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Abstract: In the paper we prove for the first time an analogue of the Wiman inequality in the class of
analytic functions f € .Ag (G) in an arbitrary complete Reinhard domain G C C?, p € N represented
by the power series of the form f(z) = f(z1,- -+ ,zp) = ZM“’:O a,z" with the domain of convergence G.
We have proven the following statement: If f € A?(G) and h € H?, then for a given e= (ey,...,€p) €

Ri and arbitrary 6 > 0 there exists a set E C |G| such that [, A, hrddn-dry +o00 and for all
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r € A¢ \ E we have M¢(r) < ps(r)(h(r)) = InZ
that this assertion at p = 1, G = C, h(r) = const implies the classical Wiman—Valiron theorem for
entire functions and atp =1, the G =D := {z € C: |z| < 1}, h(r) = 1/(1 — r) theorem about the
Kévari-type inequality for analytic functions in the unit disc D; p > 1 implies some Wiman'’s type
inequalities for analytic functions of several variables in C" x DK, n,k e Zy,n+keN.
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Let C, R, Z, N be sets of complex numbers, real numbers, integers, and positive
10.3390/ axioms10040348

integers, respectively, and Z; = NU {0}. We denote by A} (G), p € N, the class of an
analytic functions f in a complete Reinhardt domain G C C7, represented by the power
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(n1,...,np) € ZL, |n| = Z]le nj; EP := AJ(CP) is the class of entire functions of several
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fations. For a function f € AS(G) of form (1) with domain of convergence G and r =
(ri,---,rp) €1Gl:={r = (r1,...,1p): 1j = |zjl,z= (z1,...,2p) € G} we denote

Ay ={t€[G|: t; > r?, jefl - pt} up(r) = max{|a,|r)" -- -rzp: nezl},
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We say that a domain G C C? is the complete Reinhardt domain if:

(ﬂ) z = (Zl,...,Zp) eG= <VR = (R],...,Rp) S [O,l}p)i Rz = (Rlzl,...,Rpr) eG
(a complete domain);

(b) (z1,...,2p) €G = (V(b1,...,0p) € RP): (z16,...,2,¢"%) € G (a multiple-circular
domain).

The Reinhardt domain G is called logarithmically-convex if the image of the set
G*={z€G:z -...-zp # 0} under the mapping Ln: z — Ln(z) = (In|z],...,In|z,]) is
a convex set in the space R”. In one complex variable (p = 1), a logarithmically-convex
Reinhardt domain is a disc. The following complete Reinhardt domains (p > 2) are
considered most frequently:

Cp(R) :={z € CP: |z1| <Ry,...,|zp| <Ry}, R=(Ryq,...,Rp) € (0,40c0)”, (polydisk),
B,(r) := {z € CP: |z| := \/|zl|2 Fo ot zp2 <1} (ball),
y(r) :=={z € CP: |z| +... 4+ |z <7}, r>0.

Note, that C,(R) C G for every w = (wy,...,wp) € Gand R = (|wy|,...,|wp|). The
domains Cy(rey), e; = (1,...,1) € RP,B,(r), I1,(r) (r > 0) are the logarithmically-convex
complete Reinhardt domains. However, for example, the complete Reinhardt domain

Gip={z=(z1,22): |z1] <1, |z2] <2} U{z = (z1,22): |z1] <2, |z2] < 1}
is not a logarithmically-convex domain.

2. Wiman'’s Type Inequality for Analytic Functions of One Variable

In article [1] the following statement is proved.

Theorem 1 ([1]). Let a nondecreasing function h: [0,R) — [10, 00) such that f h(r)dInr =
+oo0 for some rg € (0, R). Iff € Er, R € (0, +00] is an analytic function represented by a power

series of the form f(z) Z anz", then (V6 > 0) (3E(6, f,h) = E C (0,R)) (3ro € (O,R))
(Vre(ro,R)\E)

Mg (r) < h(r)yf(r){lnh(r)ln(h(r)yf(r))}1/2+‘5 and ) h(r—r)dr < 400,
where M¢(r) = max{|f(z)| : |z| = r} is the maximum modulus and y¢(r) = max{|a,|[r" : n >
0} is the maximal term of power series.

