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Abstract: At present, association rules have been widely used in prediction, personalized recommen-
dation, risk analysis and other fields. However, it has been pointed out that the traditional framework
to evaluate association rules, based on Support and Confidence as measures of importance and ac-
curacy, has several drawbacks. Some papers presented several new evaluation methods; the most
typical methods are Lift, Improvement, Validity, Conviction, Chi-square analysis, etc. Here, this paper
first analyzes the advantages and disadvantages of common measurement indicators of association
rules and then puts forward four new measure indicators (i.e., Bi-support, Bi-lift, Bi-improvement, and
Bi-confidence) based on the analysis. At last, this paper proposes a novel Bi-directional interestingness
measure framework to improve the traditional one. In conclusion, the bi-directional interestingness
measure framework (Bi-support and Bi-confidence framework) is superior to the traditional ones in the
aspects of the objective criterion, comprehensive definition, and practical application.

Keywords: association rules mining; Bi-support; Bi-confidence; bi-directional interesting measure
framework

1. Introduction

Nowadays, the amount of data stored in databases has grown in an impressive way.
Thus, one of the main motivations for data storage is to obtain access to data so as to further
analyze them and to obtain valuable and useful information from the data. As data mining
methodology and technology have received extensive attention, association rules mining, as
a vital subject in the domain of data mining and knowledge discovery, is now widely used
in the field of electronic commerce [1–5]. Apriori algorithm can mine a host of association
rules; however, only a few rules could be laid down and implemented by makers on
account of limited resources [6,7]. Consequently, the evaluation methodology for mining
association rules is of great significance in both theory design and practical application.

In recent years, quite a few results have been achieved in the study on the interest-
ingness measure of association rules [8–11]. Tseng et al. [10] put forward incremental
maintenance of generalized association rules under taxonomy evolution. Chen [12] used
data envelopment analysis (DEA) as a post-processing approach. After the rules had been
discovered from the association rule mining algorithms, DEA was applied to the use of
ranking those discovered rules based on the specified criteria. Toloo et al. [13] proposed a
new integrated DEA model, which was able to find the most efficient association rule only
by solving one mixed integer linear programming (MILP). Objective interestingness mainly
considers statistical significance features of objective data, including Support, Confidence
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and Lift, which are classic, as well as Validity, Conviction, Improvement, and Chi-square analy-
sis, which are relatively new [14]. Some scholars came up with some methods to generate
both frequent and infrequent patterns by using a multi-objective genetic algorithm [15,16].
It is the common goal of researchers to mine association rules that can reflect users’ interests
truly and effectively.

Firstly, the traditional methods of association rule mining generate excessive associa-
tion rules that include many invalids or even erroneous association rules. Secondly, with
the current surge in online transactions, data on online transactions and user evaluation
are extremely sparse. Thirdly, a combination of explosion problems may occur when the
Support and Confidence thresholds are low, while some new knowledge of user interest will
be filtered out because of data sparseness when the Support and Confidence thresholds
are high. Lastly, the traditional Support and Confidence frameworks can no longer measure
association rules in an effective way.

The main contributions of this paper are summarized as follows:

(1) This paper firstly expounds several aspects of association rules and then makes a
summary of relevant research results on the objective interestingness measure of
association rules. At the same time, we find that all have some defects and problems
by discussing and comparing the various measurement methods of association rules.

(2) Then, we proposed four more effective measurement methods of association rules
(Bi-support, Bi-lift, Bi-improvement, and Bi-confidence) based on the improvement of
some methods. The Bi-confidence method makes an adjustment to the non-occurrence
possibility of an antecedent based on the Confidence.

(3) Through the experimental analysis, we propose a novel measure framework (Bi-
support and Bi-confidence framework) to improve the traditional one.

In Section 2, a review of related work is provided. In Section 3, interestingness measure
indicators for association rules are described. In Section 4, four more effective measurement
methods of association rules (Bi-support, Bi-lift, Bi-improvement, Bi-confidence) are proposed.
In Section 5, we propose a novel Bi-directional interestingness framework to improve
the traditional one through the experimental analysis. Finally, we draw conclusions in
Section 6.

2. A Review of Relevant Research on Association Rules

This paper describes the research status of association rules from three parts: the
algorithm, the application, and the evaluation method of association rules.

2.1. Algorithm of Association Rules

The Apriori algorithm is the earliest proposed classical association rules mining algo-
rithm, whose implementation process is relatively simple. However, the database needs to
be scanned many times, leading to a large I/O load and low algorithm execution efficiency.
In order to solve the defects of Apriori, Pal and Kumar [17] proposed a distributed frequent
itemset generation and association rule mining algorithm based on the MapReduce pro-
gramming model. This scheme uses integrated distributed technology to generate frequent
itemsets and mine association rules. Rules are mined in a distributed way, after which
weights are assigned to the data subsets and association rules, and the association rules
generated in a distributed way are mixed by the weighting method. This method solves
the problem of multifarious operation when the data are large. Huo et al. [18] proposed
an improved FP-tree algorithm to solve the defects of the Apriori algorithm. They set up
the FP-tree-based (initial-FP-tree and new-FP-tree) structures to maintain fuzzy frequent
itemsets in the original database and newly inserted transactions, respectively. The incre-
mental mining strategy of fuzzy frequent itemsets is implemented by breathing priority
traversal of the initial-FP-tree and new-FP-tree. This method has advantages in execution
time. When the minimum Support threshold is low, the memory cost of this algorithm
is lower than that of existing algorithms. In order to improve the speed and accuracy of
association rule mining, Liu et al. [19] proposed a parallel FP growth method called SSPFP
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on the basis of Spark Streaming, which can mine frequent itemsets and association rules in
real-time Streaming data in parallel.

