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Abstract: In this paper, we introduce a new integral transform called the Formable integral transform,
which is a new efficient technique for solving ordinary and partial differential equations. We introduce
the definition of the new transform and give the sufficient conditions for its existence. Some essential
properties and examples are introduced to show the efficiency and applicability of the new transform,
and we prove the duality between the new transform and other transforms such as the Laplace
transform, Sumudu transform, Elzaki transform, ARA transform, Natural transform and Shehu
transform. Finally, we use the Formable transform to solve some ordinary and partial differential
equations by presenting five applications, and we evaluate the Formable transform for some functions
and present them in a table. A comparison between the new transform and some well-known
transforms is made and illustrated in a table.

Keywords: Laplace transform; Shehu transform; Natural transform; ARA transform; Fourier trans-
form; Elzaki transform; Sumudu transform; ordinary differential equation; partial differential equa-
tion; integral transform

1. Introduction

Differential equations represent a field of mathematics that has great applications
in science, since they are used in mathematical modeling [1-9] and hence aid in finding
solutions in physical and engineering problems involving functions of one or several
variables, such as the propagation of heat or sound, fluid flow, elasticity, electrostatics,
electrodynamics, etc.

For decades, methods for solving differential equations have been important subjects
for researchers, [10-19] because of their important applications in various fields of science.
The technique of using integral transforms has proved its efficiency and applicability in
solving ordinary and partial differential equations.

For the function g(t) and t € (—oo, o0 ), the integral transform is obtained by com-
puting the improper integral

£30](s) = [ k(s gty M)

where k(s, t) is called the kernel of the integral transform and s is the variable of the
transform, which might be real or complex number and is independent of the variable
t. The theory of integral transforms goes back to the work of P.S. Laplace in 1780 [19,20]
and Fourier in 1822. Recently, the idea of using integral transforms in solving differential
equations and integral equations has been commonly used by many researchers in the
literature [21-30].

The Laplace transform is defined as:

Elg(] = G(s) = [~ exp(—st)g(t)dt, @
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and it shows high efficiency in solving a class of differential equations. By replacing the
variable s by iw and multiplying Equation (2) by ﬁ we obtain the well-known Fourier

integral transform, defined as

o)

/ exp(—iwt)g(t)dt . 3)

—00

1
Flg(t)] = g(w) = r

These transforms are basic in the study of integral transforms, but the difference
between them is that the Laplace transform is applicable for both stable and unstable
systems, but the Fourier transform is only defined for stable systems.

For many years, the theory of integral transforms has been very widely studied in the
mathematical literature, and many researchers have investigated new transforms such as
the z-transform [29], the Mellin integral transform [30], the Laplace—Carson transform [31]
and the Hankel transform [32,33].

The Sumudu integral transform [34] was introduced in 1993. It showed applicability
in solving real-life problems and was used for solving differential equations. The Sumudu
integral transform is defined as:

Sls())(0) = G = . [exp( 5 )s(oy. @
0

In 2008, Belgacem and Silambarasan introduced the Natural transform, as follows:

N*[g(D)](s,u) = R(s,u) = i/exp(_:’t)g(t)dt, 51> 0. 5)

0

The Elzaki integral transform was obtained in 2011, with the definition

—t
u

Els) 0 = 10 = u [ oxp( 51 ) ©
0

This is closely related to the Laplace and Sumudu integral transforms.
The Shehu integral transform is given by

S[g(H)](s,u) = V(s,u) = / exp(f)g(t)dt, s,u>0. (7)
0

This also shows the ability to solve a class of differential equations and, combined
with other numerical methods of solving differential equations, to offer a new approach in
dealing with fractional differential equations.

In 2020, the ARA transform was introduced by Saadeh et al. and was implemented to
solve a wide range of fractional ordinary and partial differential equations.

The ARA integral transform is given by

e}

Gulg(D)](s) = G(n,5) = s/t"-l exp(—st)g(t)dt, s > 0. (8)
0

Recently, the above transforms and others have been combined with other analytical
methods in mathematics to solve a wide range of linear and nonlinear fractional and
ordinary differential equations, and other methods are shown in.

In this paper, we propose a new integral transform called the Formable transform.
We introduce the definition and some properties of the new transform in Section 2. The
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dualities between the Formable and other transforms are illustrated in Section 3 with some
examples. In Section 4, we apply the Formable transform in some ordinary and partial
differential equations to show its efficiency and accuracy through applications. Finally, the
values of the Formable transform for some special functions are presented in a table.