For nonconstant entire functions f € £ we can choose h(r) = 10 and § = ¢/2 for
an arbitrarily given ¢ > 0. Then, from Theorem 1 we obtain the assertion of the classical
Wiman-Valiron theorem on Wiman’s inequality (for example see [2], [3] (p. 9), [4,5], [6]
(p- 28), [7-10]), i.e., that for all ¥ € (rp, +o0) \ E, fE dlnr < 400, we have

M(r) < 100 () {In 101n(100 (1)) }/27 < juy(r) In/25 (1), @

For analytic functions f € & in the unit disk D; we can choose (1) = 1= Then,

1= 220 (2

pr(r) 1l/2+0 pr(r)
~ (-t 1—r

d
, asr%l—O,rgZE,/—r<+00,
el—vr

i.e., the theorem about the Kévari-type inequality for analytic functions in the unit disc
D={zeC:|z| <1} ([11,12]).
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Regarding the statement about the Wiman inequality (2), Prof. 1.V. Ostrovskii in 1995
formulated the following problem: What is the best possible description of the value of an
exceptional set E? In article [7], the authors found, in a sense, the best possible description
of the magnitude of the exceptional set E in inequality (2) for entire functions of one
complex variable. In fact, we obtain, in a sense, the best possible description for each entire
function f for h(r) = Inps(r).

The same issue was considered in a number of articles (for example, see [13-15]) in
relation to many other relations obtained in the Wiman—Valiron theory.

Note, that for analytic functions f € &; such a problem is still open. Theorem 1
contains a new description of the exceptional set in the inequality (2) for analytic functions
f € &;. Perhaps the best possible description of an exceptional set is also obtained with

h(r) = Inpg(r).

3. Wiman'’s Type Inequality for Analytic Functions of Several Variables

Some analogues of Wiman'’s inequality for entire functions of several complex vari-
ables can be found in [16-22], and for analytic functions in the polydisc D*, p > 2,
in [23,24].

In paper [25] some analogues of Wiman’s inequality are proven for the analytic
f(z) and random analytic f(z,t) functions on G = DExCPtreN 1</(< p, I =
{1,...,¢}, J={¢+1,...,p} of the form (1) and f(z,t) = Wn"ﬂ’zo anZy(t)z", respectively.
Here, Z = (Z,) is a multiplicative system of complex random variables on the Steinhaus
probability space, almost surely (a.s.) uniformly bounded by the number 1. In particular,
the following statements are proven:

Theorem 2 ([25]). Let f € AP(G), G = D! x CP~¢, ¢ € N, 1 < ¢ < p. Forevery & > 0
there exist the sets Ey = E1(6, f), Ex = E2(5, f) € [0,1)! x (1, +00)P~! of asymptotically finite

dry-....drp-dryyq-....dr
ORI~ (1—r11)-...-(él—r?)r-lrfﬂ-..’.;-r,, < +oo for some € > 0), such

logarithmic measure (i.e., ngm[o 1
that the inequalities

1 1 p+o
M < - InP/%tS Inr;: , 3
70 < O = (w0 T 5 _ri)(]g nr;) )
1 1 p/2+6
p/4+o l l .
Mf(r’ t) S luf(r) llell (1 _ ri)1/2+5 In (]/lf(f’) llell 1— 7’1’) (]61 lnr]) :

hold for all v € |G| \ Ey and forall v € |D| \ Ej a.s. in t, respectively.

The sharpness of the obtained inequalities is also proven.
The main purpose of this article is to prove analogues of Theorems 1 and 2 in the class
of analytic functions f € A} (G) for the arbitrary complete Reinhardt domain G.

4. Main Result

The aim of this paper is to prove some analogues of Wiman'’s inequality for the
analytic functions f € A}J(G) represented by the series of form (1) with the arbitrary
complete Reinhardt domain of convergence G. By A”(G) we denote a subclass of functions
f € A}(G) such that a%f(zl,- -+ ,2zp) Z0inGforanyj € {1,...,p}.