2.2. Application of Association Rules

Association rules are applied in various fields, mainly focusing on prediction, recom-
mendation, cause analysis, and so on. Rafiqul et al. [20] used association rules to identify
fraudulent behavior of policyholders, predict bad behavior of policyholders, and help
insurance companies improve business strategies and overcome fraudulent claims. For the
application of association rules in the recommendation domain, Yang et al. [21] proposed
a recommendation algorithm based on temporal association rules, which could discover
potential interests of users by using historical behavior data without domain knowledge.
Moreover, a personalized hybrid recommendation system, TP-HR, based on time-aware CF
and temporal association rules was proposed, which was used to track dynamic changes
in user preferences. For feature analysis, Sanmiquel et al. [22] used association rules to
analyze occupational accidents in the mining industry and identified the 20 most important
factors leading to accidents.

2.3. Evaluation Method of Association Rules

The most widely accepted evaluation indexes of association rules are Support and
Confidence. Meanwhile, Lift, Validity, Conviction, Influence, and other indicators have been
gradually applied in various studies related to association rules. However, with the
explosive growth of data volume and data types, these indicators are faced with problems,
such as a large amount of computation and sparse data. One solution is to innovate new
algorithms to improve operational efficiency. For example, Zhang et al. [23] proposed
a multi-objective optimization algorithm to mine frequent itemsets of high-dimensional
data. The other is to improve the evaluation method of association rules. For example,
Lift and Improvement evaluation methods are optimized, and the concepts of new-lift and
new-improvement are proposed in this paper.

2.4. Evaluation Method and Framework of Association Rules

Most association rule mining algorithms will generate invalid or even wrong asso-
ciation rules. How to identify and remove these association rules is one of the research
hotspots. Song et al. [24] proposed predictability-based collective class association rule
mining based on cross-validation with a new rule evaluation step. This method could
remove redundant association rules and retain most of the high-value association rules.
Among all kinds of entropy-based measurements, the important measures to evaluate asso-
ciation rules are joint entropy, conditional entropy, mutual information, cross-entropy, and
equilibrium cross-entropy. Park et al. [25] proposed symmetrically balanced cross-entropy
by considering the advantages of a symmetric J measure and balanced cross-entropy in
association rule evaluation. Shaharani et al. [26] presented a systematic evaluation of the
rules of association identified on the basis of frequent, closed, and maximum detailed ex-
ploration algorithms by combining general measures of data mining and statistical interest
and described the appropriate sequence of usage. This method can also remove redundant
association rules.

3. Review on Interestingness Measure Indicators for Association Rules

Let A =
{

A1, A2, . . . , Aj
}
⊂ I, B = {B1, B2, . . . , Bk} ⊂ I. I indicates itemsets, and

A ∩ B = φ. Firstly, we suppose formal description of association rules is as follows:

A→ B (1)

Rules should meet a certain Support threshold, s (min sup), and Confidence threshold,
c (min con f ).
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Data in Table 1 are produced by data extraction and transformation from shopping
mall receipts. Each line (a tuple) is shopping list data (shopping receipts); “1” refers to the
list containing this item, while “0” means the opposite.

Table 1. A data set of transaction.

Tid E F G H I J K L M N R Total

1 1 1 1 1 1 1 1 0 1 0 0 8
2 1 1 0 1 1 1 1 1 1 0 0 8
3 1 1 0 1 1 0 0 0 0 1 0 5
4 1 1 1 0 0 1 0 1 1 1 1 8
5 1 1 1 0 0 1 0 0 0 1 1 6
6 1 1 1 0 0 0 0 0 1 1 1 6
7 1 1 0 0 0 0 1 0 0 1 0 4
8 1 1 1 0 1 0 0 0 0 0 1 5
9 1 0 1 1 0 0 0 0 0 1 0 4

10 1 0 1 0 0 1 0 0 0 0 1 4
Total 10 8 7 4 4 5 3 2 4 6 5 58

3.1. Support and Confidence

Support [27] is the percentage of transactions where the rule holds. Support can be used
to assess the usefulness of association rules. When the frequencies of A and B occurring
simultaneously are equal to or higher than the set Support threshold, itemsets (A, B) as a
frequent pattern. The formula is as follows:

Supp(A→ B) = Supp(A ∪ B)
= P(AB) = N(AB)/|D| (2)

where N(AB) is the number of records that A and B appear together, and |D| is the total
record number of transactions in data sets.

Firstly, Support has the defects of an artificially controlled threshold and rare itemsets.
Secondly, at present, the number of subjects (users) and the number of projects increase
exponentially in large electronic commerce systems, where online transaction data and user
evaluation data are very sparse. Therefore, many infrequent patterns in data sets may have
a potential value.

If both rule A→ B and rule ¬B→ ¬A are strong, then the rule A→ B would be
very strong. The rationale is that rule A→ B and rule ¬B→ ¬A are logically equivalent.
We should look for strong evidence of these two rules to believe that they are interesting.
Therefore, we proposed Bi-support instead of Support. Bi-support should meet the conditions
where Supp( A→ B ) ≥min supp and Supp(¬A→ ¬B ) ≥min supp.

Confidence [27] is the statistic of probability P(B|A) that subsequent events occur under
the condition of occurrence of the precursor events in trading data sets. It is used to measure
the reliability of the rules. The formula is as follows:

Con f (A→ B) = P(B|A)
= P(AB)/P(A)
= Sup(A ∪ B)/Sup(A)

(3)

Association rules mining can be divided into two steps: (1) find out all of the maximal
frequent patterns for meeting the condition; (2) generate the association rules from the
frequent patterns. It is important to combine Confidence with Support from the Support-
Confidence framework for mining association rules. If Support is larger than the desig-
nated minimum Support threshold and Confidence is larger than the designated minimum
Confidence threshold, the rules will be called strong association rules. However, strong
association rules are not always effective. Some are of no interest to users, and some are
even misleading.
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3.2. Lift

Owing to the defects of the Support-confidence framework, some scholars performed
correlation analysis on association rules mined in the framework, namely Lift [24]. Lift
means the ratio of the rule’s Confidence to the occurrence probability of the consequent
occurring, which reflects a positive or negative correlation of the antecedent and consequent
of rules. It relates to the ratio of the occurrence probability of B under the condition A to
that without considering condition A, which reflects the relationship between “A” and “B”.

