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Abstract: This paper aims to design a one-wheeled robot as regards its pitch freedom and balance
control on the one hand and to assess the application feasibility of the GM (1,1) swing estimation
controller on the other. System control focuses mainly on one-wheeled robot stability, body swings
in position, and speed control. Mathematical modeling and GM (1,1) prediction control are under
investigation. The mathematical modeling is firstly conducted through referencing to the Newtonian
mechanics and the Lagrange equation, from which the robot transfer function and state-space
differential equation are derived. Next, the linear quadratic regulator is applied as the control rule at
the balance point. Applying GM (1,1) to assess the robot gyro signal at a dynamic state is a discussion.
Next, model reference estimation control is processed, and a mathematical model of the balance
control method is completed. Finally, a simulation is conducted to verify the feasibility of the GM
(1,1) estimation reference model. The linear quadratic regulator, which is credited with tenacity, can
provide pitch swing and balance control of the one-wheeled robot.

Keywords: one-wheeled robot; balance control; GM (1,1); Lagrange equation; linear quadratic regulator

1. Introduction

A one-wheeled robot is a system that is dynamically stable yet statically unstable.
It is regarded as a completely new robot concept. One-wheeled robots have become a
research focus among international scholars. They are characterized by insensitiveness
to external interference, high maneuverability, and low rolling friction. They can stand
up from the ground phase with ease. Their swing phase of walking is quite similar to
the inverted pendulum. One-wheeled robots are typically mobile devices for studying
control theory. With low cost and simple structure, their physical parameters are easy to
adjust. An unstable system is characterized by a higher order, instability, multiple variables,
nonlinearity and robust coupling. One-wheeled robots can effectively reflect key problems
during the control process, including stability, swing position walking speed, tracking, etc.
They can also be used to examine different theories of control. Therefore, the potential
application and market prospects of one-wheeled robots are enormous. One-wheeled
robots can, indeed, generate tremendous economic benefits.

There has, over the past few years, been a lot of research dealing with one-wheeled
robots. In 1997, scholars from Carnegie Melon University and Hong Kong University
conducted research on “gyro stability” one-wheeled robots [1,2]. The intelligence lab of the
University of Tsukuba proposed a new one-wheeled robot design based on the principle
of an inverted pendulum. This design controlled the wheel’s forward and backward
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movement and acceleration to maintain the balance control of the robot’s pitch freedom
and straight walking. This design also controlled the left–right direction and the center of
gravity’s movement. The body tilted left and right, thus enabling the robot to turn [3,4].
In 2005, Carnegie Melon University and Hong Kong University designed, on the basis of
the principle of an inverted pendulum, a system controlling robot state balance in two
vertical directions [5,6]. In 2006, the University of California, utilizing a gyroscope and
acceleration meter, collected robot state signals. “Unibot”, an entirely new robot, could
walk with small-angle oscillation while maintaining body stability [7]. So far, various
inverted pendulum systems have been established, applying traditional control theory and
modern control theory.

The control methods of the inverted pendulum can be categorized into three types,
namely linear control methods [8–14], prediction control and structure-changing control
methods [13,15], and intelligence control [16–19].

Linear control method: The system conducts quasi-linear processing of the nonlinear
model of the inverted pendulum system to obtain a linearized model around the stable
point. Various linear system controllers are used to attain an expected controller [8–10]. For
example, in 1976, Mori linearized the inverted pendulum near the stable point, then applied
mind space to design a proportional differential controller. In 1980, Furuta completed
second-order inverted pendulum control based on linearization. In 1984, Furuta first
succeeded in dual motor third-order inverted pendulum physical object control. Wattes
(1984) used a linear quadratic regulator to control the inverted pendulum. This method
caused a slight linearization error. In addition, this simple model is easy to control. It could
solve stability control problems with an inverted pendulum [11–14].

Prediction control and structure-changing control method: Linear control theory and
the inverted pendulum system are multi-variable and nonlinear. Therefore, studying them
in terms of prediction control, structure-changing control, and self-adjustment control is
necessary. As a method of optimization, prediction control has a greater emphasis on
model function than on structure. Structure-changing control is nonlinear. It can control
an object by pulling it from any location to the gliding curve while maintaining stability
and tenacity. The system, however, may continue to shake. Such a method, theoretically,
has a better control effect. However, control complexity and high cost cannot instantly be
applied to a fast-changing system. This is the main point facing prediction control [13,15].