Let H? be the class of functions h: |G| — Ry such that & is nondecreasing with respect
to each variable and h(r) > 10 for all ¥ € |G| and

h e
/ h(r)dry - -dry
rl ... rp
Ae

for every e € RY. such that |G| N A, is a nonempty domain in R .
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For h € HP we say that E C |G| is the set of finite h-measure on |G| if for some ¢ € R,
such that |G| N A, is a nonempty domain in |G| C RY. one has

h(r)dry - - - dryp

rl.--rp

Va(EN Ae):= /

ENA

< +o00.

We denote a set of such sets by Sj,.

Theorem 3. Let f € AP(G). Then, for every e € RE,6 > 0 there exists a set E € Sy, such that
forall v € A¢ \ E the following inequality takes place:

p+1 r P p 14 4 %+5
Mg (r) < pp(r)(h(r)) = In2*h(r) ln2+‘s{yf(r)h(r)}1—{< I nek> L@
I

k=1kzj  Ek
Remark 1. Choosing p = 1 and G = Dy in Theorem 3 leads to the result in Theorem 1.

5. Auxiliary Lemmas

The proof of the main result uses the probabilistic reasoning from [17,18] (see also [20]),
which has already become traditional in this topic, and differs from the proofs of similar
statements in [25].

Our proof actually uses a number of lemmas (Lemmas 1-4) from article [18]. But
their proofs in article [18] are not written with sufficient completeness, and also contain
inaccuracies in reasoning. Therefore, we present them here along with the complete proofs.

In order to prove a Wiman's type inequality for analytic functions in G we need the
following auxiliary results.

Let D¢(r) = (D;;j) be a p x p matrix such that

d d 0 ..
Dij :I’lafrl<1’]afrjlan(r))= ala]h’IMf(T’), ai :Fiafri, 1] € {1, ,p}

Let I be an identity matrix of order p.
For the set E C R” by #(E N Z) we denote the quantity of the elements of set E N Z/, .

Lemma 1. Let B be parallelepiped in RP with edges of the lengths Iy, 15, . .., 1, so that there exists
an isometry H: RP — RP such that

H:B— {xeR: |x;| <[;/2,j € {1,2,...p}}.

Then,
p
#(BNZP) <A, [ [ +1),
j=1
n.r(ng2
where A, is the inverse value to the volume of a sphere with the radius 5 in R?, i.e., Ap = 2 rf,/zz ),
7T

Proof. Denote
I,
/: p‘ . < —] /
B {xE]R x| < 2,]6{1,...,;9}},

L+1
B* = {XGRPZ |x]| < ]T/je {1/1P}}3 B.
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Let S(n) be an open sphere with a center at n € Zi with radius % Note that

J S(n) c B

nEZiﬂB

By the monotony of the Lebesgue measure u in R? we obtain

P‘( U 5(ﬂ)>SM(B*)-
neZiﬂB

Finally, by the additivity of this measure, we obtain
p p
S(1/2)) -#{BNZ". (Ii+1), #{BNZ' } < (1 +1).
#(S(1/2)) - #{BN 11+ {BnZi} 1/2]11+
O

By AT we denote the Moore-Penrose inverse matrix of A ([18,26]), i.e.,

At =1im AT(AAT +61)7!
6—0

Lemma 2. Let o« € RP,C > 0, A bea p X p nonnegative matrix 0 < m = rank A < p and
E={xeR": (x —a)AT(x—a)T < C}.
There exists a constant & = 6(C, p) > 0 that does not depend on A and « such that
#{ENZ"} < 5(det(A+1))V/2.

Proof. Let 0 < A1 < Ay < ... < Ay be positive eigenvalues of the matrix A. Then,

%1, %2, el ﬁ are eigenvalues of the matrix A™. Thus, there exists an isometry H: R" —
R™, such that

2
m v
H: E—>{xeR Z)Tf } EcH YxeR": x<,/CA,je{1,2,..., m}}.
By Lemma 1 there exists a constant ¢’ > 0 such that
#{ENZ" }<(5’H 2(CA)Y2+1) 5’H 2(CA)Y2+1).

