
axioms

Article

List Approximation for Increasing Kolmogorov Complexity

Marius Zimand

����������
�������

Citation: Zimand, M. List

Approximation for Increasing

Kolmogorov Complexity. Axioms

2021, 10, 334. https://doi.org/

10.3390/axioms10040334

Academic Editor: Victor Mitrana

Received: 27 September 2021

Accepted: 30 November 2021

Published: 7 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer and Information Sciences, Towson University, Baltimore, MD 21252, USA;
mzimand@towson.edu

Abstract: It is impossible to effectively modify a string in order to increase its Kolmogorov complexity.
However, is it possible to construct a few strings, no longer than the input string, so that most of
them have larger complexity? We show that the answer is yes. We present an algorithm that takes
as input a string x of length n and returns a list with O(n2) strings, all of length n, such that 99% of
them are more complex than x, provided the complexity of x is less than n− log log n−O(1). We
also present an algorithm that obtains a list of quasi-polynomial size in which each element can be
produced in polynomial time.

Keywords: Kolmogorov complexity; random strings; extractors

MSC: 68Q30

1. Introduction

The Kolmogorov complexity of a binary string x, denoted C(x), is the minimal de-
scription length of x, i.e., it is the length of the shortest program (in a fixed universal
programming system) that prints x. We analyze the possibility of modifying a string in
an effective way in order to obtain a string with higher complexity, without increasing
its length. Strings with high complexity exhibit good randomness properties and are
potentially useful, because they can be employed in lieu of random bits in probabilistic al-
gorithms. It is common to define the randomness deficiency of x as the difference |x| −C(x)
(where |x| is the length of x) and to say that the smaller the randomness deficiency is, the
more random the string is. In this sense, we want to modify a string so that it becomes
“more” random. As stated, the above task is impossible, because, clearly, any effective
modification cannot increase the Kolmogorov complexity (at least not by more than a
constant). If f is a computable function, C(f (x)) ≤ C(x) +O(1), for every x. Consequently,
we have to settle for a weaker solution and the one we consider is that of list approximation.
List approximation consists in the construction of a list of objects guaranteed to contain at
least one element having the desired property. Here, we try to obtain a stronger type of list
approximation, in which, not just one, but most of the elements in the list have the desired
property. More precisely, we study the following question.

Question. Is there a computable function which takes as input a string x and outputs a
short list of strings, which are not longer than x, such that most of the elements in the list
have complexity greater than C(x)?

The formulation of the question rules out some trivial and non-interesting answers.
First, the requirement that the list is “short” is necessary, because, otherwise, we can ignore
the input x and simply take all strings of length n and most of them have complexity at
least n− 2, which is within O(1) of the largest complexity of strings of length n. Secondly,
the restriction that the length is not increased is also necessary, because, otherwise, we can
append to the input x a random string and obtain, with high probability, a more complex
string (see the discussion in Section 2). These restrictions not only make the problem
interesting, but also amenable to applications in which the input string and the modified

Axioms 2021, 10, 334. https://doi.org/10.3390/axioms10040334 https://www.mdpi.com/journal/axioms

https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-5938-6599
https://doi.org/10.3390/axioms10040334
https://doi.org/10.3390/axioms10040334
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/axioms10040334
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms10040334?type=check_update&version=1

Axioms 2021, 10, 334 2 of 11

strings need to be in a given finite set. The solution that we give can be readily adjusted to
handle such applications.

There are several parameters to consider. The first one is the size of the list. The shorter
the list is, the better the approximation is. Next, the increasing-complexity procedure that
we seek does not work for all strings x. Let us recall that C(x) ≤ |x| + O(1) and, if x
is a string of maximal complexity at its length, then there simply is no string of larger
complexity at its length. In general, for strings x that have complexity close to |x|, it
is difficult to increase their complexity. Thus, a second parameter is the bound on the
complexity of x for which the increasing-complexity procedure succeeds. The closer this
bound is to |x|, the better the procedure is. The third parameter is the complexity of
the procedure. The procedure is required to be computable, but it is preferable if it is
computable in polynomial time.

We show the following two results. The first one exhibits a computable list approximation
for increasing the Kolmogorov complexity that works for any x with complexity C(x) <
|x| − log log |x| −O(1).

Theorem 1 (Computable list of quadratic size for increasing the Kolmogorov complexity).
There exists a computable function f that takes as input x ∈ {0, 1}∗ and a rational number δ > 0
and returns a list of strings of length at most |x| with the following properties:

1. The size of the list is O(|x|2)poly(1/δ);
2. If C(x) < |x| − log log |x| −O(1), then the (1− δ) fraction of the elements in the list f (x)

have a Kolmogorov complexity larger than C(x) (where the constant hidden in O(1) depends
on δ).