Intelligence control: Intelligence control methods, including mainly nerve control,
fuzzy control, and simulation intelligence control, have been applied to the inverted
pendulum system [16–19]. Nerve control is characterized by self-adjustment, parallel
processing, high tenacity, faster speed, and adjustment. However, nerve control lacks a
dynamic nerve net for controlling problems appropriately. In addition, the number of
multi-layer nets, the number of hidden neurons, and the selection of activation functions
are short of a guiding principle. The fuzzy control system requires a large knowledge
database and a corresponding inference mechanism. Such a control method, therefore,
cannot meet the needs of instant control.

Economic prosperity has led to more and more vehicles entering our daily life. Cars
are a fast, convenient, and time-saving means of transportation. A variety of personalized
cars have been designed to satisfy different needs. Cars, however, can cause air pollution
and noise. Car production requires complex technology. With traffic jams, safety, and
parking problems becoming serious, car driving is getting less and less efficient.

In contrast, one-wheeled robots are, without a doubt, an economical and practical
means of transportation. Indeed, one-wheeled robots are free from geographical restrictions.
They can move around with ease. They are used for rescue, transportation, and mineral
surveys. Indeed, they can generate tremendous economic value. Therefore, this paper
aims at mathematical modeling of the one-wheeled robot [13,15]. The GM (1,1) prediction
algorithm is employed to implement control, complete body motion stability, and self-
balance [20,21].
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Meanwhile, it also takes into consideration the quickness and stability of the system
response. This study shows that grey GM (1,1) prediction applies to robot mathematical
modeling. Overall, the single-wheel robot motion system in this study is shown in Figure 1.

Axioms 2021, 10, x FOR PEER REVIEW 3 of 16 
 

In contrast, one-wheeled robots are, without a doubt, an economical and practical 

means of transportation. Indeed, one-wheeled robots are free from geographical re-

strictions. They can move around with ease. They are used for rescue, transportation, and 

mineral surveys. Indeed, they can generate tremendous economic value. Therefore, this 

paper aims at mathematical modeling of the one-wheeled robot [13,15]. The GM (1,1) pre-

diction algorithm is employed to implement control, complete body motion stability, and 

self-balance [20,21]. 

Meanwhile, it also takes into consideration the quickness and stability of the system 

response. This study shows that grey GM (1,1) prediction applies to robot mathematical 

modeling. Overall, the single-wheel robot motion system in this study is shown in Figure 

1. 

 

Figure 1. Single-wheeled robot motion system diagram. 

According to the mathematical model of the single-wheeled robot, it belongs to a 

kind of inverted pendulum robot with a single contact point. This robot is typically a stat-

ically indeterminate system because its force balance is based on a single contact point. 

Once it achieves dynamical balance, including pitch and roll stability, the robot requires 

a complex process to drive the wheel mechanism to provide pitch and roll stability. Gen-

erally, there are two methods for providing these two kinds of stability. One is controlling 

accelerating or decelerating to obtain the torque of the robot to provide the dynamical 

balance by using the robot’s inertia [1–4,22]. The other uses an external centrifugal force 

to maintain stability, such as a spinning flywheel [23–26]. However, these two methods 

are both based on inertia control systems. Their stability ability still depends on self-

torque or external centrifugal force, which makes the process of stability complex and 

challenging. 

Generally, studies about the balance of the single-wheel robot are based on the pro-

portional–integral–derivative (PID) controller, because of the advantages provided by the 

PID control method [1,9,27–29]. The PID control mothed is feasible to implement quickly 

into an embedded system. Moreover, the PID control method can also precisely estimate 

the system response according to its gain [30]. This gain can track errors and treat the 

system even when the control parameters are unknown. Overall, the PID control method 

is based on feedback to control the system using integral and derivative relations between 

input and output signals. 

The performance of the PID control method is related to all three gains, which impact 

transient responses such as settling time, overshoots, oscillations. In other words, while 

the state space cannot be estimated, the PID gains struggle to resist the uncertainties and 

Figure 1. Single-wheeled robot motion system diagram.