It remains to remark that

i P 1/2
[T +1) = det(A+1), {ENZL} < 8 (V2O)P ([T(A+1)) < 8" (det(A+1)/2.
j=1 j=1

O
Lemma 3. Let & = ({1, 8o, .. .,ép)T be a random vector, x = M& = (M¢&1, M&s, .. .,M@F)T, A
covariance matrix of ¢, 6 > 0, 0 < m = rank A < p. Then,

P{w: (§(w) =) A% (E(w) —a)T <o} 21— 5.



Axioms 2021, 10, 348

6 of 12

Proof. Let us consider the random variable
Z(w) = (§(w) —a)TAT (&(w) — a).

As A is non-negative, then Yw € Q: Z(w) > 0. Moreover, as A is also symmetric,
there exists an orthogonal matrix G such that GGT = GTG = I and GT AG = Q. Here, I is
the identity matrix of order p and Q = diag(Aq, A2, ..., A, 0,...,0) is the diagonal matrix
with the ordered eigenvalues A1 > A > ... > Ay, > 0,0 < m =rank A < p. Then (see, for
example [26,27]),

GTAG =Q, GGTAGGT = GQGT — A = GQGT,
T =(GQGH* =(GNH*Q*G¢T = (GN) Q"G =GQTGT,
ie, A=GQGT, At = GQ1GT. Therefore,
Z=(-a)TAY (@ —a) = (£ ~a)TGQ"GT(E—a) =
= -0)'GQ 2 Q26T (¢ —a) = (Q V3G (G — ) (Q VG (E — ) = YTY,

where ¥ = Q’l/ZGT(C —a), Q2 = diag(A; —1/2 Ay 1/2,...,/\,711/2,0,...,0). The ex-
pected value and covariance of the random Vector Y satisfy the equations
MY = M(QV2GT(¢—a)) = Q V2GTM(¢ —a) =0,
covY = cov(QY2GT(Z — &) = cov(QV2GTE) = Q712G cov (&) (Q2GT)T
_ Q 1/2GTAGQ 1/2 _ Q 1/2QQ 1/2 dlag( .,1,0,...,0 )
\‘,—/

N’
m times p—m times

Therefore,

MZ=M("Y) = (ZW) ;MW:Z

Finally, using Markov’s inequality we obtain

=
N
S

Plw: Z(w) > 8} = Plw: (£(w) — 1) AT (E(w) — )T < 5} <Mz _
P{w: (§(w) —a) AT (§(w) —a)T <6} >1- g
O
Lemma 4 (Theorem 3.1, [18]). Let f € AP. There exists a constant Co(p) such that

My (r) < Co(p)ps(r)(det(Ds(r) + 1))/,

where 1 is the identity p X p matrix.
Proof. Let us consider random vector X(w) = (X;(w), Xo(w), ..., Xp(w)) such that
Plw: Xj(w) =n;,j€{1,...,p}} = ( )| e |11y k€ T
Then for j € {1,2,..., p} we obtain

MX; = 2 nilay|r" =13 lnﬁﬁf()

imf =0
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D¢(r) is covariance matrix of random vector X(w).
One can choose § = 2p in Lemma 3. We then obtain

1
2

< .uf(r> _#{x ERii (x—zx)D?(x—lX) <2p} <2p V}i{(( ))(dEt(Df( )"’1))1/2

=<1 2p P{w: (x uc)Df(x a)t <2p} <

M (r) < dpps(r)(det(Dy(r) + )2

Lemma 5. Let f € AP. Then for e € RE,5 > 0 there exists a set E € Sy, such that for all
r € Ag \ E the inequalities

det(Df( ) + I) <

gh(r)ﬁ(]aa In 90t (r) +1n( ))ﬁln”‘s( 1n9nf()+1n(%)), 5)

j=1° 7] j=1 /
9 4 er .

g W) < hO W) [ W (2, jefi ) @
7 k=Lk#j &

hold.