Li f t(A→ B) = Con f (A→ B)/P(B)
= P(AB)/P(A)P(B)

(4)

The domain of Lift values is [0,+∞). As the value of Lift is equal to 1, it shows that
the simultaneous appearance of event A and event B belongs to independent random
events. That is to say, A and B do not affect each other. Additionally, we call these rules
uncorrelated rules. If the value of Lift is less than 1, it shows that the occurrence of “A”
reduces the occurrence of “B”, and then we call them negative correlation rules. If the
value of the Lift value is larger than 1, it shows that the occurrence of “A” promotes the
occurrence of “B”, and then we call them positive correlation rules. The problem is as
follows: Lift takes events A and B in the equivalence position. According to the Lift, A→ B
and B→ A are the same, that is to say, if we accept rule A→ B , B→ A should also be
accepted, but this is not fact.

3.3. Validity

Article [28] introduced a new measurement method of association rules, known
as Validity. Validity is defined as the difference between the probability of “A” and “B”
occurring simultaneously and the occurrence probability of “B” without “A” in database D.
Given that the value domain of P(AB) and P(AB) are [0, 1], the value domain of Validity is
obviously [−1, 1].

Validity(A→ B) = P(AB)− P(AB) (5)

In fact, our research revealed that the Validity is not effective. Taking Table 1 for
example, there is the rule F → R , whose value of Support is 0.4, and the value of Validity
is 0.4−0.1 = 0.3. According to the literature [26], we can determine that it is a very valid
association rule. However, the calculation of Li f t(F → R) = P(FR)/P(F)P(R) = 1 shows
that F and R have a certain negative correlation. We call these rules uncorrelated rules.
Then taking Table 2 for example, this case has already met the basic requirements of
Support and Confidence. At the same time, Validity(A→ B) = 0.5− 0.2 = 0.3 . According
to the measure standard of Validity, the rule A→ B should be considered “very effective”.
The occurrence of “A” can promote the occurrence of “B”. However, in fact, the overall
occurrence frequency of event B is 0.70, and the occurrence probability of “B” under the
occurrence of “A” is 50/80 = 0.625, which is 7.5 percent lower.

Table 2. The occurrence of “A” and “B”.

B Occur B Not Occur Total

A occur 50 30 80
A not occur 20 0 20

Total 70 30 100

3.4. Conviction

Brin introduced the concept of Conviction (Conv.) as early as 1997 [29].

Conv(A→ B) = P(A)P(B)/P(AB) (6)
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Its value domain is [0,+∞). When the value of Conviction is “1”, it means “A” has no
relation with “B”. In addition, the greater the value of Conviction is, the higher interest of
the rule will have. Values in [0, 1) mean negative dependence. However, the constraint
requirements of Conviction are too high to retain all valuable association rules. Taking
Table 1 for example, Conv(J → G) = 0.75 < 1, the value of its Conviction is low, but in fact,
a high value of interest may exist in J and G. Thus, it should also meet the condition that
P(AB) 6= 0.

3.5. Improvement

Articles [30,31] proposed a new interestingness measurement method of association
rules based on the description of the defects of the traditional interestingness measurement
method. We shall call it “Improvement”. It means that the difference between the conditional
probability P(B|A) and the occurrence probability of “B”.

Imp(A→ B) = [P(B|A)− P(B)] (7)

However, shortcomings of Improvement (Imp.) are obvious. Firstly, it is hard to figure
out how much improvement in probability can be considered an improvement. Secondly,
the occurrence probability of the antecedent will seriously affect the evaluation of Im-
provement. That is to say, when the occurrence probability of the antecedent is very high,
the measurement standard of Improvement will go wrong, as the value of Improvement
will be very small all the time. Take Tables 3 and 4, for example, and calculate their
Improvement values.

Table 3. The occurrence of “A” and “B”.

B
′

Occur B
′

Not Occur Total

A′ occur 825 75 900
A′ not occur 50 50 100

Total 875 125 1000

Table 4. The occurrence of “C” and “D”.

D Occur D Not Occur Total

C occur 345 55 400
C not occur 385 215 600
Total 730 270 1000

In terms of the Improvement, rule (C → D) is more valuable than rule (A′ → B′) .
However, the fact is also very clear that the occurrence probability of “B” with “A” occurring
increases by up to 41.7% compared with the condition that “A” does not occur, while the
occurrence probability of “D” with “C” occurring increases by 22.2% compared with the
condition that “C” does not occur. Therefore, rule (A′ → B′) should be more meaningful
than rule (C → D) .

Imp(A′ → B′) = [P(B′
∣∣A′)− P(B′)] = 0.032 (8)

Imp(C → D) = [P(D|C)− P(D)] = 0.133 (9)

3.6. Chi-Square Analysis

Article [32] put forward an interestingness measurement standard based on a T-test,
which used a T-test to analyze the difference between associated Confidence P(B|A) and
expected Confidence P(B). If the difference is relatively bigger, it indicates that the occurrence
of “A” has a larger influence on “B”, and the rule (A→ B) is interesting. The formula is
as follows:

ChiSquare(A→ B) = [P(B|A)− P(B)]/σ (10)
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σ =

√
P(B)(1− P(B))

n
(11)

If ChiSquare(A→ B) > tα(n) , it shows that it has a bigger difference between associ-
ated Confidence P(B|A) and expected Confidence P(B), and the rule (A→ B) is interesting.
To some extent, it enhances the traditional framework of the interestingness measure.
However, there is also a defect that is similar to that of Improvement.