According to the mathematical model of the single-wheeled robot, it belongs to a kind
of inverted pendulum robot with a single contact point. This robot is typically a statically
indeterminate system because its force balance is based on a single contact point. Once it
achieves dynamical balance, including pitch and roll stability, the robot requires a complex
process to drive the wheel mechanism to provide pitch and roll stability. Generally, there
are two methods for providing these two kinds of stability. One is controlling accelerating
or decelerating to obtain the torque of the robot to provide the dynamical balance by using
the robot’s inertia [1–4,22]. The other uses an external centrifugal force to maintain stability,
such as a spinning flywheel [23–26]. However, these two methods are both based on inertia
control systems. Their stability ability still depends on self-torque or external centrifugal
force, which makes the process of stability complex and challenging.

Generally, studies about the balance of the single-wheel robot are based on the
proportional–integral–derivative (PID) controller, because of the advantages provided
by the PID control method [1,9,27–29]. The PID control mothed is feasible to implement
quickly into an embedded system. Moreover, the PID control method can also precisely
estimate the system response according to its gain [30]. This gain can track errors and
treat the system even when the control parameters are unknown. Overall, the PID control
method is based on feedback to control the system using integral and derivative relations
between input and output signals.

The performance of the PID control method is related to all three gains, which impact
transient responses such as settling time, overshoots, oscillations. In other words, while
the state space cannot be estimated, the PID gains struggle to resist the uncertainties and
disturbances. However, the PID control method cannot provide optimal control or stability for
the system. In addition, the common problem of PID control is that the system experiences an
excessive delay or uncertainty, which leads the system to respond without enough time [30].
Thus, this study develops the single-wheeled robot’s balance control by using PID combined
with GM (1,1). The GM (1,1) can estimate the dynamic state-space of motion on the single-
wheel robot, compensating for the time delay effect rapidly from PID control.

This study aims to design a one-wheeled robot as regards its pitch freedom and
balance control on the one hand and to assess the application feasibility of the GM (1,1)
swing estimation controller on the other. System control focuses mainly on one-wheeled
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robot stability, body swings in position, and speed control, which provide dynamical
balance by using the robot’s inertia.

According to the balance principle of the single-wheeled robot (Figure 2), GM (1,1),
through the relation between inclination angle and wheel rotation velocity, is used to
estimate the gyroscope signal when the robot is dynamic. Finally, GM (1,1) is verified
by simulation—the feasibility of the reference model and controlling the robot wheel’s
acceleration to eliminate the robot’s inclination is estimated. Thus, the robot can balance as
soon as possible under any conditions.
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Figure 2. Force analysis of robot system.

This paper organizes the study as follows: Section 2 describes the mathematical
model of the one-wheeled robot. Section 3 describes the concept of the grey prediction
model. Section 4 verifies the effectiveness of GM (1,1) combined with PID control for the
dynamic balance of the one-wheeled robot system. Section 5 provides the discussions and
conclusions of this study.

2. Mathematical Model of the One-Wheeled Robot

This section deals with the mathematical model in relation to the robot.

2.1. Analysis of Robot Load-Carrying Capability

The single-wheel robot system force analysis diagram is shown in Figure 2. The
symbols of the balance algorithms are shown in Table 1. The control system was established
by using the proportional differential negative ratio to control the wheel rotation velocity
and then feedback the velocity to adjust the situation of the robot. According to the control
system, the control process was a closed-loop to maintain the robot’s stability.

According to Newton’s laws of motion, an external force produces an angular acceler-
ation x(t) of the single-wheel car. While the single wheel robot becomes stable, the force
along the direction perpendicular to the ground can be estimated by the model inclination
angle and the acceleration of the wheel movement [15,17,18].



Axioms 2021, 10, 326 5 of 16

Table 1. All parameter symbols’ meanings.

Name of Parameters Unit

Robot body Weight (m) Kg
Robot lower body weight (M) Kg

Operating friction coefficient (b) N/(m/s)
Vehicle body to center Swing length (h) M

Body swing inertia (I) Kg
Vehicle body External force pushed (F) N

Robot position (x) kg
Robot body Swing angle (θ) rad

Gravitational acceleration (g) m/s2

2.2. Equation of Robot System Dynamics

First, the following dynamic equation is obtained by adding hand thrust and the force
in the horizontal direction of the robot [10,11].