Whether the bound C(x) < |x| − log log |x| −O(1) can be improved remains open.
Further reducing the list size is also an interesting open question. We could not establish a
lower bound and, as far as we currently know, it is possible that even a constant list size
may be achievable.

In the next result, the complexity-increasing procedure runs in polynomial time in the
following sense. The size of the list is only quasi-polynomial, but each string in the list is
computed in polynomial time.

Theorem 2 (Polynomial-time computable list for increasing the Kolmogorov complexity).
There exists a function f that takes as input x ∈ {0, 1}∗ and a constant rational number δ > 0 and
returns a list of strings of length at most |x| with the following properties:

1. The size of the list is bounded by 2O(log |x|·log(|x|/δ));
2. If C(x) < |x| −O(log |x| · log(|x|/δ)), then (1− δ) fraction of the elements in the list f (x)

have a Kolmogorov complexity larger than C(x);
3. The function f is computable in polynomial time in the following sense: there is a polynomial

time algorithm that takes as input x, i and computes the i-th element in the list f (x).

Remark 1. A preliminary version of this paper has appeared in STACS 2017 [1]. In that version,
it was claimed that the result in Theorem 1 holds for all strings x with C(x) < |x|. The proof had a
bug and we can only prove it for strings satisfying C(x) < |x| − log log |x| −O(1). The proof
of Theorem 2 given here is different from that in [1]. Theorem 2 has better parameters than its analog
in the preliminary version.

Remark 2. Any procedure that constructs the approximation list can be converted into a prob-
abilistic algorithm that does the same work and picks one random element from the list. The
procedure in Theorem 2 can be converted into a polynomial-time probabilistic algorithm, which uses
O(log |x| · log(|x|/δ)) random bits to pick which element from the list to construct (see item 3 in
the statement).

Axioms 2021, 10, 334 3 of 11

Vice-versa, a probabilistic algorithm can be converted into a list-approximation algorithm in
the obvious way, i.e., by constructing the list that has as elements the outputs of the algorithm for
all choices of the random coins.

Thus, a list-approximation algorithm A1, in which (1− δ) elements in the list have the desired
property, is equivalent to a probabilistic algorithm A2 that succeeds with probability 1− δ. The
number of random bits used by A2 is the logarithm in base two of the size of the list produced by A1.

1.1. Basic Concepts and Notation

We recall the standard setup for Kolmogorov complexity. We fix an universal Turing
machine U. The universality of U means that, for any Turing machine M, there exists
a computable “translator” function t, such that, for all strings p, M(p) = U(t(p)) and
|t(p)| ≤ |p| + O(1). For the polynomial-time constructions, we also require that t is
polynomial-time computable. If U(p) = x, we say that p is a program (or description) for x.
The Kolmogorov complexity of the string x is C(x) = min{|p| | p is a program for x}. If p
is a program for x and |p| ≤ C(x) + c, we say that p is a c-short program for x.

1.2. Related Works

The problem of increasing the Kolmogorov complexity has been studied before by
Buhrman, Fortnow, Newman and Vereshchagin [2]. They show that there exists a polynomial-
time computable f that takes as input x of length n and returns a list of strings, all having
length n, such that, if C(x) < n, then there exists y in the list with C(y) > C(x) (this is
Theorem 14 in [2]). In the case of complexity conditioned by the string length, they show
that it is even possible to compute in polynomial time a list of constant size. That is, f (x)
is a list with O(1) strings of length n and, if C(x | n) < n, then it contains a string y with
C(y | n) > C(x | n) (this is Theorem 11 in [2]). Our results are incomparable with the
results in [2]. On one hand, their results work for any input x with complexity less than |x|,
while, in Theorem 1, we only handle inputs with complexity at most |x| − log log |x| −O(1)
(and, in Theorem 2, the complexity of the input is required to be even lower). On the other
hand, they only guarantee that one string in the output list has higher complexity than x,
while we guarantee this property for most strings in the output list and this can be viewed
as a probabilistic algorithm with few random bits as explained in Remark 2.

This paper is inspired by recent list-approximation results regarding another problem
in the Kolmogorov complexity, namely, the construction of short programs (or descriptions)
for strings. Using a Berry paradox argument, it is easy to see that it is impossible to
effectively construct a shortest program for x (or, even a, say, n/2-short program for x).
Remarkably, Bauwens et al. [3] show that effective list approximation for short programs
is possible. There is an algorithm that, for some constant c, takes as input x and returns
a list with O(|x|2) strings guaranteed to contain a c-short program for x. They also show
a lower bound; The quadratic size of the list is minimal up to constant factors. Bauwens
and Zimand [4] consider a more general type of optimal compressor that goes beyond the
standard Kolmogorov complexity and, using another type of pseudo-random function
called conductor, re-obtains the overhead of O(log2 n). Theorem 2 directly uses results from
the latter, namely, Theorem 3. Theorem 1 uses a novel construction, but some of the ideas
are inspired from the papers mentioned above.