4. The Improvement of Objective Interestingness Measures
4.1. Bi-Support

If both rule A→ B and rule ¬A→ ¬B are strong, then the rule A→ B would be
very strong. Thus, we should look for strong evidence to prove these rules are interesting.
We proposed the Support conditions (Bi-support) of the Bi-directional measure framework are:

(1) Supp( A→ B ) ≥min supp.;

(2) Supp(¬A→ ¬B ) ≥min supp.

4.2. Bi-Lift

Related research shows that the Lift method helps produce good evaluation results.
However, it is obvious that Lift puts A and B in equivalent positions, which shows rule
A→ B is equivalent to B→ A . If we accept rule A→ B , we should also accept rule
B→ A . However, sometimes it is not true. For this problem, the paper proposes a
Bi-lift measurement method. Since there is a need to study the relationship of A→ B
when you want to evaluate the relationship of (A→ B) by Li f t(A→ B) , we introduce
Li f t(A→ B) to adjust Li f t(A→ B) . The higher Li f t(A→ B) is, the better the rule
A→ B is; conversely, the higher Li f t(A→ B) is, the worse the rule A→ B is. Therefore,
we propose a Bi-lift measurement method, taking Li f t(A→ B) as the denominator and
Li f t(A→ B) as the numerator to form the ratio of Li f t(A→ B) to Li f t(A→ B) . The
Bi-lift formula is as follows:

Bi− li f t(A→ B) = Li f t(A→B)
Li f t(A→B)

= P(AB)/P(A)P(B)
P(AB)/P(A)P(B)

= P(AB)P(A)

P(AB)P(A)

(12)

Two conditions need to be satisfied. One is P(AB) 6= 0, and the other is that “A” and
“B” are not a certain event or an impossible event. Its value domain is [0, ∞). The Bi-lift
method takes the deduction of a negative premise as a constraint to form a bi-deduction
comparing algorithm so as to improve the reliability of the mutual influence between the
premise and follow-up.

4.3. Bi-Improvement

Owing to the defects of Improvement, the Bi-improvement [33] is put forward. When
the occurrence probability of the antecedent is high, the value of Improvement will be very
small all the time. In order to eliminate the influence, we make a correction by multiplying
by the ratio of the occurrence possibility of the antecedent to the nonoccurrence probability
of it. The Bi-improvement formula is as follows:

Bi− imp(A→ B) = [P(B
∣∣A)− P(B)] ∗ P(A)/P(A)

= P(AB)−P(A)P(B)
P(A)

(13)

Taking Tables 3 and 4 as examples, Imp(A′ → B′) = 0.032 and Imp(C → D) = 0.133
in terms of Improvement; rule (C → D) is more valuable than rule (A′ → B′) . However,
the fact is that it can increase “the occurrence probability of B” with “A” occurring by 41.7%
compared to the condition that “A” does not occur. Conversely, the occurrence possibility
of “D” with “C” occurring increases by 22.2% compared to the condition that “C” does not
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occur. Thus, rule (A′ → B′) should be more meaningful than rule (C → D) . Calculate
Bi-Improvement value through Formulas (14) and (15).

Bi− imp(A→ B)
= [P(B

∣∣A)− P(B)] ∗ P(A)/P(A) = 0.288
(14)

Bi− imp(C → D)
= [P(D

∣∣C)− P(D)] ∗ P(C)/P(C)= 0.089
(15)

Bi− imp(A→ B) is higher than Bi− imp(C → D) , which is in agreement with the
real condition.

4.4. Bi-Confidence

Confidence indicates that the occurrence of some itemsets will lead to the occurrence of
other itemsets. However, we see that the Confidence of association rules only considers the
occurrence possibility of “B” when “A” occurs but gives less consideration to the relation
between “A” and “B” when “A” does not occur. Thus, it makes a lot of association rules
mined invalid. For the above problems of association rules, we found that the description
of Confidence is not perfect and cannot fully show the degree of correlation between itemsets.
Thus, we put forward the concept of Bi-confidence, and its definition is as follows:

Bi− con f (A→ B) = con f (A→ B)− con f (A→ B)
= P(AB)−P(A)P(B)

P(A)×[1−P(A)]

(16)

The value domain of Bi-confidence is [−1, 1]. If the Bi-confidence value is greater than 0,
then P(AB) > P(A)P(B), which shows “A” and “B” have a positive correlation. If the Bi-
confidence is equal to 1, then P(AB) = P(A) = P(B), which shows that both “A” and “B” in
record set appear together. If the Bi-confidence is equal to 0, then P(AB) = P(A)P(B), which
shows “A” has no relation to “B”. If the Bi-confidence is less than 0, then P(AB) < P(A)P(B),
which shows that “A” and “B” have a negative correlation, and negative rules also have
research value. The definition of Bi-confidence not only contains the correlation factors but
also the P(B) factor. Therefore, Bi-confidence can fully embody the effectiveness of the rules.
By using the Bi-support-Bi-confidence framework to replace the Support-confidence framework,
it can not only mine association rules effectively but also reduce the occurrence of rules
with weak correlations.

5. The Bi-Directional Measure Framework of Association Rules and
Experimental Analysis
5.1. Numerical Analysis of Simulated Data Sets

Based on a set of business data in Table 1, we test all kinds of measurement methods
and design the measurement framework. Since item E appears in all affairs, we take it as
a kind of certain event without taking into account those association rules about E. Set
minimum Support to 20% and minimum Confidence to 50%. There are 25 rules of frequent
2-itemsets calculated through the Apriori algorithm, which are given in Table 5.

From Table 5, we can find that the Support-Confidence framework (min supp. = 0.2,
min conf. = 0.5) mainly possesses the basic function of classic association rules measurement
methods, but this framework cannot distinguish positive and negative correlation nor figure
out the value of various rules. There are five rules that have negative correlation and four
rules that have no correlation. Therefore, these nine rules are useless.
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Table 5. Rules list with the Support-confidence framework (min supp. = 0.2, min conf. = 0.5).