M
..
x + b

.
x + Vlevel = F (1)

The body equation of robot horizontal direction is

Vlevel = m
..
x+mh

..
θcos θ − mh

.
θ

2
sin θ (2)

Substituting Equation (2) into Equation (1), we can obtain the motion equation

(M + m)
..
x+b

.
x +mh

..
θcos θ − mh

.
θ

2
sin θ = F (3)

The combined horizontal and vertical force [8,17] is

Pverticalsin θ+ Vlevelcos θ − mgsinθ = mh
..
θ+m

..
xcos θ (4)

Dividing Equation (4) by the vertical and horizontal force, we can obtain equation of
body barycenter torque

− PverticalIsinθ − VlevelIcosθ = I
..
θ (5)

Additionally, combining Equation (4) with Equation (5), the dynamic equation is(
I + mh2

) ..
θ+mghsinθ =− mh

..
xcos θ (6)

(M + m)
..
x+b

.
x − mh

..
θ= ui (7)

After system linearization, we proceed with the Laplace transform to generate the
system equation:

(I + mh)θ(s)s2 − mghθ(s)= mhX(s)s2 (8)

(M + m)X(s)s2+bX(s)− mhθ(s)s2= Ui(s) (9)

Assuming the initial condition is 0, the transfer function is calculated, and we can
obtain the relation between X(s) and pendulum angle θ.

X(s) =


(

I + mh2
)

mh
− g

s2

θ(s) (10)
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Additionally, substituting Equation (10) into Equation (9), we can obtain the linearized
dynamic equation of the robot in the straight-up-stable state:

(M + m)


(

I + mh2
)

mh
+

g
s

θ(s)s2+b


(

I + mh2
)

mh
+

g
s

θ(s)s − mhθ(s)s2= Ui(s) (11)

thus,

θ(s)
Ui(s)

=

mh
[(M + m)(I + mh2) − (mh)2]

s2

s4 +
b(I + mh2)

[(M + m)(I + mh2) − (mh)2]
s3 − (M + m)mgh

[(M + m)(I + mh2) − (mh)2]
s2 − bmgh

[(M + m)(I + mh2) − (mh)2]
s

(12)

Additionally, the linearized state-space motion equation of Equation (12) becomes
Equations (13) and (14).

.
x
..
x
.
θ
..
θ

 =


0 1

0
− (I + mh2)b

I(M + m) + Mmh2

0 0
m2gh2

I(M + m) + Mmh2 0

0 0
0 − mhb

I(M + m) + Mmh2

0 1
mgh(M + m)

I(M + m) + Mmh2 0




x
.
x
θ
.
θ

 +


0

I + mh2

I(M + m) + Mmh2

0
mh

I(M + m) + Mmh2

ui (13)

y =

[
1 0
0 0

0 0
1 0

]
x
.
x
θ
.
θ

+

[
0
0

]
ui (14)

3. Grey Prediction Model

In grey system theory, the prediction of the system of non-deterministic information is
called the grey prediction model, which is explained as follows. Professor Deng Julong
proposed the grey system theory in 1981. It is a method of predicting systems with
uncertain factors. By identifying system factors and generating and processing the original
data, it searches for changes in the system and generates regular data sequences. Then, it
establishes the corresponding differential equation model to predict the future development
trend and future state of things [19,21,31,32].

3.1. The Establishment of the GM (1,1) Model

Assuming that the time series X(0) has an observation value X(0) =
{

x(0)(1), x(0)(2)

, . . . , x(0)(n)
}

, in order to be able to become regular time series data, a first accumulate
generation operation [21,32,33] is performed, and to obtain

X(1)(t) =
t

∑
n=1

X(0)(n) (15)

and to attain the newly generated sequence X(1), X(1) =
{

x(1)(1), x(1)(2), . . . , x(1)(n)
}

. The

newly generated sequence X(1) obeys the exponential law, then the generated differential

dx
dt

+ax = u (16)

Equation (16) indicates that the variable is continuous with respect to the first-order dif-
ferential equation of time. Therefore, by solving the differential equation of Equation (16),
we can obtain

x(t)= ce−a(t−1) +
u
a

(17)
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When t = 1, x(t) = x(1), and c = x(1)− u
a , according to Equation (17), it can obtain

the discrete form differential equation, as shown in Equation (18).

x(t) =
(

x(1)− u
a

)
e−a(t−1) +

u
a

(18)

where

1. x is the background value of dx
dt , also called the initial value.