2. Definitions and Theorems

In this section we introduce the definition of the new transform called the Formable
transform, together with some theorems and properties of the new transform.

Definition 1. The Formable integral transform of a function g(t) of exponential order is defined
over the set of functions

W={g(t):INe(0,0),7>0fori=1,2, [g(t)| < Nexp(i), ift €[0,00)},
i
in the following form:

R[g(t)] = B(s,u) =5 [ exp(-st) g(ut)ds ©)

This is equivalent to

Rlg(o) = [ exp( S0 st (10)
Rlg(t)] = = lim Ox exp<_jt)g<t)dt, s>0,u>0

where s and u are the Formable transform’s variables, x is a real number and the integral
is taken along the line t = x. A function g(t) is said to be of exponential order c if there
exist constants M and T such that |g(t)| < M e for all t > T. Here, we mention that we
chose the name “Formable” for this new transform because of its flexibility in solving
ordinary and partial differential equations. In addition, it has a duality with other well-
known transforms that will be considered later. To show the applicability of the Formable
transform, we compute the transform for several functions in Section 3. We compare the
results with other values from some well-known transforms and illustrate them in a table
in the Appendix A.
The inverse Formable transform of a function g(t) is given by
Cc+100
R Y[B(s,u)] = g(t) 1 / 1 exp (j) B(s,u)ds.

- 27 c—ico S

That is, from the definition of the Fourier transform, we know

Flg] =F (@)= —= [~ e gt [Fw)] = 3() = <= [ o' Fw)io.

g(H) = b= [ e [ [T e g()dt|duw
= [ | [T e g (Dt de,
where ¢(t) is a function defined on the domain (—co, o), so that for t € (—o0,0) we

assume that g(t) = 0. Hence for t > 0, let ¢(t) = ¢(t) u(t) e~, where u(t) is the unit step
function and c is any constant, so that Equation (11) becomes

(11)

gty u(t)e = % /jo el [/w e~ (etio)t g(t)dt} dw. (12)

0
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c+ioo s 1

—i00

eu —
u

Multiplying both sides of Equation (12) by e, we obtain

1 * i ® —(ct+iw
g(Hu(t) = 7 /700 eletiv)t {/0 e (et )tg(t)dt] dw (13)

Substituting 2 = ¢ + iw, % = idw and dw = %ds in Equation (13), we obtain

- g oo . 0 . c+ico s
{/ o2 g(t)dt} ds— - / 13 [S / e ¥ g(t)dt} ds= / Lot B(s,u)ds.
Jo 0 ‘

271 Je—ico S u 271 Je—io S

Defining ¢(t) on (0, o0), we obtain

c+ico s
<(f) L/ leth B(s, u)ds.
c

—jo S
Hence,
1 petico ] st
RU[B(s, :—,/ Sexp( ) B(s,u)ds, 14
Bl = 5 [ sew(3) Bl 1)
and

RYR(g(1))] = g(t).

Theorem 1. Sufficient conditions for the existence of the Formable transform.

If the function g(t) is a piecewise continuous function in every finite interval ¢t € [0, «]
and is of exponential order B for t > B, then the Formable transform B(s, u) of g(f) exists.

Proof. Let a be any positive number, then we have

B(s,u) = 2/000 exp(f) g(t)dt= %/: exp(jt) g(t) dt + % /:o exp<u5t) g(t)dt

Since the function g(t) is a piecewise continuous function in every finite interval [0, «],
the integral fO'X exp (=) g(t) dt exists, and since g (¢) is of exponential order B we have

[ J e (S5t) g(t)dt]

IA A IA
RloR0s 0R m R e
—

The proof is complete. Now, we introduce some basic properties and results concern-
ing the Formable transform which enable us to solve more applications via the transform.
O

Property 1 (linearity property). Let ag;(t) and Bg2(t) be two functions in a set W, then
(ag1(t)+ Bg2(t)) € W, where a and B are nonzero arbitrary constants, and

Rlagi(t) + Bg2(t)] = aR[g1(£)] + BRg2(H)]- (15)
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Proof of Property 1. Using the definition of the Formable transform, we have

Rlagy(1) + pga(1)] = l eXP( ) (a t)+/3gz())

1(
= %fo exp (= ) ()dt+ fo eXp( u)
— i [Pexp(2 ) W
= “RB()]+ﬁRk2”]