Proof. Let Ey C |G| be a set for which inequality (5) does not hold. Now we prove that
Ey € Sy, Since r]'a% InMs(r) > 0, there for any r € A, we have

d
rja—lni)ﬁf( )—i—ln( )>1 jed{l,--,r}
&j

Tj
Then,
W\dry - - - d
Vh(EOﬁAe):/"'/MS
EmA. rl...rp
0 €
det(D Ddry---d
- / et(Dy(r) + I)dry rp

B ; ; - - .
EoNAe H T H (1’]§ In Emf(r) + lnr]-) H ll’ll—H) (1’]% In Emf(r) + 11‘11’]')
=1 "j=1 J j=1 ]

LetU: |G| — %i be a mapping such that U = (uy(r), ua(r),- -, up(r)) and u;(r) =
r]-a%lan(r) ’Hn(?]-])/ jed{l,---,p}, r = (r,r---,rp). Thenfori,j € {1,2,---,p}

we obtain
ouj 9/ 0 eriny_ 1. 1
Er 871'<r137’i In ¢ (r )—|—ln( e ))— rialallnmf(r> Ty
duj 9 ( 9 eriny_ 1. ..
a—rj = a—]fj(rlafrilngﬁf(r) +11'1(87j)>* ;aza] lnf)ﬁf(i’), 1 7é]

Hence, the Jacobian

aul au1
Br1 ar,,
D Uy, Uy, -+, U P 1
Ji:= (i, 2 p>: :H—'det(Df(r)—f—I).
D(r1,12,...,7p) - | =17

R ar,
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Therefore,

durduy - - - du
Vi(EoNBe) < / ' / 1+5 };+5 =
upIn""ug L oupInt T uy
U(EgNAe)

+o00 +o0
duqduy - - - dup
S// 1+o T, < oo
4 1 I ug L upInt Ty

Let E; C |G| be a set for which inequality (6) does not hold for j = 1. Now we prove
that Ey N A: € S,

Then,
V(E ﬂA)://h(r)drl—drp<// rl%lnm}:(r)drl..,drp
R ety k 144 VSRS
E1NAe E1NA; (I—[l }’])ln mf(r) I—[2<ln (;))
1= j=

Let V: |G| — R’ be a mapping such that V = (v1(r),va(r),- -+ ,vp(r)) and vy (r) =
InM(r), vj = 1n(%_f)j €{2,---,p}, r=(ri,r,---,1p). Therefore, the Jacobian

D(01/02/"' /Up) _

J2i= D(r1,72,...,1p)
= ) —Hr -rlar lnf)ﬁf(r)
.. 17t 1
0 0 %
Therefore,

00 “+o00
duyd -d dujduy - --d
vp(E1 N A) g/ / it ff(;S/ i Uy ff5<+oo.
(Eona) u1u2 up (ulug...up)

Let E; C |G| be a set for which inequality (6) does not hold for j € {2,..., p}. Similarly,
EiNAe € Spforj e {2,...,p}. It remains to remark that the set E = Uf:() E; is also a set of
finite h-measure in |G|. O

6. Proof of the Main Theorem

Proof of Theorem 2. Let E be the exceptional set from Lemma 2. Then, using Lemma 1 we
obtain forallr € A\ E
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Mg (r) < Ms(r) < Copp(r)(det(Ds(r) +1))'/* < Copg(r)y/h(r)

Xﬁ(r]aa In 90t (1 )+1n(er]>)1/21—[1n (1+6)/ (r]aa In D (r )+1n(zj>)§
=
< Coy 1)y /n(r) n( Mo () T ()4

61’]' 1/2
(5))
k=1k#] €k &j

><ﬁln(l+5)/2(h(r)lnH‘simf(r) ﬁ lnH&(%)Hn(m))S

j=1 k=1k#] Ek &

1/2+96
P
< ]«lf(?’)(h(r)) el 1n§+p6 h(r) lng gﬁf(i’) lng+p5 In Dﬁf H( n Eerk> <
k=1k#j K

j=1
p Pl1445
< () (R(r) " IEFPO () In% () InE 70 o (1) H(l % ) i
=
lnimf(r) S
1 -1 P er;
<Inpg(r) + (% +(5) Inh(r) + (g +5> Inln D (r) + (pT(l +4(5)) Y In* lng—j]
j=1

