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1. Introduction

Nonassociative algebras play a very important role in different branches of mathemat-
ics and its applications including physics, quantum mechanics, informatics, and biology
(see, for example, [1–4] and references therein). In particular, octonions and generalized
Cayley–Dickson algebras are widely used in noncommutative analysis, partial differential
equations (PDEs), operator theory, particle physics, mathematical physics, and quantum
field theory [5–21].

On the other hand, generalized Cayley–Dickson algebras are particular cases of
nonassociative metagroup algebras [12,22–24].

It is worth mentioning that studies of PDEs are tightly related with cohomologies and
deformed cohomologies [25]. This means that it is important to develop this area over
metagroup algebras.

This article is devoted to investigations of smashed torsion products and torsions
of homological complexes and modules over nonassociative algebras with metagroup
relations. Certainly, a class of metagroups principally differs from a class of groups since a
metagroup may be nonassociative, power nonassociative, or nonalternative, and left or
right inverse elements in the metagroup may not exist or may contain elements for which
left and right inverse elements do not coincide.

The (co)homology theory is one of the main tools for studying the structure of algebras,
their modules, and their complexes. The previously developed traditional cohomology
theory operates with associative algebras [1,26–28], so it is not worthwhile for nonassocia-
tive algebras. For Lie algebras, pre-Lie algebras, flexible algebras, and alternative algebras,
(co)homology theory was advanced for the needs of their structure studies [2,29–31]. How-
ever, the latter algebras differ significantly from generalized Cayley–Dickson algebras and
nonassociative algebras with metagroup relations.

Earlier cohomologies of loop spaces on quaternion and octonion manifolds were
studied in [11], which have specific features in comparison with complex manifolds. Then,
the basics of (co)homology theory for nonassociative algebras with metagroup relations
were described in [12,32].

We recall the definition of the metagroup.
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Definition 1. Assume that G is a set with a single-valued binary operation (multiplication)
G2 3 (a, b) 7→ ab ∈ G defined on G. Then C(G) := Com(G) ∩ N(G) is called the center C(G)
of G, where the set of all elements h ∈ G commuting (or associating) with G is denoted by Com(G)
(or N(G), respectively). That is,

Com(G) := {a ∈ G : ∀b ∈ G, ab = ba},
Nl(G) := {a ∈ G : ∀b ∈ G, ∀c ∈ G, (ab)c = a(bc)},
Nm(G) := {a ∈ G : ∀b ∈ G, ∀c ∈ G, (ba)c = b(ac)},
Nr(G) := {a ∈ G : ∀b ∈ G, ∀c ∈ G, (bc)a = b(ca)},
N(G) := Nl(G) ∩ Nm(G) ∩ Nr(G);
C(G) := Com(G) ∩ N(G).

We consider the following conditions:

for each a and b in G, there is a unique x ∈ G with ax = b, and (1)

a unique y ∈ G exists satisfying ya = b, (2)

which are denoted by x = a \ b = Divl(a, b) and y = b/a = Divr(a, b) respectively;

there exists a neutral (that is, unit) element eG = e ∈ G : eg = ge = g for each g ∈ G. (3)

If a set G possesses a single-valued binary operation satisfying conditions (1)–(3) and

(ab)c = t3(a, b, c)a(bc) for each a, b, and c in G, (4)

then G is called a metagroup, where t3(a, b, c) ∈ Ψ, Ψ ⊂ C(G), where t3 shortens a notation t3,G,
and where Ψ denotes a (proper or improper) subgroup of C(G).

In this article, torsions for homological complexes of nonassociative algebras with
metagroup relations are studied. Torsion products of modules over metagroup algebras
are investigated in Propositions 2–4. Homomorphisms of torsion products are scrutinized
in Theorems 1 and 2, Proposition 5. Connecting homomorphisms for torsion products are
studied in Theorem 3, Proposition 6. Relations of flat modules over metagroup algebras
with the torsion products are investigated in Theorem 4. Homomorphisms of homological
complex torsion products are scrutinized in Theorem 5 and Lemmas 1 and 2. Retractions of
canonical homomorphisms for smashed tensor products of homomological complexes over
metagroup algebras are studied in Theorem 6. In the Appendix A, necessary properties of
homomorphisms of metagroup algebras and modules over them are provided.