The proof is complete.[]

Property 2 (change of scale). Let the function g(xt) be in the set W, where  is an arbitrary
constant, then

R [g(at)] =B (i,u)z B(s,au). (16)

Proof of Property 2.
s [ —st
Rigan] =2 [Tew( ") slandr (17)

Substituting § = at in Equation (17) we have

Rlglat)] =3 [ exp(2)5(0)%
= 5 S5 exp (52 )5(0) o
= B(%,u
= B(s, au).
0

Property 3 (Formable transform of the derivative). If the function g™ (t) is the n-th
derivative of the function g (t), where g™ (t) € W, for n = 0,1, 2, ... with respect to t,
then

R[5 (1)] = B(s,u) - gﬂ;fkémm. (18)

Proof of Property 3. For n = 1, we have

RIgM)] =15 [y exp(51)g/ (1) dt
=& [limexp(5)g() ig + § i~ exp(5)g(t) at
= 3 [~8(0) + B(s,u)].
Thus s s
R[g/(0] = 2 B(s,u) — S5(0). (19)

Assuming that Equation (18) is true for n = k, then we show that itis true forn = k+1,
by using the fact that in Equation (19) we have

RO(0] = k| (s90)]
= 3R [sM(0)] - 35%(0)

k-1 o
- Z{ZkB(S'W - L ()00 - 550

= S0B(s,u) — L (2) 7 g9(0).

=

i=0

This implies that Equation (17) holds for n = k + 1, so the proof is complete. []
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The following important properties are obtained using the Leibniz rule and

Equation (18):
(i) REE) = fo exp (1) 2 a
. = ae i Jo op (7 )0 1) di] = i [B(x,s, )
(i) R[ZE] = ng; exp(2t) ) gy 2
=gl Jo exp(5)g(x,t) dt]= 75 [B(x,s,u)]. (20)
(i) R[ZEGA] = & 7 exp(5) 2502 a
= %’n[% Oooexp(% g(x, t) dt]

Property 4 (Formable transform of the convolution). If F(s, u) and G(s,u) are the Formable
transforms of the functions f (t) and g(t), respectively, then

RIF(t) *g(1)] = <F(s,u) G(s,u), @)

where f(t) * g(t) is the convolution of the functions f(t) and g(t) defined by

/ F(7) gt —7)d 22)

Proof of Property 4. Using the definition of the Formable transform in Equation (9),

we obtain
RIf(t)xg(H)] =s [y exp(=st)(f = g)(ut) dt 23)
=5 [ exp(—st) [} f(7) g(ut —T) drdt.

Letting T = ux and dt = udx in Equation (23), we obtain

RIF(E) <g(B] = s Ji~ exp(=st) Jo — ux)d(ux)dt (24)
=5 [, exp(— fo u(t — x))u dxdt

Letting y = t — x and dy = dt in Equation (24), we obtain

RIF(5) xg(B)] = s flog~ exp(=s(x +y))f(ux) g(uy) u dx dy
= su ff exp(—s(x +y))f(ux) g(uy) dx dy

= su fo exp(—sx)f(ux) dx [y exp(—sy) g(uy)dy
= s [ exp(—sx)f(ux)dx s [ exp(—sy)g(uy)dy
= %F(s,u)G(s,u) .
0

Corollary 1. The Formable transform of ( f x g ) is given by

B[(f*8)'| = F(s,u) G(s,u) (25)

Proof of Corollary 1. Applying the facts in properties (3) and (4), we obtain

B[(f*8)| = SR(F(t) xg(t) = = (f *8)(0).
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But (f * ¢)(0) = 0, and hence

B[(f+g)] =3 “F(s,u)G(s,u)
= F(s,u) G(s,u).

Here, if we put g(t) = f(t) in Equation (25) we have
B|(f*f)] = P(s,w). 26
U

Property 5 (shifting on s-domain). If the function g(t) in a set W is multiplied with the shift
function t", then

RIg(0)] = (-5 | “EUL @)

Proof of Property 5. We show that Equation (27) is true for n = 1.
Putting n = 1 in Equation (27), we have

Rltg(t)] = —us 3 [XB0
= = [s2EB0l — Rig(t)] ] 28)
e R 0

Equation (28) becomes

PR~ =LRisg(ey) + ;Rig )] @)

If we prove Equation (29), we are finished. We start with the left-hand side of
Equation (29) and using the Leibniz rule we obtain

RO = 215 [®exp(=2)g(t)dt
=2 [ 2exp(t)g(tydt+ 1 [ exp(5)g(t) dt
=2 [C L exp(S)g(tat] + L [T exp (=) g(t) dt

s
u

= S R[tg()] + ;R[g(1)].

