Coefficient Inequalities for Multivalent Janowski Type q-Starlike Functions Involving Certain Conic Domains
Abstract
:1. Introduction and Preliminaries
2. A Set of Main Results
3. Partial Sums for the Function Class
4. Analytic Functions with Negative Coefficients
5. Concluding Remarks and Observations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aldweby, H.; Darus, M. Some subordination results on q-analogue of Ruscheweyh differential operator. Abstr. Appl. Anal. 2014, 2014, 958563. [Google Scholar] [CrossRef]
- Cho, N.E.; Srivastava, H.M.; Adegani, E.A.; Motamednezhad, A. Criteria for a certain class of the Carathéodory functions and their applications. J. Inequal. Appl. 2020, 2020, 85. [Google Scholar] [CrossRef]
- Janowski, W. Some extremal problems for certain families of analytic functions. Ann. Polon. Math. 1973, 28, 297–326. [Google Scholar] [CrossRef]
- Kanas, S.; Wiśniowska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef]
- Kanas, S.; Wiśniowska, A. Conic domains and starlike functions. Rev. Roumaine Math. Pures Appl. 2000, 45, 647–657. [Google Scholar]
- Kanas, S.; Srivastava, H.M. Linear operators associated with k-uniformly convex functions. Integral Transform. Spec. Funct. 2000, 9, 121–132. [Google Scholar] [CrossRef]
- Kanas, S. Coefficient estimates in subclasses of the Carathéodary class related to conic domains. Acta Math. Univ. Comen. 2005, 74, 149–161. [Google Scholar]
- Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Khan, N.; Khan, B.; Ahmad, Q.Z.; Ahmad, S. Some Convolution properties of multivalent analytic functions. AIMS Math. 2017, 2, 260–268. [Google Scholar] [CrossRef]
- Shams, S.; Kulkarni, S.R.; Jahangiri, J.M. Classes of uniformly starlike and convex functions. Int. J. Math. Math. Sci. 2004, 55, 2959–2961. [Google Scholar] [CrossRef]
- Noor, K.I.; Malik, S.N. On coefficient inequalities of functions associated with conic domains. Comput. Math. Appl. 2011, 62, 2209–2217. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Jackson, F.H. q-difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Ismail, M.E.-H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Owa, S. (Eds.) Univalent Functions, Fractional Calculus, and Associated Generalized Hypergeometric Functions; Ellis Horwood Limited: Chichester, UK, 1989. [Google Scholar]
- Ezeafulukwe, U.A.; Darus, M. Certain properties of q-hypergeometric functions. Int. J. Math. Math. Sci. 2015, 2015, 489218. [Google Scholar] [CrossRef]
- Huda, A.; Darus, M. Partial sum of generalized class of meromorphically univalent functions defined by q-analogue of Liu-Srivastava operator. Asian-Eur. J. Math. 2014, 7, 1450046. [Google Scholar]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Mahmood, S.; Jabeen, M.; Malik, S.N.; Srivastava, H.M.; Manzoor, R.; Riaz, S.M.J. Some coefficient inequalities of q-starlike functions associated with conic domain defined by q-derivative. J. Funct. Spaces 2018, 2018, 8492072. [Google Scholar] [CrossRef]
- Mahmood, S.; Srivastava, H.M.; Khan, N.; Ahmad, Q.Z.; Khan, B.; Ali, I. Upper bound of the third Hankel determinant for a subclass of q-starlike functions. Symmetry 2019, 11, 347. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, N.; Khan, B. Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain. Mathematics 2019, 7, 181. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z. Coefficient inequalities for q-starlike functions associated with the Janowski functions. Hokkaido Math. J. 2019, 48, 407–425. [Google Scholar] [CrossRef]
- Khan, B.; Liu, Z.-G.; Shaba, T.G.; Araci, S.; Khan, N.; Khan, M.G. Applications of q-Derivative Operator to the Subclass of Bi-Univalent Functions Involving q-Chebyshev Polynomials. J. Math. 2022, 2022, 8162182. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general classes of q-starlike functions associated with the Janowski functions. Symmetry 2019, 11, 292. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Sharma, N.L. On a generalization of close-to-convex functions. Ann. Polon. Math. 2015, 113, 93–108. [Google Scholar] [CrossRef] [Green Version]
- Uçar, H.E.Ö. Coefficient inequality for q-starlike functions. Appl. Math. Comput. 2016, 276, 122–126. [Google Scholar]
- Rehman, M.S.U.; Ahmad, Q.Z.; Srivastava, H.M.; Khan, N.; Darus, M.; Khan, B. Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions. AIMS Math. 2021, 6, 1110–1125. [Google Scholar] [CrossRef]
- Silverman, H. Univalent functions with negative coefficients. Proc. Am. Math. Soc. 1975, 51, 109–116. [Google Scholar] [CrossRef]
- Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
- Ma, W.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; Li, Z., Ren, F., Zhang, L.Y.S., Eds.; International Press Inc.: Cambridge, MA, USA, 1994; pp. 157–169. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ur Rehman, M.S.; Ahmad, Q.Z.; Al-shbeil, I.; Ahmad, S.; Khan, A.; Khan, B.; Gong, J. Coefficient Inequalities for Multivalent Janowski Type q-Starlike Functions Involving Certain Conic Domains. Axioms 2022, 11, 494. https://doi.org/10.3390/axioms11100494
Ur Rehman MS, Ahmad QZ, Al-shbeil I, Ahmad S, Khan A, Khan B, Gong J. Coefficient Inequalities for Multivalent Janowski Type q-Starlike Functions Involving Certain Conic Domains. Axioms. 2022; 11(10):494. https://doi.org/10.3390/axioms11100494
Chicago/Turabian StyleUr Rehman, Muhammad Sabil, Qazi Zahoor Ahmad, Isra Al-shbeil, Sarfraz Ahmad, Ajmal Khan, Bilal Khan, and Jianhua Gong. 2022. "Coefficient Inequalities for Multivalent Janowski Type q-Starlike Functions Involving Certain Conic Domains" Axioms 11, no. 10: 494. https://doi.org/10.3390/axioms11100494
APA StyleUr Rehman, M. S., Ahmad, Q. Z., Al-shbeil, I., Ahmad, S., Khan, A., Khan, B., & Gong, J. (2022). Coefficient Inequalities for Multivalent Janowski Type q-Starlike Functions Involving Certain Conic Domains. Axioms, 11(10), 494. https://doi.org/10.3390/axioms11100494