Rules Supp. Conf. Lift Val. Conv. Imp. Csa. Bi-lift Bi-imp. Bi-conf.

M→J 0.3 0.75 1.5 0.1 2 0.25 1.58 2.25 0.16 0.42
M→G 0.3 0.75 1.08 0.1 1.2 0.05 0.35 1.13 0.03 0.08
J→G 0.4 0.8 1.14 0.1 0.75 0.1 0.69 1.33 0.1 0.2
I→H 0.3 0.75 1.88 0.2 2.4 0.35 2.26 4.5 0.23 0.58
I→F 0.4 1 1.25 0 / 0.2 1.58 1.5 0.13 0.33
H→F 0.3 0.75 0.95 −0.2 0.8 −0.05 −0.4 0.9 −0.03 −0.08
R→G 0.5 1 1.42 0.3 / 0.3 2.1 2.5 0.3 0.6
N→G 0.4 0.67 0.95 0.1 0.9 −0.03 −0.21 0.89 −0.05 −0.08
R→F 0.4 0.8 1 0 1 0 0 1 0 0
N→F 0.5 0.83 1.04 0.2 1.2 0.03 0.24 1.11 0.05 0.08
M→F 0.4 1 1.25 0 / 0.2 1.58 1.5 0.13 0.33
J→F 0.4 0.8 1 0 1 0 0 1 0 0
G→F 0.5 0.71 0.89 0.2 0.7 −0.09 −0.71 0.71 −0.21 −0.28
J→M 0.3 0.6 1.5 0.2 1.5 0.2 1.29 3 0.2 0.4
G→J 0.4 0.57 1.14 0.3 1.17 0.07 0.44 1.71 0.18 0.24
H→I 0.3 0.75 1.88 0.2 2.4 0.35 2.26 4.5 0.23 0.58
F→I 0.4 0.5 1.25 0.4 1.2 0.1 0.65 / 0.4 0.5
G→R 0.5 0.71 1.42 0.5 1.75 0.21 1.33 / 0.49 0.71
G→N 0.4 0.57 0.95 0.2 0.93 −0.03 −0.19 0.86 −0.07 −0.1
F→R 0.4 0.5 1 0.3 1 0 0 1 0 0
F→N 0.5 0.63 1.04 0.4 1.07 0.03 0.19 1.25 0.12 0.13
F→M 0.4 0.5 1.25 0.4 1.2 0.1 0.65 / 0.4 0.5
F→J 0.4 0.5 1 0.3 1 0 0 1 0 0
F→G 0.5 0.63 0.89 0.3 0.8 −0.07 −0.48 0.63 −0.28 −0.38
M→L 0.2 0.5 2.5 0.2 0.64 0.3 2.37 / 0.2 0.5

If both rule A→ B and rule ¬A→ ¬B are strong, then rule A→ B would be very
strong. Thus, we should look for strong evidence to prove these rules are interesting. We
proposed a novel Bi-directional measure framework of association rules, and the pseudocode
of the proposed measure framework is shown in Algorithm 1. There are 30 rules of frequent
2-itemsets calculated through the Apriori algorithm, which are shown in Table 6.

Table 6. Rules list with the new framework (min supp.(AB) = 0.2, min supp.(AB) = 0.2, min conf. = 0.2,
and Bi-conf. = 0.2).

Rules Supp. AB Supp. AB Conf. Lift Imp. Csa. Bi-lift Bi-Imp. Bi-conf.

F→I 0.4 0.2 0.50 1.25 0.10 0.65 / 0.40 0.50
F→K 0.3 0.2 0.38 1.25 0.08 0.52 / 0.30 0.38
F→L 0.2 0.2 0.25 1.25 0.05 0.40 / 0.20 0.25
F→M 0.4 0.2 0.50 1.25 0.10 0.65 / 0.40 0.50
G→J 0.4 0.2 0.57 1.14 0.07 0.45 1.71 0.17 0.24
G→R 0.5 0.3 0.71 1.43 0.21 1.36 / 0.50 0.71
H→I 0.3 0.5 0.75 1.88 0.35 2.26 4.50 0.23 0.58
H→K 0.2 0.5 0.50 1.67 0.20 1.38 3.00 0.13 0.33
I→K 0.2 0.5 0.50 1.67 0.20 1.38 3.00 0.13 0.33
J→K 0.2 0.4 0.40 1.33 0.10 0.69 2.00 0.10 0.20
J→L 0.2 0.5 0.40 2.00 0.20 1.58 / 0.20 0.40
J→M 0.3 0.4 0.60 1.50 0.20 1.29 3.00 0.20 0.40
J→R 0.3 0.3 0.60 1.20 0.10 0.63 1.50 0.10 0.20
K→M 0.2 0.5 0.67 1.67 0.27 1.72 2.33 0.11 0.38
L→M 0.2 0.6 1.00 2.50 0.60 3.87 4.00 0.15 0.75
I→F 0.4 0.2 1.00 1.25 0.20 1.58 1.50 0.13 0.33
K→F 0.3 0.2 1.00 1.25 0.20 1.58 1.40 0.09 0.29
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Table 6. Cont.

Rules Supp. AB Supp. AB Conf. Lift Imp. Csa. Bi-lift Bi-Imp. Bi-conf.