The proof is complete for n = 1.7

Assume that Equation (27) is true for n such that

5]

RIPg(1)] = (—u)"s = | =5

We show that

R[1g(t)] = (-5 55}::1 [R[gs(t)]] (30)
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Using the facts in Equations (28) and (30), we have

R[#"H1g(t)] = Rt #g(1)]

Remark 1. If the function g(t) has the numerical expansion
= Z ap t",
n=0
then the Formable transform (see Table A1 in Appendix A) of tg(t) is given by

n+1
Rltg(t)] = x5, i

_u (n+1)!a,u"

S

18
%

3
Il
S

|
|
018
TN

=
o
= o

|
s 5

|
wiz @R
o

The generalization of the previous remark under the condition on g(t) gives us an equivalent
form of property (5) as follows:

RIPg()] = %5 2w B(s,u)) &

Remark 2. If (") (t) is the n-th derivative of the function g(t) that is multiplied with the shift

function t", then
n

R[#"g(1)] = u 2 (B(s,u)] 32)

Proof of Remark 2. Consider the right-hand side of Equation (32). Using the Leibniz rule,

we obtain . -

u' £7[B(S,M)] =u" au” sfooo exp st)g(ut)dt
=u" Sfo exp(— )aung( ut)dt
=u" sfo exp(—st)t"g ()( ut)dt
=5 [y exp(—st)(ut)"g" (ut)dt
=R [t”g(”) (t)] .

O

Property 6. If the function g(t) in a set W is divided by the multiple shift function t", then

(8]

(33)
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Proof of Property 6. Starting with right-hand side of Equation (33), we obtain

BT TR ) = g [ e gt
= i Jo” g(ut) [ [ exp(—st)(ds) " d

=50 g(”t) exp(—st)dt
=s [y gf;;) exp(—st)dt
ﬁ

:R[&

t‘Vl
]

Property 7. Let the function g(t) be multiplied with the weight function exp(«t), then

s u
Rlexp(at)g(t)] = - ch {s, - (xu] (34)
Proof of Property 7.
Rlexp(at)g(t)] =s [y exp(—st) exp(aut) g(ut) dt (35)
=5 [, exp(—(s —au)t) g(ut) dt
Letting (s — au)t = sw, and dt = we have

_SfO exp )g(sus;uu) s—au dw
T os— ausfo eXp )g(sbisg;)dw
= B[s, -]

S*tXM 7 s—au

O

3. Duality with Transforms and Some Examples

In this section, we illustrate the relation between the new transform and other well-
known transforms. Also we compute the Formable transform for some functions to show
its applicability and simplicity during the computations.

3.1. Dualities between Formable Transform and Other Integral Transforms

e Formable-Laplace duality: let B(s,u) be the Formable transform and F(s) be the
Laplace transform of the same function g(t), then it is clear that

B (s,1) =sF(s). (36)

e  Formable-Elzaki duality: let E (1) be the Elzaki transform of g(t), then
B(1, u)=— E (u) (37)

e  Formable-Sumudu duality: let G(u) be the Sumudu transform of g(t), then
B(1,u) = G(u) (38)
s [* —st 1 [ —t
B(s,u) = " ./0 exp<u> g(t)dt .B(1,u) = " ./0 ext(u> g(H)dt = G(u).
e  Formable-Natural duality: let R(s, u) be the Natural transform of g(f), then

B(s,u) = sR(s,u) . (39)
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e  Formable-Shehu duality: let V(s,u) be the Shehu transform of g(t), then,
B(s,u) = %V(s, u). (40)
e Formable-ARA duality: let G, (s) be the ARA transform of g(t), then
B(s,1) = G1(s) . 41)
Furthermore, substituting u = 1in R [ #"~1¢(t)], we obtain
R[£1g(t)] = Gl g()](s). “2)

3.2. Examples of Formable Transform for Some Functions

In the following arguments, we compute the Formable transform for some functions
to demonstrate its simplicity and applicability through computations.

Example 1. Let the function g(t) =1,
Then

Rig(0)] =1, (43)

Proof of Example 1.

0

Example 2. Let the function g(t) = t, then

u

Rig(t)] =3 (44)
Proof of Example 2.