2. Technique and Proof Overview

We start by presenting an approach that probably comes to mind first. It does not work
for inputs x having a complexity very close to |x|, such as in Theorem 1 (for which we use a
more complicated argument), but, combined with the results from [4], it yields Theorem 2.

Given that we want to modify a string x so that it becomes more complex, which, in a
sense, means more random, a simple idea is to just append a random string z to x. Indeed,
if we consider strings z of length c, then C(xz) > C(x) + c/2, for most strings z, provided

Axioms 2021, 10, 334 4 of 11

that c is large enough. Let us see why this is true. Let k = C(x) and let z be a string that
satisfies the opposite inequality, that is,

C(xz) ≤ C(x) + c/2, (1)

Given a shortest program for xz and a self-delimited representation of the integer c,
which is 2 log c bits long, we obtain a description of x with at most k + c/2 + 2 log c bits.
Note that, in this way, from different z’s satisfying (1), we obtain different programs for x
that are (c/2 + 2 log c)-short. By a theorem of Chaitin [5] (also presented as Lemma 3.4.2
in [6]), for any d, the number of d-short programs for x is bounded by O(2d). Thus,
the number of strings z satisfying (1) is bounded by 2c/2+2 log c+O(1). Since, for large c,
2c/2+2 log c+O(1) is much smaller than 2c, it follows that most strings z of length c satisfy the
claimed inequality (the opposite of (1)). Therefore, we obtain the following lemma.

Lemma 1. If we append to a string x, a string z chosen at random in {0, 1}c, then C(xz) >
C(x) + c/2 with probability 1− 2−(c/2−2 log c−O(1)).

The problem with appending a random z to x is that this operation not only increases
the complexity (which is something we want) but also increases the length (which is
something we do not want). The natural way to get around this problem is to first compress
x to close to the minimal description length using the probabilistic algorithms from [4]
described in the Introduction and then append z. If we know C(x), then the algorithms
from [4] compress x to length C(x) + ∆(n), where n is the length of x and ∆(n) (called the
overhead) is O(log n) (or poly(log n) for the polynomial-time algorithm). After appending a
random z of length c, we obtain a string of length C(x) + ∆(n) + c and, for this to be n (so
that length is not increased), we need C(x) ≤ n− ∆(n)− c. This is the idea that we follow
for Theorem 2, with an adjustment caused by the fact that we do not know C(x) but only a
bound of it.

However, in this way, we cannot obtain a procedure that works for all x with C(x) <
n− log log n−O(1), as required in Theorem 1. Our proof for this theorem is based on a
different construction. The centerpiece is a type of bipartite graph with a low congestion
property. Once we have the graph (in which the two bipartitions are called the set of left
nodes and the set of right nodes), we view x as a left node and the list f (x) consists of
some of the nodes at distance 2 from x in the graph. (A side remark: Buhrman et al. [2] also
use graphs, namely, constant-degree expanders, and they obtain the lists also as the set of
neighbors at some given distance.) In our graph, the left side is L = {0, 1}n, the set of n-bit
strings, the right side is R = {0, 1}m, the set of m-bit strings, and each left node has degree
D. The graphs also depend on three parameters, ε, ∆ and t, and, for our discussion, it is
convenient to also use δ = ε1/2 and s = δ ·∆. The graphs that we need have two properties:

• For every subset B of left nodes of size at most 2t, the (1− δ) fraction of nodes in B
satisfies the low congestion condition which requires that the (1− δ) fraction of their
right neighbors have at most s neighbors in B. (More formally, for all B ⊆ L with
|B| ≤ 2t, for all x ∈ B, except at most δ|B| elements, all neighbors y of x, except at
most δD, have degB(y) ≤ s, where degB(y) is the number of y’s neighbors that are in
B. We say that such x has the low-congestion property for B.)

• Each right node has at least ∆ neighbors.

The graph with the above two properties is constructed using the probabilistic method
in Lemma 2.

Let us now see how to use such a graph to increase the Kolmogorov complexity in the
list-approximation sense. Let us suppose that we have a graph G with the above properties
for the parameters n, δ, ∆, D, s and t.

Axioms 2021, 10, 334 5 of 11

Claim 1. There is a procedure that takes as input a string x of length n with complexity C(x) < t
and produces a list with D · ∆ strings, all having length n, such that at least a fraction of (1− 2δ)
of the strings in the list has a complexity larger than C(x).