L→F 0.2 0.2 1.00 1.25 0.20 1.58 1.33 0.05 0.25
M→F 0.4 0.2 1.00 1.25 0.20 1.58 1.50 0.13 0.33
J→G 0.4 0.2 0.80 1.14 0.10 0.69 1.33 0.10 0.20
R→G 0.5 0.3 1.00 1.43 0.30 2.07 2.50 0.30 0.60
I→H 0.3 0.5 0.75 1.88 0.35 2.26 4.50 0.23 0.58
K→H 0.2 0.5 0.67 1.67 0.27 1.72 2.33 0.11 0.38
K→I 0.2 0.5 0.67 1.67 0.27 1.72 2.33 0.11 0.38
K→J 0.2 0.4 0.67 1.33 0.17 1.05 1.56 0.07 0.24
L→J 0.2 0.5 1.00 2.00 0.50 3.16 2.67 0.13 0.63
M→J 0.3 0.4 0.75 1.50 0.25 1.58 2.25 0.17 0.42
R→J 0.3 0.3 0.60 1.20 0.10 0.63 1.50 0.10 0.20
M→K 0.2 0.5 0.50 1.67 0.20 1.38 3.00 0.13 0.33
M→L 0.2 0.6 0.50 2.50 0.30 2.37 / 0.20 0.50

(a) Support conditions (Bi-support):

(1) Supp( A→ B ) ≥min Supp.;
(2) Supp(¬A→ ¬B ) ≥min Supp.

(b) Confidence conditions:

(1) Conf ( A→ B ) ≥min conf.

(c) Bi-confidence conditions:

(1) Bi-conf ( A→ B ) ≥min Bi-conf.

Algorithm 1: Pseudocode of the proposed measure framework.

INPUT: Shopping lists
OUTPUT: High value association rules
Step1: Calculate frequent 1-itemsets L1.
Step2: Find frequent 2-itemsets L2 with L1: l1 ./ l2, namely rule (A→ B );
Step3: Calculate the Bi-support of the association rules:

(1) Supp(A→ B ) ≥ Support threshold (min Supp.)
(2) Supp(¬A→ ¬B ) ≥ Support threshold (min Supp.)

Step4: Calculate the Confidence of the association rules, namely Conf (A→ B ):
Conf (A→ B ) ≥ Confidence threshold (min conf.)

Step5: Calculate the Bi-confidence of the association rules, namely Bi-conf (A→ B ):
Bi-conf (A→ B ) ≥ Bi-confidence threshold (min Bi-conf.)

Step6: Output the high value association rules.

The time efficiency of this algorithm is O(n). Compared with traditional methods, the
complexity of time efficiency has not been increased.

The comparative results of the two different frameworks are shown in Table 7. There
are nine rules that are useless (five rules have a negative correlation, and four rules have
no correlation) in the Support-confidence framework. Due to the introduction of Bi-support
and Bi-confidence to filter association rules, it is necessary to reduce the Confidence from
0.5 to 0.2 to generate more association rules. The new framework retains 12 high-value
association rules of the old framework and reduces 32 non-value association rules. The
high-value association rules are shown in Tables 8 and 9. Table 7 shows that when mining
association rules, setting the Confidence threshold and the Support threshold too high will
lose some high-value association rules. There are only 9 high-value association rules when
the Confidence threshold is 0.5, while there are 12 high-value association rules when the
Confidence threshold is 0.2. In order to mine more high-value association rules, we will
set lower thresholds. However, low thresholds generate more low-value and valueless
association rules at the same time. When the Confidence threshold is 0.2, it will generate
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15 low-value association rules and 23 valueless association rules, which is more than when
the Confidence threshold is 0.5. This will undoubtedly cost us more energy to focus on the
actual value of association rules. However, the Bi-support and Bi-confidence framework
can retain high-value association rules and remove most of the low-value and valueless
association rules at low thresholds.

Table 7. Comparisons of the different frameworks.

Framework Conditions High
Value

Low
Value

No
Value Total

support-confidence min supp. (AB) = 0.2, and
min conf. (AB) = 0.5 9 7 9 25

support-confidence min supp. (AB) = 0.2, and
min conf. (AB) = 0.2 12 22 32 66

Bi-support and
Bi-confidence

min supp. (AB) = 0.2,
min supp.

(
AB ) = 0.2,

min conf. (AB) = 0.2,
and Bi-conf. (AB) = 0.2

12 18 0 30

Table 8. Top 12 rules with the new framework (min supp.(AB) = 0.2, min supp.(AB ) = 0.2,
min conf. = 0.2, and Bi-conf. = 0.2).

Rules Supp. AB Supp. AB Conf. Lift Imp. Csa. Bi-lift Bi-Imp. Bi-conf.

L→M 0.2 0.6 1.00 2.50 0.60 3.87 4.00 0.15 0.75
G→R 0.5 0.3 0.71 1.43 0.21 1.36 0.50 0.71
L→J 0.2 0.5 1.00 2.00 0.50 3.16 2.67 0.13 0.63
R→G 0.5 0.3 1.00 1.43 0.30 2.07 2.50 0.30 0.60
H→I 0.3 0.5 0.75 1.88 0.35 2.26 4.50 0.23 0.58
I→H 0.3 0.5 0.75 1.88 0.35 2.26 4.50 0.23 0.58
M→L 0.2 0.6 0.50 2.50 0.30 2.37 0.20 0.50
F→I 0.4 0.2 0.50 1.25 0.10 0.65 0.40 0.50
F→M 0.4 0.2 0.50 1.25 0.10 0.65 0.40 0.50
M→J 0.3 0.4 0.75 1.50 0.25 1.58 2.25 0.17 0.42
J→L 0.2 0.5 0.40 2.00 0.20 1.58 0.20 0.40
J→M 0.3 0.4 0.60 1.50 0.20 1.29 3.00 0.40

Table 9. Top 9 Rules with the Support-Confidence framework (min supp. = 0.2, min conf. = 0.5).

Rules Supp. Conf. Lift Imp. Csa. Bi-lift Bi-imp. Bi-conf.