R[] =2 [Fexp(=2t)dt
o _ 2 _
= 3im{<Erexp(5) — £ exp(5)l1g = ¥
O
Example 3. Let the function (t) = %, then
)
R[g()] =15 5)

Proof of Example 3.

2 o _ 2
R[Z] =3 [Fexp(52) Gt

= 3 i exp(5) — 25t exp(5) 25 exp ()]

u 2
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Example 4. Let the function g(t) = %5, then

71"

Rg()] = = (46)

Proof of Example 4.
R[G] =57 ew(s) f
=5 f? exp (=2 )t" dt
+:n1 fO Xp( )tnldt
= Sszzfo exp(=3) tdt = 1.
O

Example 5. Let the function g(t) =exp («t), then

R[g()] == @)
Proof of Example 5.
Rlexp(at)] =2 [Zexp(5) exp(at)dt
= *fo P<(N u Y at
= hm[auu s exp((au S)t>}tﬁ:0 = s—Sozu
O
Example 6. Let the function g(t) = t exp(«at), then
su
Rlg(t)] = ——. 48
)= 4s)
Proof of Example 6.
Rlt"exp (at)] =2 [Texp(=22) texp(at)dt
=: [0 texp( (smml) gy
. _ t 2 _ t
- %};inogsi;t (_(s =) ) _ (Siuau)z exp(—%) 12,
su
(s—au)* "
O
Example 7. Let the function g(t) = % exp(at), then
su"
Rlg(t)] =——— 49
0] = )
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Proof of Example 7.

R[t"exp (at)] =2 f0°° t" exp( M) dt
= Jot e ( (ST”W) dt

SGYM

_ sun(n=1) fo p— zexp( (s— au))dt

(s—au)?

su"n!
(s—au)™t1

O

Example 8. Let the function g(t) = sin(«at), then

RIgt)] =55 5. 50)

Proof of Example 8.

Rlsin(an] =3 J () st
= 5] —st - sin(af)—a cos(at
uﬂlgi exp(57) Eave 10,

O

Example 9. Let the function g(t) = cos(at), then

2

Rt = 57 o 1)

Proof of Example 9.

R [cos(at)] =2 [Cexp(=2t Cos(txt)??t) o
_ST; —st\ 2 cos(at)tasin(at
- i () e

O

smh( t),

Example 10. Let the function g(t) = , then

Rg0] =5 5. 52)
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Proof of Example 10.

Risinh(at)] s [y exp (=) sinh(at)dt
t) -2 sinh(at)—a cosh(at) ]ﬁ

2 =0
s 2

—u
2

= 2lim[ exp(=2
B—o0

O

R[g(t)] = ) (53)

Proof of Example 11.

Rlcosh(at)] =2 [Fexp(=2) cosh(at)dt

_ %élm[ eXP(Tt) = coshé;x?;zasinh(at) ]f:()
—00 2
— S i
T u [sé “2]
52”
)
O
. __ exp(pt)sin(at),
Example 12. Let the function g(t) = —==-"——, then
su
Rlg(t)]= : (54)

(s — Bu)* + a2u?

Proof of Example 12.

Rlexp(Bt)sin(at)] =2 [Pexp(=) exp(pt)sin(at)dt
=27 exp( (s=Pu) ﬁu) ) sin(at)dt

=5 hm [ exp( (s=pu) t) sin(at) ]j_o—i—

S"‘;;u I exp( (s—Pu) ﬁ” t) cos(at)dt]
= 5 I exp( (s ﬁ” t) cos(at)dt

= £ ﬁu[hmoc[) exp( (s f”) t) cos(at) ]7 -
= /5” Jo exp w t) sin(at)dt] .
= 5= ‘Bu{s Bu
= I exp( (S_uﬂ t) sin(at)dt].
Simplifying the required integral, we obtain:
Rlexp(Bt)sin(at)] i . (55)

(s — Bu)? + a2u?
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Example 13. Let the function (t) = exp(pt) cos(at), then

Rig®)] = _Sfu}ﬁflzuz- (56)

Proof of Example 13. By similar computations to Example 12, we obtain the result.

4. Applications

In this section, we introduce some applications using the Formable transform in
solving ordinary and partial differential equations using several properties of the new
transform, such as the derivative property, the convolution property and the shifting
theorem of the Formable transform.