Indeed, let x be a string of length n with C(x) = k < t. Let us consider the set
B = {x′ ∈ {0, 1}n | C(x′) ≤ k}, which we view as a set of left nodes in G. Note that the
size of B is bounded by 2t. A node that does not have the low-congestion property for
B is said to be δ-BAD(B). By the first property of G, there are at most δ|B| elements in B
that are δ-BAD(B). It can be shown that x is not δ-BAD(B). The reason is, essentially, that
the strings that are δ-BAD(B) can be enumerated and they make up a small fraction of B;
therefore, they can be described with less than k bits. Now, to construct the list, we view
x as a left node in G and we “go-right-then-go-left”. This means that we first “go-right”,
i.e., we take all the D neighbors of x and, for each such neighbor y, we “go-left”, i.e., we
take ∆ of the y’s neighbors and put them in the list. Since x is not δ-BAD(B), (1− δ)D
of its neighbors have at most s = δ · ∆ elements in B. Overall, less than 2δ · D · ∆ of the
strings in the list can be in B and so at least a fraction of (1− 2δ) of the strings in the list
has complexity larger than k = C(x). Our claim is proved.

3. Proof of Theorem 2

We use the following definition and results from [4].

Definition 1.

• A compressor C is a probabilistic function that takes as input a rational number ε > 0, a
positive integer m and a string x and outputs (with probability 1) a string C(ε, m, x) of length
exactly m.

• ∆(ε, m, n) is a function of ε and positive integers m and n, called overhead.
• A compressor C is ∆-optimal for the Kolmogorov complexity, if there exists an algorithm D

(called decompressor) such that, for every string x, every rational ε ≥ 2−|x| and every
m ≥ C(x) + ∆(ε, m, |x|),

Prob[D(C(ε, m, x)) = x] ≥ 1− ε.

In other words, if we are given a bound m that is at least C(x)+overhead, then C
compresses x to a string of length m, from which D is able to reconstruct x with high
probability.

Theorem 3 (Theorem 1.1 in [4]). There exists a compressor C with overhead ∆(ε, m, n) =
O(log m · log(n/ε)) that is ∆-optimal for the Kolmogorov complexity. Furthermore, the compressor
C takes as input (ε, m, x) and runs in polynomial time in |x|, using a random string of length
O(log m · log(|x|/ε)).

Note: Theorem 1.1 in [4] is more general, but we only need the above version.

Proof of Theorem 2. We follow the plan sketched in Section 2; we compress the input
x to a string y with the optimal compressor from Theorem 3 and then append to y a
random string z of constant length. We show that, with high probability, yz has the desired
properties; it has a complexity larger than C(x) and it is not longer than x. We see below
that this randomized algorithm uses O(log |x| · log |x|/ε)) random bits, which implies the
desired list approximation via the observations in Remark 2.

Let the compressor C and the overhead ∆ be the functions from Theorem 3. Let
ε = δ/2. We fix n; let us consider a string x of length n such that C(x) ≤ n− 3∆(ε, n, n).
Note that C(x) ≤ n−O(log n · log(n/ε)). Let m = n− 2∆(ε, n, n) and y = C(ε, m, x) (note
that y is a random variable because C is a randomized function). For n sufficiently large,

C(x) ≤ n− 3∆(ε, n, n) ≤ m− ∆(ε, m, n).

Axioms 2021, 10, 334 6 of 11

LetA be the event by which the decompressorD reconstructs x from y. By Theorem 3,
A has probability 1− ε.

We take c a constant large enough such that Equations (2) and (3) below are satisfied.
Conditioned by A,

C(y) ≥ C(x)− c (because x is reconstructed from y) (2)

Let c′ = 2c. We choose c so that

2−(c
′/2−2 log c′−O(1)) < ε, (3)

where the O(1) term is the constant from Lemma 1.
We append to y a string z chosen at random in {0, 1}c′ . By Lemma 1 and Equation (3),

with probability 1− ε, C(yz) > C(y) + c′/2 = C(y) + c. Now, we condition on A and we
obtain that, with probability 1− 2ε,

C(yz) > C(y) + c ≥ C(x)− c + c = C(x).

We take δ = 2ε. Now, let us check the properties of the above algorithm. For every
n-bit string x with C(x) ≤ n− 3∆(ε, n, n) = n−O(log |x| · log |x|/δ), the algorithm takes
as input x and δ and outputs, in polynomial time, the string yz that, with probability
1− δ, has a complexity larger than the complexity of x. The string yz has length m + c =
n − 2∆(ε, n, n) + c ≤ n. The whole randomized procedure uses O(log m · log(n/ε)) =
O(log n · log(n/δ)) random bits for compression with C and c′ = O(1) random bits for z.
The list approximation is obtained from the probabilistic algorithm in the obvious way, i.e.,
by including in the list one element for each choice of the random string (see Remark 2).
The theorem is proved.