All the main results of this paper are obtained for the first time. They can be useful for
further studies of nonassociative algebra (co)homologies, nonassociative algebra structures,
operator theory, and spectral theory over Cayley–Dickson algebras, PDEs, noncommuta-
tive analysis, noncommutative geometry, mathematical physics, their applications in the
sciences, etc.

2. Torsion Functor of Complexes for Nonassociative Algebras with Metagroup Relations

Remark 1. Let T be a commutative associative unital ring, G be a metagroup, and T [G] be a
metagroup algebra of G over T ; let also B be a unital smashly G-graded A-algebra (see the notation
and definitions in [12,32]). Let X be a smashly G-graded B-bimodule, where “smashly” may be
omitted for brevity. We consider a free T [C(G)]-module (T [C(G)])(X) with a canonical basis
fx, where x ∈ X. Certainly, T [C(G)]1B ↪→ C(B). We put L0(X) := L0,B(X) := B(X) =
BX ⊗

T (T [C(G)])(X), where BX = ∏x∈X Bx with Bx = B for each x ∈ X. That is, L0(X) is a
free G-graded B-bimodule with base X. Then we define pX : L0(X)→ X to be a T [C(G)]-linear
map such that pX( fx) = x and pX(b fx) = bx and pX( fxb) = xb for each x ∈ X and b ∈ B.
Then we put Z0(X) = Ker(pX), iX : Z0(X) ↪→ L0(X) to be a canonical injection. By induction,
let Zn = Z0(Zn−1(X)), Ln(X) = L0(Zn−1(X)) for each n ∈ N, Lk(X) = (0) for each k < 0
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in Z, where Z = {0,−1, 1,−2, 2, . . .} denotes the ring of integers, N = {1, 2, 3, . . .} is a set of
positive integers. This induces the following exact sequence:

0→ Z0(X)−−−−−−−−−−→
iX

L0(X)−−−−−−−−−−−→pX
X → 0. (5)

This construction provides a Z-graded G-graded B-bimodule L(X) with (L(X))n = Ln(X)
for each n ∈ Z. By virtue of Lemmas 2 and 3 in [32], Ln(X) can be supplied with the G|n|+2-graded
B-bimodule structure for each n ∈ Z.

We define the following left and right B-homomorphisms of B-bimodules L(X) and X:

dX
n : Ln(X)→ Ln−1(X) (6)

∀n ≤ 0, dX
n = 0;

dX
1 = iX ◦ pZ0(X);
∀n > 1, dX

n = iZn−2(X) ◦ pZn−1(X),

where i ◦ p as usually denotes the composition of maps i and p, such that i ◦ p(x) = i(p(x)) for an
argument x.

This construction induces the following exact sequence

−−−−−−−−→
dX

n+1
Ln−−−−−−−→

dX
n

Ln−1−−−−−−−−→dX
n−1

...−−−−−−−→
dX

1
L0−−−−−−−→pX

X → 0, (7)

where Ln = Ln(X) for each n ∈ Z. There exists an extension

pX : (L(X), dX)→ X (8)

which is a B-exact homomorphism of the G-graded B-complexes. The exact sequence (7) is called a
canonical free resolution of X.

Assume that Y is a smashly 1G-graded 1B-bimodule, where 1 A = T [1G] is a metagroup
algebra, 1G is a metagroup, and 1B is a unital smashly 1G-graded 1 A-algebra. Suppose that
h : X → Y is an ((B, 1B), (B, 1B))-epigeneric (or -exact) homomorphism (see also Definitions
2 and 5 in [32]). It is convenient to define a unique ((B, 1B), (B, 1B))-epigeneric (or -exact,
respectively) homomorphism

L0(h) : L0(X)→ L0(Y) (9)

such that
L0(h)( fx) = fh(x) (10)

for each x ∈ X and L0(h′B)( f ′b) = f ′h′B(b) for each b ∈ B and f ′b ∈ L0(B), where h′B : B→ B,
where f ′b is the canonical basic element in L0(B). Therefore,

pY ◦ L0(h) = h ◦ pX and (pY)
′
1B ◦ L0(h′B) = h′B ◦ (pX)

′
B, (11)

where (pX)
′
B( f ′b) = b and (pY)

′
1B( f ′1b) = 1b for each b ∈ B and 1b ∈ 1B. Henceforth,

a (B, 1B)-epigeneric homomorphism is supposed to also be (A, 1 A)-epigeneric, and an (A, 1 A)-
epigeneric homomorphism is supposed to also be (G, 1G)-epigeneric.