Example 14. Consider the first order differential equation

y'(t) +5y(t) =0, (57)

subject to the initial condition

y(0) = 2. (58)

Solution. Applying the Formable transform on both sides of Equation (57).

R[y' ()] + R[5y ()] = R[0],

we obtain s s
—uB(s,u) — Ey(O) +5B(s,u) =0. (59)
Substituting the initial condition of (58) and simplifying Equation (59), we have
[ +5]Bs,u) =22 Bs,u) = jSSu . (60)
Taking the inverse Formable transform of Equation (60), we obtain the solution
y(t) = 2exp(-5t) (61)
Example 15. Consider the second order differential equation
y' (1) +2y'(t) +5y(t) = exp(—t)sin(t), (62)
subject to the initial conditions
y'(0)=1,y(0)=0. (63)

Solution. Applying the Formable transform in Equation (62) and using property (3) and
the result in Equation (55), we obtain

2
5B(s,u) — %

K| };”(f)}+R[2y/(t)]+R[5y(f)]= R[exp(—t)sin(t)], (64)

— sy s _2s _ __su
( ) uy (O)+2uB(S’u) Zuy(0)+5B(S’u) - (s+u)2+u2
Substituting the initial conditions of (63) and simplifying Equation (64), we obtain

su

7_’_7.
(s+u)+u2 u

s2 + 2su + 5u?
2

}B(s,u) =
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Hence,

SM3 su
B = T aa et e | (G r e e (65)

Simplifying Equation (65),

1 su 2 su
3((s+u)+u? +5[(s+u)2+4u21' (66)

B(s,u) =
Taking the inverse Formable transform of Equation (66), we obtain

y(t) = %exp(—t) sin(t) + %exp(—t) sin(2t) (67)

Example 16. Consider the second order differential equation

y" (8) = 3y'(t) + 2y(t) = exp(3t), (68)

subject to the initial conditions

y'(0) =0, y(0) =1 (69)

Solution. Applying the Formable transform on both sides of Equation (68) and using the
result in Equation (47), we have

Rly" (D]-RBy'()]+R[2y(t)]= Rexp(3t)].

2 (70)
23B(s,u) — >3 y(0) — 2y'(0) —=32B(s,u) +35y(0) +2B(s,u) = 5,

Substituting the initial conditions of (69) and simplifying Equation (70), we obtain

su? s2 — 3su

(s—u)(s—2u)(5—3u) ' (s—u)(s —2u)

B(s,u) = (71)

After simplifying Equation (71) and taking the inverse Formable transform, we have

y(t) = gexp(t) —2exp(2t) + %exp(?)t). (72)

Example 17. Consider the Bessel differential equation (with polynomial coefficients)

ty" () +y'(t) +ty(t) =0, (73)

with the initial conditions.
y(0)=1y'(0) =1 (74)

Solution. Applying, the Formable transform on both sides of Equation (73), we obtain
R[ty" (O)]+R[y' ()] +R[ty(t)]= R[0] (75)

Using the facts in Equations(18) and (27) in Equation (75), we obtain

J— — u
Us3s s u

5 [fﬁB(w)—%y(O)—z v (0)

9 [Blsu)| _
+§B(s,u)—§—us&{ }—O
S,

—us% {%B(s,u) - 5y(0) - 1 y’(O)} + $B(s,u) — £ — us% [B(S’”)] =0
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Substituting the initial conditions, we obtain
9 [s s 1 s s o [B(s,u)
—usH- ﬁB(S,u)—ﬁ—; +uB(s,u)—u—usaS{ . ] =0. (76)
After simple computations, Equation (76) becomes
0B(s,u) u?
= ds. 77
B(s,u)  s(s2+u?) ’ @7)
Integrating both sides of Equation (77), we obtain
1 cs
InB(s,u) =Ins — = log (s> + u*) +In(c),B(s,u) = ————. 7
nB(s,u) =Ins : og(s +u )+ n(c),B(s,u) N (78)

Taking the inverse Formable transform of Equation (78) and letting ¢ = 1, we obtain
y(#) = Jo(t). (79)

Example 18. Consider the nonhomogeneous partial differential equation
U = Uxy +SINTTX, (80)

with the initial boundary conditions

(0,8) = u(1,£) =0
{ uLEx,O) = Z(x,()) —0 } (81)

Solution. Applying the Formable transform on both sides of Equation (80) and using the facts in
Equations (18) and (20), we obtain

2 2 2

s s s ) .
;B(x,s,u) — ﬁu(x,o) - aut(x,o) = @B(x,s,u) + sin 7rx (82)

Substituting the initial conditions of (81) in Equation (82), we have

2 2

ﬁB(x,s,u) - %B(x,s,u) = —sinmx. (83)

The general solution of the differential Equation (83) can be written as
B(x,s,u) = By(x,s,u) + Bp(x,s,u), (84)

where By, (x,s,u) = Cyexp(2x) + Coexp(—2x) is the homogeneous part of the general
solution of Equation (83) and B,(x,s,u) = Asin7x + Bcos 7tx is the nonhomogeneous
part of the general solution of Equation (83).