G→R 0.5 0.71 1.42 0.21 1.33 / 0.49 0.71
R→G 0.5 1 1.42 0.3 2.1 2.5 0.3 0.6
I→H 0.3 0.75 1.88 0.35 2.26 4.5 0.23 0.58
H→I 0.3 0.75 1.88 0.35 2.26 4.5 0.23 0.58
F→I 0.4 0.5 1.25 0.1 0.65 / 0.4 0.5
F→M 0.4 0.5 1.25 0.1 0.65 / 0.4 0.5
M→L 0.2 0.5 2.5 0.3 2.37 / 0.2 0.5
M→J 0.3 0.75 1.5 0.25 1.58 2.25 0.16 0.42
J→M 0.3 0.6 1.5 0.2 1.29 3 0.2 0.4

From Tables 5 and 6, we can draw the following conclusions.

(1) The traditional Support-Confidence framework can exclude most of the irrelevant
association rules. When the Support threshold and Confidence threshold are low, it
can bring about the combination explosion, and with low constraints, it can also give
rise to a number of frequent patterns which have little correlation with it, and can
even produce some rules which are either negatively correlated or totally wrong. On
the contrary, when the Support threshold and Confidence threshold are high, some
interesting rules and fresh knowledge that users show great interest in will be filtered
out because of data sparsity.
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(2) The Validity (Val.) is not effective and differs greatly from other measurement methods.
There are eight rules whose values are incorrectly estimated by the Validity method in
Table 5. Rules F→J (val. = 0.3) and F→R(val. = 0.3) are in fact irrelevant, while rules,
such as F→G (val. = 0.3), G→N (val. = 0.2), G→F (val. = 0.2), and N→G (val. = 0.1),
may have some restraining influences. The Validity of rule I→F and rule M→F are
both 0, but they are actually positively related.

(3) As the value domain of Conviction (conv.) is the value of Conviction being “1” implies
that “A” have no relation with “B”, and, here, “1” means independence. Additionally,
the greater the value of Conviction is, the higher Interest the rule will have. Values in [0, 1)
represent a negative correlation; thus, lots of valuable association rules will be excluded.
For example, in Table 1, Conv(J → G) = 0.75 < 1 and Conv(M→ L) = 0.64 < 1 both
have a low value of Conviction, but, in fact, it is still possible to find high interest in the
rule J → G and the rule M→ L . Moreover, it is supposed to meet the requirement of
P(AB) 6= 0 at the same time, and thus, the values of many rules cannot be calculated.

(4) The evaluation result of Lift is satisfactory. However, obviously, Lift puts event
A and event B in equivalent positions, that is to say, Lift( A→ B ) is equivalent to
Lift( B→ A ). Once we accept rule A→ B , rule B→ A should also be accepted,
which is sometimes against the fact. Thus, under such circumstances, we propose
Bi-lift to solve this problem. However, Bi-lift also has its own problem since it has to
satisfy two conditions. One is P(AB) 6= 0, and the other is that both A and B are not a
certain event or an impossible event. Its value domain is [0, ∞).

(5) Shortcomings of Improvement (Imp.) are obvious. Firstly, it is hard to figure out what
level of improvement is needed to make a difference. Secondly, the probability of the
antecedent’s occurrence will greatly affect the Improvement evaluation in such a way
that when it is high, the value of Improvement will be very small all the time. Thus, it
is difficult to distinguish valuable rules, and it is likely to make an inaccurate value
evaluation. Chi-square analysis (Csa.) is proposed based on the Improvement (Imp.).
However, the evaluation results indicate that it eventually fails to solve the problem of
improvement, and its evaluation performance is not as good as that of Bi-improvement.
Therefore, this paper puts forward Bi-Improvement aimed at evaluating the value of
rules in a more accurate way.

(6) The evaluation results of the author’s “Bi-confidence”, which is adjusted by the nonoc-
currence probability of the antecedent, will increase the differentiation and accuracy.
The novel Bi-support and Bi-confidence framework is more efficient than the traditional
Support-confidence framework. The comparative results of the two different frame-
works are shown in Table 7. There are nine rules that are useless (five rules have
a negative correlation, and four rules have no correlation) in the Support-confidence
framework. The new framework retains 12 high-value association rules of the old
framework and reduces 32 non-value association rules. The high-value association
rules are shown in Tables 8 and 9. Evaluation results and comparisons of Improvement
(Imp.), Bi-improvement (Bi-Imp.), Bi-confidence (Bi-conf.), Lift, Chi-square analysis (Csa.),
and Bi-lift are shown in Figure 1.
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According to the evaluation results and the performance analysis for the measurement
method, the Validity (Val.) is not effective, and it can even lead to some essential mistakes
under some circumstances. For instance, sometimes, when the evaluation shows negative,
but the actual result shows to be positive.

Though essential mistakes would not occur in the Improvement (Imp.) and Chi-square
analysis (Csa.), the stability of their evaluation still needs further improvement since they
are likely to produce errors in calculation. Bi-lift has a small problem, as its premise is
P(AB) 6= 0, and A and B are not certain events or impossible events. The evaluation
results of the “Bi-confidence” could help improve the differentiation and accuracy, and
the results show its high stability of evaluations. In conclusion, we can leave out indica-
tors, such as Validity (Val.), Improvement (Imp.), Chi-square analysis (Csa.), Lift, and Bi-lift
while we try to build up a reasonable measurement framework based on the indicators
of Support, Confidence, and Bi-confidence. Procedures are as follows: firstly, use the Sup-
port threshold and Confidence threshold to filter out the frequent set, Supp( A→ B ) ≥min
supp, Supp(¬A→ ¬B ) ≥min supp, and conf ( A→ B ) ≥min conf ; secondly, calculate the
Bi-confidence value, and select rules by Bi-conf ( A→ B ) ≥min Bi-conf.

To sum up, in this paper, we propose an improved evaluation methodology for mining
association rules. However, given that only a small number of data are used in verification,
the new method and the new framework need to be further tested through the analysis of
practical cases in the following studies.