2. a and u are the grey parameters to be calculated, where a is the development coeffi-
cient, reflecting the development trend of x

3. u is the grey effect value, which reflects the changing relationship among the data.

According to the definition of the whiteness derivative, dx
dt is generated by first accu-

mulating, so Equation (18) can be rewritten as

dx
dt

= x(1)(t + 1)− x(1)(t) (19)

when ∆t is small enough, there will be no abrupt change in the variable x from x(t) to
x(t + ∆t); hence, the average of x(t) and x(t + ∆t) is taken as the background value, and
shown in Equation (20)

x(1) =
1
2

[
x(1)(t)+x(1)(t + 1)

]
(20)

Equation (20) is substituted into Equation (19) to obtain

x(0)(t + 1) = −1
2

a
[
x(1)(t) + x(1)(t + 1)

]
+u (21)

Based on Equation (21), thus


x(0)(2)
x(0)(3)

...
x(0)(n)

= a


− 1

2

(
x(1)(1) + x(1)(2)

)
− 1

2

(
x(1)(2) + x(1)(3)

)
...

− 1
2

(
x(1)(n − 1) + x(1)(n)

)

+u (22)

Organizing Equation (22) by using the new assuming parameter,
Y =

[
x(0)(2) x(0)(3) . . . x(0)(n)

]T

B =
[
− 1

2

(
x(1)(1) + x(1)(2)

)
· · · − 1

2

(
x(1)(n − 1)+x(1)(n)

) ]
α =

(
a u

)T

(23)

where Y is the data vector, B is the data matrix, and α is the parameter vector.
Equation (22) can reduce into

Y = Bα (24)

Using the least square method in α̂ =
(

a u
)T

=
(

BTB
)−1

BTY, we can obtain these
values and then substitute them into the differential equation,

x̂(1)(t) =
(

x(1)− u
a

)
e−a(t − 1) +

u
a

(25)

Equation (25) is the time response function of the GM (1,1) model, and to inverse
accumulate it into the x̂(1)(t) sequence, and to achieve the prediction of x̂(0)(t),

x̂(0)(t) = x̂(1)(t)− x̂(1)(t − 1) =
(

x(0)(1)− u
a

)
(1 − ea)e−a(t − 1) (26)
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Hence, Equation (26) is the calculated form of the GM (1,1) prediction model. To sum
up, the GM (1,1) modeling steps are as follows:

1. Calculating an accumulation sequence x(1) from the original data sequence x(0);
2. Establishing a data vector, Y, and a data matrix, B;

3. Calculating the inverse matrix
(

BTB
)−1

for the least square method;

4. Estimating â and x̂, according to Û =
(

BTB
)−1

BTY

5. Calculating the fitting value x̂(1)(t) with the time response equation, and then restor-
ing it with the post subtraction operation, that is:

x̂(0)(i)= x̂(1)(i)− x̂(1)(i − 1) (i = 2, 3, 4, · · · , N)
6. Following the accuracy test, prediction is corrected until the error becomes minimal.

3.2. The Checking of GM (1,1) and Residual

The GM (1,1) model [21,32,33] includes three forms: residual checking, correlation
checking, and posterior error checking. When the GM (1,1) model established by the
original data sequence is not accurate enough, the GM (1,1) residual model is used to
modify and improve the accuracy. In the established GM (1,1) model of x(0), the predicted
value of the generated sequence is obtained, and the residual sequence is defined as
e(0)(k)= x(1)(k) − x̂(1)(k). If k = t, t + 1, t + 2 . . . , n, then the corresponding residual
sequence is

e(0)(k) =
[

e(0)(1) · · · e(0)(n)
]

(27)

We calculate the generating sequence e(0)(k) in Equation (27), and build up the
corresponding GM (1,1) model as Equation (28).

ê(1)(t + 1) =
(

e(0)(1)− ue

ae

)
e−aek +

ue

ae
(28)

Then, we can obtain the modified model, as shown in Equation (29)

x(1)(t + 1) =
(

x(0)(1)− u
a

)
e−ak +

u
a
+ δ(k − t)(−ae)

(
e(0)(1)− ue

ae

)
e−aek (29)

where δ(k − t)
{

1 k ≥ t
0 k ≤ t

is the modified parameters.