4. Proof of Theorem 1

We split the proof in three parts. In Section 4.1, we introduce balanced graphs; in
Section 4.2, we show how to increase the Kolmogorov complexity in the list approximation
sense using balanced graphs and, in Section 4.3, we use the probabilistic method to obtain
the balanced graph with the parameters needed for Theorem 1.

4.1. Balanced Graphs

Here, we formally define the type of graphs that we need. We work with families
of bipartite graphs Gn = (L ∪ R, E ⊆ L × R), indexed by n, which have the following
structure:

1. The vertices are labeled with binary strings, L = {0, 1}n and R = {0, 1}n, where we
view L as the set of left nodes and R as the set of right nodes.

2. All the left nodes have the same degree D; D = 2d is a power of two and the edges
outgoing from a left node x are labeled with binary strings of length d.

3. We allow multiple edges between two nodes to exist. For a node x, we write N(x) for
the multiset of x’s neighbors, each element being taken with the multiplicity equal to
the number of edges from x landing into it.

A bipartite graph of this type can be viewed as a function EXT : {0, 1}n × {0, 1}d →
{0, 1}n, where EXT(x, y) = z if there is an edge between x and z labeled y. We want EXT
to yield a (k, ε) randomness extractor whenever we consider the modified function EXTk,
which takes as input (x, y) and returns EXT(x, y), from which we keep only the first k bits.
(Note: A randomness extractor is a type of function that plays a central role in the theory
of pseudo-randomness. All we need here is that it satisfies Equation (4).)

From the function EXTk, we go back to the graph representation and we obtain the
“prefix” bipartite graph Gn,k = (L = {0, 1}n, Rk = {0, 1}k, Ek ⊆ L× Rk), where, in Gn,k, we
merge the right nodes of Gn that have the same prefix of length k. The left degrees in the

Axioms 2021, 10, 334 7 of 11

prefix graph do not change. However, the right degrees may change and, as k becomes
smaller, the right degrees typically become larger due to merging.

The requirement is that, for every subset B ⊆ L of size |B| ≥ 2k, for every A ⊆ Rk,∣∣∣∣ |Ek(B, A)|
|B| × D

− |A||Rk|

∣∣∣∣ ≤ ε, (4)

where Ek(B, A) is the set of edges between B and A in Gn,k. (Note: This means that Gn,k is
a (k, ε) randomness extractor.)

We also want to have the guarantee that each right node in Gn,t has degree at least ∆,
where ∆ and t are parameters.

Accordingly, we have the following definition.

Definition 2. A graph Gn = (L, R, E ⊆ L× R) as above is (ε, ∆, t)-balanced if the following
requirements hold:

1. For every k ∈ {1, . . . , n}, let Gn,k be the graph corresponding to EXTk described above. We
require that, for every k ∈ {1, . . . , n}, Gn,k is a (k, ε) extractor, i.e., Gn,k has the property
in Equation (4).

2. In the graph Gn,t, every right node with non-zero degree has degree at least ∆.

In our application, we need balanced graphs in which the neighbors of a given node
can be found effectively. As usual, we consider families of graphs (Gn)n≥1 and we say that
such a family is computable if there is an algorithm that takes as input (x, y), views x as a
left node in G|x|, views y as the label of an edge outgoing from x and outputs z, where z is
the right node where the edge y lands in G|x|.

The following lemma provides the balanced graphs that we need as explained in the
proof overview in Section 2.

Lemma 2. For every rational ε > 0, there exist some constant c and a computable family of graphs
(Gn)n≥1, where each Gn = (L = {0, 1}n, R = {0, 1}n, E ⊆ L× R) is (ε, ∆, t)-balanced graph,
with left degree D = 2d for d = dlog(2n/ε2)e, ∆ = 2(1/ε)3/2D and t = n− log log n− c.

The proof of Lemma 2 is by the standard probabilistic method and is presented in
Section 4.3.

4.2. From Balanced Graphs to Increasing the Kolmogorov Complexity in the List-Approximation
Sense

The following lemma shows a generic transformation of a balanced graph into a
function that takes as input x and produces a list so that most of its elements have a
complexity larger than C(x).