Then L0(h) induces a ((B, 1B), (B, 1B))-epigeneric (or -exact, respectively) homomorphism Z0(h) :
Z0(X)→ Z0(Y) such that

iY ◦ Z0(h) = L0(h) ◦ iX , (iY)′1B ◦ Z0(h′B) = L0(h′B) ◦ (iX)
′
B. (12)

Putting Ln(h) = 0 for each n < 0, it is useful to define, by induction, ((B, 1B), (B, 1B))-epigeneric
(or -exact respectively) homomorphisms

Ln(h) : Ln(X)→ Ln(Y) and Zn(h) : Zn(X)→ Zn(Y) such that

Ln(h) = L0(Zn−1(h)) and Zn(h) = Z0(Zn−1(h)) (13)
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such that Ln(h′B) = L0(Zn−1(h′B)), Zn(h′B) = Z0(Zn−1(h′B)).
Similarly smashly G-graded left or right B-modules can be considered. Examples of abundant

families of metagroups, their modules, and their complexes are described in [11,12,22–24,32].

Proposition 1. If conditions of Remark 1 are satisfied, then L(h) : L(X) → L(Y) is a ((B, 1B),
(B, 1B))-epigeneric homomorphism of complexes such that

pY ◦ L(h) = h ◦ pX . (14)

Moreover, if h is ((B, 1B), (B, 1B))-exact, then L(h) is ((B, 1B), (B, 1B))-exact.

Proof. From Formulas (6) and (13) above, it follows that

dY
1 ◦ L1(h) = iY ◦ pZ0(Y) ◦ L0(Z0(h)) and consequently,

(dY
1 ◦ L1(h))

′
(B) = 1B,

since the homomorphisms iY, pY and hence pZ0(Y) are 1B-exact, Z0(h) and hence L0(Z0(h))
are ((B, 1B), (B, 1B))-epigeneric (see also Definitions 2 and 5 in [32]).

Using (11), we infer that
iY ◦ pZ0(Y) ◦ L0(Z0(X)) = iY ◦ Z0(h) ◦ pZ0(X).

Then (12) implies that
iY ◦ Z0(h) ◦ pZ0(X) = L0(h) ◦ iX ◦ pZ0(X).

From (6), it follows that
L0(h) ◦ iX ◦ pZ0(X) = L0(h) ◦ dX

1 and

(L0(h) ◦ dX
1 )
′
(B) = 1B.

Then, by induction on n > 1, we deduce from Formulas (6) and (13) that
dY

n ◦ Ln(h) = iZn−2(Y) ◦ pZn−1(Y) ◦ L0(Zn−1(h)) and hence

(dY
n ◦ Ln(h))

′
(B) = 1B,

since by induction the homomorphisms iZn−2(Y) and pZn−1(Y) are 1B-exact, and Zn−1(h)
and hence L0(Zn−1(h)) are ((B, 1B), (B, 1B))-epigeneric.

Utilizing (11), we deduce that
iZn−2(Y) ◦ pZn−1(Y) ◦ L0(Zn−1(h)) = iZn−2(Y) ◦ Zn−1(h) ◦ pZn−1(X).

From (13) it follows that
iZn−2(Y) ◦ Zn−1(h) ◦ pZn−1(X) = iZn−2(Y) ◦ Z0(Zn−2(h)) ◦ pZn−1(Y).

Taking into account (12), we get
iZn−2(Y) ◦ Z0(Zn−2(h)) ◦ pZn−1(Y) = L0(Zn−2(h)) ◦ iZn−2(X) ◦ pZn−1(X).