Overall, the checking steps of GM (1,1) and residual are as follows:

1. Residual test, calculated separately:
Residual: E(k) = x(0)(k)− x̂(0)(k), k = 2, 3, · · · , N;

Relative residual: e(k) = [x(0)(k)−x̂(0)(k)]
x(0)(k)

, k = 2, 3, · · · , N.

2. A posteriori error test, calculated separately:

x(0) mean value: X = 1
N

N
∑

k=1
x(0)(k);

x(0) variance: S1 =

√
1
N

N
∑

k=1

(
x(0)(k)− x

)2;

Mean value of residuals: E = 1
N−1

N
∑

k=2
E(k);

The variance of residuals: S2 =

√
1
N

N
∑

k=2

(
E(k)− E

)2;

Posterior error ratio: C = S2
S1

;
Small error probability: S2 = Probe

{∣∣E(k)− E
∣∣ < 0.6745S1

}
.

3. The comparison table of prediction accuracy grades is shown in Table 2.
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Table 2. Comparison of prediction accuracy grades.

Prediction Accuracy Level Probe C

good >0.95 <0.35
qualified >0.80 <0.45

reluctantly >0.70 <0.50
unqualified ≤0.70 ≥0.65

4. Simulation and Verification

This paper employs an STM32 controller and a 12 V Servomotor; a time-belt ratio
of 1/4 is used to move the single wheel for balance control. The PWM serves for main
capacity control. Feedback capacity includes the gyroscope and motor encoder capacity.
Figure 3 shows the system framework.
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Figure 3. A single-wheeled robot system architecture diagram.

A gyroscope for measurement feedback is used to measure the change in the angle
over time. Applying grey GM (1,1) for the signal prediction can serve as a reference model.
A one-wheeled robot, which is a complex and unstable mechanism, can cause control
difficulty. The system driver of the one-wheeled robot directly controls the robot body
pendulum. The system calculates the robot’s dynamic mathematic model. GM (1,1) is
employed to predict model estimation of the gyro signals. The design of the linear quadratic
regulator of the robot at the stable point is conducted to verify GM (1,1) model prediction.
This conforms to the control feasibility of the actual dynamic mathematic model.

GM (1,1) is applied to predict model control. It can be applied to make up for signifi-
cant model deviation of the complex structure at a stable state. It serves as an adaptability
application when system loading varies. For system simulation, MATLAB R2020b, a
platform instrument, is utilized. Figure 4 shows the entire system structure.
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Figure 4. Flowchart of GM (1,1) model in the single-wheeled robot system.

Simulation shows that GM (1,1) predicts the Z-domain model equation of the gyro
signal as Equation (30).

0.1103 − 0.2141z−1 + 0.1038z−2

0.1203 − 0.2335z−1 + 0.1132z−2 + 9.094 × 10−3z−3 + 0.0003858z−4 − 0.0004419z−5 (30)

where the control parameter of a linear quadratic regulator is K = [83.97229, 41.7688,
26.3051, 0.0000].

The signal measured by the gyroscope during robot movement is fitted by the gray
GM (1,1) prediction numerical graph, as shown in Figure 5. This result demonstrates that
the GM (1,1) can estimate state-space representation when the robot becomes balanced
without any extended force or disturbance. The estimated behavior of the next moment is
carried out from the present moment so that the robot can carry out robust balance control
at the next moment when it is disturbed.
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Figure 6 shows the balance’s performance by using the PID control method combined
with GM (1,1) under self-swing balance and external disturbance. The results demonstrate
that the overshoot of the robot’s swing angular velocity and the wheel’s velocity increase
immediately under the disturbance of external force, but the performance of the dynamic
balance is not affected by increasing momentum. In addition, these results verify that the
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control method designed in this study has excellent robustness, which can maintain the
robot stability.
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Figure 6. Swing mode control response with (a) external disturbance and (b) self-swing balance control response.