Lemma 3. Let us suppose that, for every δ > 0, there are t = t(n) and a computable family of
graphs (Gn)n≥1, where each Gn = (Ln = {0, 1}n, Rn = {0, 1}n, En ⊆ Ln × Rn) is (δ2, ∆, t)-
balanced graph, with ∆ = 2(1/δ3) · D, where D is the left degree.

Then, there exists a computable function f that takes as input a string x and a rational number
δ > 0 and returns a list containing strings of length |x|; additionally, the following are true:

1. The size of the list is O((1/δ)3D2);
2. If C(x) ≤ t, then (1−O(δ)) of the elements in the list have a complexity larger than C(x).

(The constants hidden in O(·) do not depend on δ.)

Proof. The following arguments are valid if δ is smaller than some small positive constant.
We assume that δ satisfies this condition and also that it is a power of 1/2. This can be
performed because scaling down δ by a constant factor only changes the constants in the

Axioms 2021, 10, 334 8 of 11

O(·) in the statement. Let ε = δ2. We explain how to compute the list f (x), with the
property stipulated in the theorem’s statement.

We take Gn to be the (ε, ∆, t)-balanced graph with left nodes of length n promised by
the hypothesis. Let Gn,t be the “prefix” graph obtained from Gn by cutting the last n− t
bits in the labels of right nodes (thus preserving the prefix of length t in the labels).

The list f (x) is computed in two steps:

1. First, we view x as a left node in Gn,t and take N(x), the multiset of all neighbors of x
in Gn,t.

2. Secondly, for each p in N(x), we take Ap to be a set of ∆ neighbors of p in Gn,t (e.g.,
the first ∆ ones in some canonical order). We set f (x) =

⋃
p∈N(x) Ap (if p appears np

times in N(x), we also take Ap in the union np times; note that f (x) is a multiset).

Note that all the elements in the list have length n and the size of the list is | f (x)| =
∆ · D = 2(1/δ)3D2.

Let x be a binary string of length n, with complexity C(x) = k. We assume that k ≤ t.
The rest of the proof is dedicated to showing that the list f (x) satisfies the second item in
the statement. Let

Bn,k = {x′ ∈ {0, 1}n | C(x′) ≤ k},

and let Sn,k = blog |Bn,k|c. Thus, 2Sn,k ≤ |Bn,k| < 2Sn,k+1. Later, we use the fact that

Sn,k ≤ k ≤ t. (5)

We consider the graph Gn,Sn,k , which is obtained, as explained above, from Gn by
taking the prefixes of the right nodes of length Sn,k. To simplify notation, we use G instead
of Gn,Sn,k . The set of left nodes in G is L = {0, 1}n and the set of right nodes in G is
R = {0, 1}m, for m = Sn,k.

We view Bn,k as a subset of the left nodes in G. Let us introduce some helpful
terminology. In the following, all the graph concepts (left node, right node, edge and
neighbor) refer to the graph G. We say that a right node z in G is (1/ε)-light if it has at most

(1/ε) · |Bn,k |·D
|R| neighbors in Bn,k. A node that is not (1/ε)-light is said to be (1/ε)-heavy.

Note that

(1/ε) ·
|Bn,k| · D
|R| ≤ (1/ε)

2Sn,k+1 · D
2Sn,k

= δ∆,

thus, a (1/ε)-light node has at most δ∆ neighbors in Bn,k.
We also say that a left node in Bn,k is δ-BAD with respect to Bn,k if at least a δ fraction

of the D edges outgoing from it lands in the right neighbors that are (1/ε)-heavy. Let
δ-BAD(Bn,k) be the set of nodes that are δ-BAD with respect to Bn,k.

We show the following claim.

Claim 2. At most a 2δ fraction of the nodes in Bn,k is δ-BAD with respect to Bn,k.
(In other words, for every x′ in Bn,k except at most a 2δ fraction, at least a (1− δ) fraction

of the edges going out from x′ in G lands in the right nodes that have at most ∆′ neighbors with
complexity at most k).

We defer for later the proof of Claim 2 and continue the proof of the theorem.
For any positive integer k, let

Bk = {x′ | C(x′) ≤ k and k ≤ t(|x′|)}.

Let Ik = {n | k ≤ t(n)}. Note that |Bk| = ∑n∈Ik
|Bn,k|. Let x′ ∈ Bk and let n′ = |x′|.

We say that x′ is δ-BAD with respect to Bk if, in Gn′ , x′ is δ-BAD with respect to Bn′ ,k. We

Axioms 2021, 10, 334 9 of 11

denote by δ-BAD(Bk) the set of nodes that are δ-BAD with respect to Bk. We upper bound
the size of δ-BAD(Bk) as follows:

|δ-BAD(Bk)| = ∑n′∈Ik
|δ-BAD(Bn′ ,k)|

≤ ∑n′∈Ik
2δ · |Bn′ ,k| (by Claim 2)

= 2δ ∑n∈Ik
|Bn′ ,k|

= 2δ|Bk|
≤ 2δ · 2k+1.