To find A and B in By (x, s, u), we substitute By (x, s, u) in Equation (83) to give

2
u .
By(x,s,u) = o sin 7tx,
since
2
= m ’ and B = 0
Hence, Equation (84) becomes
B(x,s,u) =C (E )+C (—ix)jhuiz in 7t (85)
,s,u) = Crexp( X 2exp|— R sin 7rx.
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Substituting the boundary conditions of (81) in Equation (85), we obtain C; = C, =0,
and therefore

u? u u s?
B(x,s,u) = iz sintx.B(x,s,u) = P . sin 71x (86)
In Equation (86), we consider
F(s u)*E—>f(t)*t and G(s u)*L — g(t) = cos 7t
s - M T gz T8 T '

Hence, taking the inverse Formable transform of both sides of Equation (86), and
using the convolution property, we obtain

(f(t) = g(t)) sinmx.
= sin 7tx fot T cos 7t(t — T)dt

= 5“7;%[1 — cos 7tt].

u(x, t)

Hence, the solution of Equation (80) with the conditions of (81) is

u(x, t) = 5“7‘;”‘ [1— cos t]. (87)

5. Conclusions

In this article, we presented a new integral transform called the Formable transform.
We introduced the sufficient conditions for the existence of the new transform. The duality
with other transforms was explained, and some essential properties were proved. The
applicability and accuracy of the new transform were shown by solving examples for
both ordinary and partial differential equations. In addition, we presented tables in the
Appendix A to compare the Formable transform with other well-known transforms and
to illustrate the simplicity and ability of the new transform through applications. In the
future, we intend to solve fractional differential equations and integral equations using the
Formable transform. Furthermore, we plan to combine the transform with other analytical
methods to solve nonlinear problems such as Duffing oscillator and MEMS oscillator
problems and some fractional differential equations in the conformable sense.
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Appendix A

Table A1. Formable transform of some special functions.

No. g(t) B(s,u)
1 1 1
2 t u
S
3 Ly forn=0,1,2,... w
4 exp(at) —
t” n
5 rexp(at) 7(5711;),171
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Table A1. Cont.

No. g(t) B(su)
6 sin(at) su
« ST+
7 cos(at) 2572:2
8 sinh(at) ’ t%l !
m P )
9 cosh(at) -
10 exp(Bt) sin(at) i
« (s—pBu)’+a2u?
11 exp(Pt) cos(at) (5(57%
12 exp(Bt)sinh(at) Siﬁus)uﬂx !
o (s—pu)* —a2u?
13 exp(Bt)cosh(at) __sts—pu)
(s—Ppu)* —a2u?
14 exp(Bt) —exp(at) o su
B—u B (s—PBu)(s—au)
15 ﬁexp(ﬁfg*a Ca £ B I
—n / — —
16 t sin(at) ¢ ﬁzz)t(tg )
2u (52+1x2u2)2
17 #2 sin(at) sus(SSzﬂxzuz)
2« (52+oc2u2)
18 t cos(at) M
(2+a2u2)?
19 £2 cos(at) Put (82 —3a%%)
2 (Sz+azu2)3
20 t sinh(at) s2u?
2u (s2—a2u?)?
21 #2 sinh(at) 13 (352 +au?)
2u (s2—a2u?)?
22 t cosh(at) su (s +atu?)
(s2—a2u?)?
23 Fcosh(at) P (7+30%u?)
2 (52,u2112)3
24 sin(at)+at cos(at) sSu
2u 24 4242)2
25 sin(at)—at cos(at) ¢ tf:s +)
203 (s2+a2u?)?
26 cos(at) — %txtsin(oct) %
27 sinh(at)+«t cosh(at) ¢ _:?uu )
2u (Sz,,,LZMZ)2
28 at cosh(at)—sinh(at) su’
243 (s2—a2u?)?
29 cosh(at) + Latsinh(at) N -
(52,0(2”2)2
30 sinh(at)—sin(at) sud
R e v 4
31 sinh (at 2off-sm( t) i ;30‘: v
32 cosh(zx cos(oct) S4s_2ft42u4
st—atut
33 cosh(a )+cos(¢xt) st
34 ]()(D(t) m
W
35 Ip(at) ——t—
Vs2—a2u?
36 t Jo(at) — sy
(52+u¢2u2)%
37 t Io(at) SLu_
‘ (s> —a?u?)2
38 Ci(at) % log Sau?
39 Si(at) tan~ ai
2 3(1) s
u
41 5(t —a) i exp(—)
42 Ut —a) exp (=)
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Table A2. General properties of Formable transform.