After the feasibility analysis, this study also simulated and verified the mathematical
modeling of the robot system and the gray GM (1,1) prediction model for tracking fitting.
The comparison results demonstrate that the gyroscope signal estimation of the verification
system by GM (1,1) is consistent with the mathematical modeling of the robot, as shown in
Figure 7. The difference between the original and predicted signals is around 0.01%, and
the root-mean-square error is 1.3. Thus, the GM (1,1) can estimate the state space of the
robot movement.
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Figure 7. Robot system mathematical modeling and grey GM (1,1) prediction mode.

According to GM (1,1) modeling training results, the system applied GM (1,1) to the
gyroscope measurement signal tracking design of Lyapunov MRAC adaptive control. It
was found that the control effect of ym(t) output from the current reference model and yp(t)
signal output from the existing system could be sampled by GM (1,1) estimation, and the
tracking effect proved to be good. The gyroscope gray GM-Lyapunov MRAC self-tuning
control and gyroscope GM (1,1) prediction equation tracking response diagrams are shown
in Figure 8.
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The transient response diagram of the system for GM (1,1) to achieve the balance
estimation of the robot is shown in Figure 9. The results demonstrate that the system combined
with GM (1,1) can estimate the state of transient response and achieve stability quickly.
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Figure 9. Gyroscope GM (1,1) prediction equation transient response diagram.

The compassion results (in Figure 10) demonstrate that PID control still has superior
robustness under external disturbance. The current tiltmeter has the characteristic of
time delay. The tiltmeter is designed to measure the acceleration sensor, so the accuracy
of measurement will also be affected if the phenomenon of acceleration occurs on the
lateral side. The response time of the tormenter is fast, but it is susceptible to noise,
so it is necessary to reduce the noise interference rate of the tormenter. Therefore, this
paper proposes that GM (1,1) is used to estimate the measured signals of tilting meter and
tormenter to compensate for the excellent compensation effect, so the PID control algorithm
can lead the single-wheel robot to achieve effective balance control quickly.
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Figure 10. Control signal measurement response diagram generated under different conditions. When (a) before the
tilt meter signal is compensated and (b) after the tilt meter signal is compensated, the measured signal diagram at self-
equilibrium; when (c) before the tilt meter signal is compensated and (d) after the tilt meter signal is compensated, the
measured signal diagram of external force interference during the balance; (e) interference signal diagram generated by
external force (high frequency signal) applied to the compensated signal tilt meter.
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5. Conclusions

A one-wheeled robot self-balancing cart is nonlinear and lacks drive. It is a higher-order
system. Based on local linearization, the paper applies all-state feedback to complete indirect
control of non-driver state variables. The paper also designs an algorithm of stability control.
According to simulation, the linear-quadratic regulator-based optimal control enables the self-
balancing system of the one-wheeled robot to attain stability. The simulation result indicates
that applying GM (1,1) can predict the gyro signal model and assess and control the feasibility
of response application in the system. Using simulation to verify system control is easy and
provides a quick response. Indeed, such a method is efficient.

This study mainly investigates the balance control of the single-wheeled robot. The
primary control system aims to linearize the dynamic motion system by using a PID control
system under an unbalanced load and then controlling the rotated velocity to adjust the
inclination angle until its balance. The GM (1,1) estimated the gyroscope signal to evaluate
the inclination angle of the single-wheel robot, and it also can compensate for the time
delay effect rapidly from PID control. The simulation results and actual experimental
results show that the application of GM (1,1) estimation is feasible; the future development
direction is to reduce positioning overshoot, dynamic load change control, and load weight
change control.

According to the GM (1,1) prediction, the design can optimize the one-wheeled robot
motion model. However, the design does not take into concern the optimization of control
rule and parameter adjustment. It fails to shorten the time for the robot to attain stability.
System research is concerned with the training model of a single model. It collects only a
small amount of data, thus resulting in a larger pendulum estimation error. The GM (1,1)
prediction model is consequently less stable. Singularity is likely to arise and therefore
affects prediction results. However, without considering the time the robot needs to attain
stability, the research method still possesses better stability control ability.

To sum up, the design can be integrated with the intelligence vehicle industry. The
integration can boost the unmanned control effect. Personalizing car design can indeed
satisfy human needs. One-wheeled robots will be an economical and practical means of
transportation. They are free from geographical constraints. Being highly mobile, they can
be applied to transportation, rescue, and mineral surveys. They can generate tremendous
economic benefits.
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