Note that the set δ-BAD(Bk) can be enumerated given k and δ. Therefore, a node x′

that is δ-BAD with respect to Bk can be described by k, δ and its ordinal number in the
enumeration of the set δ-BAD(Bk). We write the ordinal number on exactly k+ 2− log(1/δ)
bits and δ in a self-delimited way on 2 log log(1/δ) bits (recall that 1/δ is a power of 2), so
that k can be inferred from the ordinal number and δ. It follows that, if x′ is δ-BAD with
respect to Bk, then, provided 1/δ is sufficiently large,

C(x′) ≤ k + 2− log(1/δ) + 2 log log(1/δ) + O(1) < k. (6)

Now, we recall our string x ∈ {0, 1}n, which has complexity C(x) = k. The inequality
(6) implies that x cannot be δ-BAD with respect to Bk, which means that (1− δ) of the
edges going out from x land in neighbors in G having at most δ∆ neighbors in Bk. The
same is true if we replace G by Gn,t, because, by the inequality (5), the right nodes in G are
prefixes of the right nodes in Gn,t.

Now, let us suppose that we pick at random a neighbor p of x in Gn,t and then find a
set Ap of ∆ neighbors of p in Gn,t. Then, with probability 1− δ, only a fraction of δ of the
elements of Ap can be in Bk. Let us recall that we have defined the list f (x) to be

f (x) =
⋃

p neighbor of x in Gn,t

Ap.

It follows that at least a (1 − δ)2 > (1 − 2δ) fraction of the elements in f (x) has
complexity larger than C(x). This ends the proof.

We now prove Claim 2.

Proof of Claim 2. Let A be the set of right nodes that are (1/ε)-heavy. Then,

|A| ≤ ε|R|.

Indeed, the number of edges between Bn,k and A is at least |A| · (1/ε) · |Bn,k |·D
|R| (by the

definition of (1/ε)-heavy), but, at the same time, the total number of edges between Bn,k
and R is |Bn,k| · D (because each left node has degree D).

Next, we show that
|δ-BAD(Bn.k)| ≤ 2δ|Bn,k|. (7)

For this, note that G is a (Sn,k, ε) randomness extractor and Bn,k has size at least 2Sn,k .
Therefore, by the property (4) of extractors,

|E(Bn,k, A)|
|Bn,k| · D

≤ |A||R| + ε ≤ 2ε.

On the other hand, the number of edges linking Bn,k and A is at least the number of
edges linking δ-BAD(Bn,k) and A; this number is at least |δ-BAD(Bn,k)| · δD. Thus,

|E(Bn,k, A)| ≥ |δ-BAD(Bn,k)| · δD.

Axioms 2021, 10, 334 10 of 11

Combining the last two inequalities, we obtain

|δ-BAD(Bn,k)|
|Bn,k|

≤ 2ε · 1
δ
= 2δ.

This ends the proofs of Claim 2, which is the last piece that we needed for the proof of
Lemma 3.

Theorem 1 is obtained by plugging, into the above lemma, the balanced graphs from
Lemma 2 with parameter ε = δ2.

4.3. Construction of Balanced Graphs: Proof of Lemma 2

We use the probabilistic method. We consider a random function EXT : {0, 1}n ×
{0, 1}d → {0, 1}n for d = dlog(2n/ε2)e. We show the following two claims, which imply
that a random function has the desired properties with positive probability. Since the
properties can be checked effectively, we can find a graph by exhaustive search. We use the
notation from Definition 2 and from the paragraph preceding it.

Claim 3. For sufficiently large n, with probability ≥ 3/4, it holds that, for every k ∈ {1, . . . , n},
in the bipartite graph Gn,k = {L, Rk, Ek ⊆ L× Rk}, every B ⊆ L = {0, 1}n of size |B| ≥ 2k and
every A ⊆ Rk = {0, 1}k satisfies ∣∣∣∣ |Ek(B, A)|

|B| × D
− |A||Rk|

∣∣∣∣ ≤ ε. (8)

Claim 4. For some constant c and every sufficiently large positive integer n, with probability
≥ 3/4, every right node in the graph Gn,n−log log n−c has degree at least ∆.

Proof of Claim 3. First, we fix k ∈ {1, . . . , n} and let K = 2k and N = 2n. Let us consider
B ⊆ {0, 1}n of size |B| ≥ K and A ⊆ Rk. For a fixed x ∈ B and y ∈ {0, 1}d, the probability
that EXTk(x, y) is in A is |A|/|Rk|. By the Chernoff bounds,

Prob
[∣∣∣∣ |Ek(B, A)|
|B| × D

− |A||Rk|

∣∣∣∣ > ε

]
≤ 2−Ω(K·D·ε2).