Note that we can chose set E such that Vr € (A; N |G|) \ E
M (r) > Cp,, pp(r) >1
where C;; is some constant such that C;; > In%” C;. Then,
My (r) > In?” Ms(r), InMs(r) > 2pInInMy(r),

1 p
Elnimf(r) < In9g(r) — (E +5) InInMs(r) <

< Inps(r) + (’Z’TJrl +6) Inh(r) + (p —(1+49) )) Zlnﬂn
In M (r) < (14 p+26)In {yf(r)h(r) ]‘{m?}f}
-

p+1 P P er:
My(r) < iy ) H0) 5 ) n ()T Tin 1

. P , P
© Inl/2+ I {Vf(r)h(r> Hlni:]} H(In _J
j=

O

7. Corollaries Hypotheses.

Let us consider the case when domain G is bounded. Then there exists R > 0 such
that G C Cp(R) := {z € CP: |zj] <R, i € {1,...,p}}. Therefore we have forall r € A \ E

ﬁ( IE[ 1nen(>%+5< H(lnﬁ)%ﬂus
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Denote

K:= {Z €G: In°h(r) < ﬁ(lnd{)gﬂo&}.

k=1 &k

In addition, v,(E N A¢) is finite when

VEH(ENA:) = / h(r)dry - dry < +oo.
ENA;

Note that

v (KNA) = / h(r)dry---drp < exp{

KNA, k=1 &k N
P eR\ %5+P
Sexp{ﬂ(lngk) /dr1~-drp<+oo,
- G
Finally, for all » € A¢ \ (E U K) we obtain
p 7+0
B nk 14 er
My(r) < pg(r) (h(r) = In=* h(r) 1n2+5{]/lf(1’)h(r)}n< I1 k) <
=1 \k=1kzj &k
LH = p e E+p5
< 1)) 5 ) g 0900 T (05 )
k=1

pt1

< pp(r)(h(r))

Thus, we prove such a statement.

2+ B(r) InE 0 {up (r)h(r) ).

Theorem 4. Let f € AP(G), G is bounded. Then for every ¢ € RE, 6 > 0 there exists a set
E € Sy, such that forall v € A, \ E we have

My(r) < pup(r)(h(r) "3 EH(r) In2* {pu s (1) R(r) ). @)

In the case when

G=By(1):={z€C: [z == \/[uf+... + ]z, < 1}
one can choose h(r) = (1 —|r|) 7P, |r| = (r% +m+,,%)l/2'

Theorem 5. Let f € AP (B, (1)), h(r) = (1 — |r|)~P. Then, for every e € RE_, 5 > 0 there exists
aset E € Sy, such that for all v € A, \ E we have

Hy(r) pis H()
M < In? .
£r) = (1— |r]) 3 (P Hp)+0 T
If we additionaly suppose that
|4
h(r) =T [hi(rj) ®)
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then (see [23]) inequality (6) from Lemma 5 can be replayced by

d Inom ( ) < hé(r)hlits(r‘)l 1+59;n IEI ln1+0(€7’k) i c {1 }
"5 )= i\ r ] s Py
) k 1k#j

We therefore have the following statement:

Theorem 6. Let f € AP(G), h € HP satisfies condition (8). Then for every e € RE 6 > 0 there
exists a set E € Sy, such that for all r € A, \ E we have

4 er s
My(r) < pg(r) ((r)) 2 In 20 {u (1) }H< [] k) :
]

k=1k#]
Inequality (3) follows from this statement if we choose h(r) = [Tc; ﬁ

8. Discussion

In view of the obtained results we can formulate the following conjectures:

Conjecture 1. The descriptions of exceptional sets in the Theorems 1-3 are in a sense
the best possible.

Conjecture 2. For a given i € H, the inequality (4) is sharp in the general case.
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