No. Property Definition
1 Definition B(s,u) = 5 [ exp(5) g(t)dt
Inverse 8(t) = a7 Jiew $exp(3) B(s,w)ds
. . " n—1 k
Derlvative Rg"(t)] = 5=B(sw) = T (3)" 8900
4 Product shift Rit"g(t)] = ZTT aa:" [u"B(s, u)]
— (—y) s 2" [RIg(®)]
_( ”) SBs” s
5 Product shift and derivative R[t"g" ()] = u" aau"n [B(s, u)]
. . t 1) 00 B(s,
6 Division shift R[ng(")] == s js (SS“> (ds)"
7 Convolution B[f xg] = 4F(s,u)G(s,u)

Table A3. Important functions and definitions.

No. Function Definition
. n 2 4

1 Bessel function Jn(x) = m % {1 — 2(2§+2) + 2_4(2’”9;)(2’”4) .. }

. . In(x) = i7" Ju(ix) =
2 Modified Bessel function o 2 o

o) < Ut 2y T Al }

3 Sine integral Si(t) = fot sin gy,
4 Cosine integral Ci(t) = — ftw cosu gy,

Table A4. Some integral transforms.

No. Integral Transform Definition
1 Laplace transform £lg(t)] =G(s) = fooo exp(—st)g(t)dt
2 Fourier transform Flg(t)] =g(w) = 1271 fooo exp(—iwt)g(t)dt
3 Mellin transform M(g(s);s](s) = g*(s) = foo x5l g(x)dx
4 Elzaki transform E[g(t) J(u) = T(u) = u [y exp(5t)g(t)dt
5 Sumudu transform S[g(](u) = G(u) = L [P exp(F)g(t)dt
6 Natural transform N*[g(t)](s,u) = R(s,u) = % Ooo exp(’lft)g(t)dt, s,u>0
7 Shehu transform Slg()](s,u) = V(s,u) = [; exp(=L)g(t)dt, s,u >0
8 ARA transform Gulg(D)](s) = G(n,s) =s [5 t" Lexp(—st)g(t)dt, s >0
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Table A5. Comprehensive list of the Formable transforms B(s,u) and their relationship with the Natural transforms R(s, ),

the Shehu transforms V (s, ) and the ARA transforms G(m, s).

No. g(t) B(s,u) V(s,u) R(s,u) G(m,s)
1 1 1 ¢ ! B
2 t u 2 n rm+1)
N % 5 = # Lot
4 exp(at) S*SIW sfuau ﬁ (Ssi%
5 e i T e 2 Tm) (g — )
6 cos(at) #fﬁ T el 5 I'(m) (W + W
7 abe) i e EEnT 5 (72 4s) "Tom-a- )"+ (2207
8 cosh(at) szjﬁ vy s 5 (s> —a2) "I (m)[(s — |a))" + (s + |a|)™]
’ Splpened e s GEER -B T 2 T sintntan )
10 exp(pt) cos(at) (sjé;izﬁﬁx)zﬂ % (5_;;)% s(s—B) "T(m)(1+ (ﬁi)z ) % cos(mtan~! i
— W2 N\ a_ \m
11 EXP(Bt);iHh(A’f) = ujg,azuz uZZ _ - “)giazuz 2% (S - ﬁ) ’”F(M)(l - W) [7(1 + ﬁ) +
B (s—Pu)"—a*u s—p (1 + ﬁ)m]
12 exp(Bt)cosh(at) _sts—p) s pu) s 3 (2= F) Tl + )
(s—Bu)? —a2u2 (s—Bu)?—a2u2 (s—pBu)*—a2u? (1 T ;/f;z)—m]
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