10−4

9 2.3261 × 10−3 3.048 × 10−3 2.7474 × 10−3 2.9134 × 10−4

8 2.2318 × 10−3 2.8479 × 10−3 2.5614 × 10−3 2.3003 × 10−4

7 2.9431 × 10−3 3.6841 × 10−3 3.3321 × 10−3 2.7650 × 10−4

6 3.8505 × 10−3 4.5278 × 10−3 4.1857 × 10−3 2.4239 × 10−4
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Table 12. Initial drug concentration and diffusion coefficient at each layer of the drug-controlled
release model for NL = 8 (Case 3).

Layer Initial Drug Concentration Diffusion Coefficient Layer Initial Drug Concentration Diffusion Coefficient

1 2.884606 4.197390 5 5.982602 9.884345

2 9.887772 0.001 6 1.158236 0.739279

3 0 1.287389 7 3.417384 1.237826

4 3.596692 4.151442 8 0.011347 0.263782

5. Conclusions

In this paper, the optimization problem of drug release based on the multi-laminated
drug-controlled release device was solved based on an inverse problem solution scheme.

Firstly, the optimization problem of drug release was transformed into the diffusion
equation initial value inverse problem. Secondly, to solve this inverse problem, a new
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regularization cuckoo search algorithm has been proposed by combining the cuckoo search
algorithm with the regularization technique. The adoption of the cuckoo search algorithm
deduces the requirements of the objective function remarkably, and the use of the Tikhonov
technique efficiently tackles the ill-posedness of the inverse problem. Finally, for three
various desired release fluxes, the regularization cuckoo search algorithm was used to
optimize the initial drug concentration and diffusion coefficient simultaneously. The
numerical experiments show the capability of the proposed method to easily deal with
the optimization problem of the drug-controlled release. The regularization cuckoo search
algorithm has been successful at inverting the initial drug concentration and diffusion
coefficient simultaneously.

Also shown in this paper is that the number of model layers has a large influence on
the drug release rate. As seen in the examples, based on the comprehensive consideration
of the computational cost and numerical accuracy, the optimal number of layers for the
drug-controlled release model is given by comparing the computational results for different
numbers of model layers. Another fact worth noting is the obvious advantage of the
two-parameter optimization. The orders of average error obtained by the two-parameter
optimization can reach 10−6 for the best case, whereas those of one-parameter optimization
only reach 10−3. The simultaneous optimization of drug initial concentration and diffusion
coefficient effectively reduce the error between the computational release rate and the
desired release rate, which is of great benefit to achieve the desired drug release profiles.

In all, the satisfactory results obtained in this paper mean that the new regulariza-
tion cuckoo search algorithm based on the inverse problem solution scheme exhibits its
effectiveness and superiority, for the optimization problem of drug release based on the
multi-laminated drug-controlled release device, to some extent. The proposed method is to
be expected to solve more complicated cases, and this is an important direction for us to
face in future.
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