The probability that relation (8) fails for a fixed k, some B ⊆ {0, 1}k of size |B| ≥ K
and some A ⊆ Rk is bounded by 2K · (N

K) · 2−Ω(K·D·ε2), because A can be chosen in 2K ways;
further, we can consider that B has size exactly K and that there are (N

K) possible choices of
such B’s. Since D ≥ 2n/ε2, the above probability is much less than (1/4)2−k. Therefore,
the probability that relation (8) fails for some k ∈ {1, . . . , n}, some B and some A is less
than 1/4.

Proof of Claim 4. We use a “coupon collector” argument. We consider the graph
Gn,n−log log n−c for some constant c to be fixed later. This graph is obtained from the
above function EXT as explained in Definition 2. The graph Gn,n−log log n−c is a bipartite
graph with left side L = {0, 1}n, right side R′ = {0, 1}n−log log n−c and each left node has
degree D = 2d. We show that, with probability ≥ 3/4, every right node in Gn,n−log log n−c
has degree at least ∆. The random process consists of drawing, for each x ∈ L and edge
y ∈ {0, 1}d, a random element from R′. Thus, we draw at random ND times, with re-
placement, from a set with |R′| “coupons”. Newman and Shepp [7] have shown that, to
obtain at least h times each coupon from a set of p coupons, the expected number of draws
is p log p + (h− 1)p log log p + o(p). By Markov’s inequality, if the number of draws is
4 times the expected value, we collect each coupon p times with probability 3/4. In our
case, we have p = 2n−log log n−c and h = ∆; it can be checked readily that, for an appropriate
choice of the constant c, 4(p log p + (h− 1)p log log p + o(p)) < ND, provided n is large
enough.

Axioms 2021, 10, 334 11 of 11

Funding: The author has been supported in part by the National Science Foundation through grant
CCF 1811729.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author is grateful to Bruno Bauwens for his insightful observations and
to Nikolay Vereshchagin for pointing out an error in an earlier version. The author thanks the
anonymous referees for their useful suggestions.

Conflicts of Interest: The author declares no conflict of interest..

References
1. Zimand, M. List Approximation for Increasing Kolmogorov Complexity. In Proceedings of the 34th Symposium on Theoretical

Aspects of Computer Science, STACS 2017, Hannover, Germany, 8–11 March 2017; Vollmer, H., Vallée, B., Eds.; Schloss Dagstuhl-
Leibniz-Zentrum für Informatik: Dagstuhl, Germany, 2017; Leibniz International Proceedings in Informatics (LIPIcs); Volume 66,
pp. 58:1–58:12. [CrossRef]

2. Buhrman, H.; Fortnow, L.; Newman, I.; Vereshchagin, N. Increasing Kolmogorov complexity. In Proceedings of the 22nd Annual
Symposium on Theoretical Aspects of Computer Science, Stuttgart, Germany, 24–26 February 2005; Lecture Notes in Computer
Science #3404; Springer: Berlin, Germany, 2005; pp. 412–421.

3. Bauwens, B.; Makhlin, A.; Vereshchagin, N.; Zimand, M. Short lists with short programs in short time. In Proceedings of the 28th
IEEE Conference on Computational Complexity, Stanford, CA, USA, 5–7 June 2013.

4. Bauwens, B.; Zimand, M. Universal almost optimal compression and Slepian-Wolf coding in probabilistic polynomial time. arXiv
2019, arXiv:1911.04268.

5. Chaitin, G.J. Information-Theoretic Characterizations of Recursive Infinite Strings. Theor. Comput. Sci. 1976, 2, 45–48. [CrossRef]
6. Downey, R.; Hirschfeldt, D. Algorithmic Randomness and Complexity; Springer: New York, NY, USA, 2010.
7. Newman, D.; Shepp, L. The Double Dixie Cup Problem. Am. Math. Mon. 1960, 67, 58–61. [CrossRef]

http://doi.org/10.4230/LIPIcs.STACS.2017.58
http://dx.doi.org/10.1016/0304-3975(76)90005-0
http://dx.doi.org/10.2307/2308930

	Introduction
	Basic Concepts and Notation
	Related Works

	Technique and Proof Overview
	Proof of Theorem 2
	Proof of Theorem 1
	Balanced Graphs
	From Balanced Graphs to Increasing the Kolmogorov Complexity in the List-Approximation Sense
	Construction of Balanced Graphs: Proof of Lemma 2

	References