5.2. Verification Analysis of Public Data Sets

In order to test the rationality and stability of the Bi-directional measure framework
of association rules, this paper uses the public built-in data set of IBM SPSS Modeler for
verification. The data set consists of more than 1000 shopping records with 11 items,
including fruits, fresh meat, dairy products, and so on. Each shopping record contains 1 to
11 items. This paper uses traditional methods and Bi-support and Bi-confidence framework
to generate association rules and verifies the stability of the Bi-support and Bi-confidence
framework in removing low-value and valueless association rules. When the amount of
data becomes larger, it is necessary to reduce the Confidence threshold or Support threshold
to generate sufficient association rules, or the valuable association rules will be lost. If the
Support threshold is maintained at 0.2, as mentioned above, less than 10 association rules
are mined, failing to validate the ability of the Bi-support and Bi-confidence framework to
remove low-value and valueless association rules. Therefore, this paper adjusts the Support
threshold to 0.05, generating 72 association rules.

The comparative results of two different frameworks are shown in Table 10. Of the
72 association rules mined in the Support-Confidence framework, only 10 are of high value,
but 48 are invalid. In the Bi-support and Bi-confidence framework, 48 invalid association rules
are successfully filtered out, and 10 high-value association rules are retained. High-value
association rules are shown in Table 11.

Table 10. Comparisons of the different frameworks with data from the IBM SPSS Modeler.

Framework Conditions High
Value

Low
Value

No
Value Total

support-confidence min supp. (AB) = 0.05, and
min conf. (AB) = 0.2 10 14 48 72

Bi-support and
Bi-confidence

min supp.(AB) = 0.05
min supp.

(
AB
)
= 0.05,

min conf .(AB) = 0.2,
andBi− conf .(AB) = 0.2

10 5 0 15
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Table 11. Top 10 rules with the new framework (min supp.(AB) = 0.05, min supp.(AB ) = 0.05,
min conf. = 0.2, and Bi-conf. = 0.2).

Rules Supp. AB Supp. AB Conf. Bi-conf.

Beer→Frozen meat 0.29 0.57 0.58 0.39
Frozen meat→beer 0.30 0.57 0.56 0.39
Frozen meat→Canned vegetables 0.30 0.56 0.57 0.39
Canned vegetables→Frozen meat 0.30 0.56 0.57 0.39
Beer→Canned vegetables 0.29 0.57 0.57 0.38
Canned vegetables→beer 0.30 0.57 0.55 0.37
Candy→wine 0.27 0.58 0.52 0.32
Wine→candy 0.28 0.58 0.50 0.32
Fish→Fruits and vegetables 0.29 0.55 0.50 0.28
Fruits and vegetables→fish 0.29 0.55 0.48 0.28
Beer→Frozen meat 0.29 0.57 0.58 0.39
Frozen meat→beer 0.30 0.57 0.56 0.39

The bi-directional measure framework of association rules can stably remove low-
value association rules and retain high-value rules in the verification of a small volume of
data (11 instances, 10 pieces of data) and medium volume of data (11 instances, 1000 pieces
of data). In order to test whether the bi-directional measure framework of association rules
can perform well in the case of a large number of data, we use a groceries data set (https:
//github.com/stedy/Machine-Learning-with-R-datasets/blob/master/groceries.csv ac-
cessed in February 2021), which is a real transaction record of a grocery store for one month,
with a total of 9835 consumption records and 169 items. The comparative results of the two
different frameworks are shown in Table 12. There are 55 association rules with no value
or low value among the 114 association rules mined in the Support-Confidence framework,
while in the Bi-support and Bi-confidence framework, there are only 7 association rules with
no value or low value, and 50 high-value association rules are retained.

Table 12. Comparisons of different Framework with Groceries data set.

Framework Conditions High
Value

Low
Value

No
Value Total

support-confidence min supp. (AB) = 0.02,
and min conf. (AB) = 0.1 59 37 18 114

Bi-support and
Bi-confidence

min supp. (AB) = 0.02
min supp.

(
AB ) = 0.02,

min conf. (AB) = 0.1
and Bi-conf. (AB) = 0.1

50 7 0 57

6. Conclusions

This paper presents several key indicators for analyzing and comparing the various
measures developed in the statistics and data mining literature. Given differences in
some of their indicators, a significant number of these measures may provide conflicting
information about the interestingness of rules. Therefore, how to estimate the reliability
of the obtained association rules has become a research hotspot. We demonstrate the
benefits of using Support in eliminating irrelevant and poorly correlated patterns. Studying
the traditional association rules mining relies on the Support-confidence framework, and
only rules that meet both the Support-Confidence threshold can be called strong association
rules. However, sometimes strong association rules are of no interest to users, and even
worse, these association rules can be misleading to some extent. Thus, in order to find the
most valuable association rules, it is necessary to further analyze and evaluate the mined
rules. Finally, we build up a reasonable measure framework (Bi-support and Bi-confidence
framework) for mining appropriate association rules.

https://github.com/stedy/Machine-Learning-with-R-datasets/blob/master/groceries.csv
https://github.com/stedy/Machine-Learning-with-R-datasets/blob/master/groceries.csv
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After mining association rules, how to judge the value of the mined rules is another
hot topic. Generally, since most rules with high Support are either obvious or known to
users, rules with low Support, bringing users something new, may outperform the former
in terms of novelty. However, a relatively low Support threshold can also give rise to the
combination explosion. Thus, the best way to resolve this dilemma is to set a low Support
threshold first or use the dynamic Support threshold to complete a series of mining and
then employ the new association rules measure framework to screen the mining results
and extract the most valuable and interesting association rules at the same time. The new
association rule measurement framework has high accuracy and stability for the screening
and selecting of association rules. Moreover, it can be widely used for mixed or combined
recommendations in commercial areas.

Although our proposed method improves the accuracy of the traditional interesting-
ness measure methods and framework, it suffers from two limitations. The first limitation
is that the experiment did not test for massive data. The second limitation is that the limited
experimental results in various related fields. In the future, we will design parallel methods
to deal with massive data and apply our findings to various related fields to observe their
robustness [34–41].
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