Formulas (6) and (13) imply that
L0(Zn−2(h)) ◦ iZn−2(X) ◦ pZn−1(X) = Ln−1(h) ◦ dX

n and

(Ln−1(h) ◦ dX
n )
′
(B) = 1B. Thus,

dY
n ◦ Ln(h) = Ln−1(h) ◦ dX

n (15)

for each natural number n,
L(1X) = 1L(X). (16)

If u : Y → P is a ((1B, 2B), (1B, 2B))-epigeneric homomorphism, where P is a 2G-graded
2 A-bimodule, then L0(u ◦ h)( fx) = fu◦h(x) for each x ∈ X. Hence, L0(u ◦ h)( fx) =

L0(u)( fh(x)) = L0(u) ◦ L0(h)( fx). Therefore, L0(u ◦ h) = L0(u) ◦ L0(h) and (L0(u ◦ h))′(B)
= 2B. Consequently,Z0(u ◦ h) = Z0(u) ◦Z0(h) and by induction Ln(u ◦ h) = Ln(u) ◦ Ln(h)
for each n ≥ 0. Therefore, L(u ◦ h) = L(u) ◦ L(h) and (L(u ◦ h))′(B) = 2B. If h is
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((B, 1B), (B, 1B))-exact, then from Remark 1 and the proof above, it follows that L(h) also
is ((B, 1B), (B, 1B))-exact.

Definition 2. Assume that T is a commutative associative unital ring, G is a metagroup, T [G] is
a metagroup algebra of G over T , and B is a unital G-graded A-algebra. Suppose that X and Y are
G-graded B-bimodules. Assume also that the acyclic G-graded B-complexes L(X) and L(Y) are,
as in Remark 1, such that dn = 0 for each Z 3 n ≤ 0 with pX : L(X)→ X and pY : L(Y)→ Y
the free canonical left resolution of X and Y, respectively. By a torsion product, X and Y are called
a G-graded and Z-graded B-bimodule TorB(X, Y) := H(L(X)

⊗
B L(Y)) with n-homogeneous

components TorB
n (X, Y) := Hn(L(X)

⊗
B L(Y)) for each n ∈ Z, where L(X)

⊗
B L(Y) is the

G-smashed tensor product of L(X) with L(Y) over B (see Definition 7 in [32]).
Similarly, the case is considered in which X is a G-graded B-bimodule (or a right B-module)

and Y is a G-graded left B-module (or a B-bimodule, respectively) providing a G-graded and
Z-graded left B-module (or a right B-module, respectively) TorB(X, Y).

Remark 2. Definition 2 and Remark 1 imply that TorB
n (X, Y) = 0 for n < 0, since the G-graded

B-complexes L(X) and L(Y) are zero on the right.
For a G-graded left B-module X and a 1G-graded left 1B-module Y by Homl,s;B,1B(X, Y) will

be denoted a family of all left T -linear homomorphisms which are (B, 1B)-epigeneric if s = eg,
(B, 1B)-exact if s = e (see also Remark 1). Then by Homl,s;G,1G(X, Y) will be denoted a family
of all left T -linear homomorphisms, which are (G, 1G)-epigeneric if s = eg, (G, 1G)-exact if
s = e. For right modules, Homr,s;B,1B(X, Y) and Homr,s;G,1G(X, Y) will be used instead of them,
respectively. Then for a (G, 2G)-graded (B, 2B)-bimodule X, and a (1G, 3G)-graded (1B, 3B)-
bimodule Y,

Homs;(B,2B),(1B,3B)(X, Y) = { f : X → Y| f ∈ Homl,s;B,1B(X, Y)& f ∈ Homr,s;2B,3B(X, Y)},
Homs;(G,2G),(1G,3G)(X, Y) = { f : X → Y| f ∈ Homl,s;G,1G(X, Y)& f ∈ Homr,s;2G,3G

(X, Y)}.

Proposition 2. Let X and Y be G-graded B-bimodules. Then there are G-epigeneric bijective
homomorphisms

ηX
Y : TorB(X, Y)→ H(L(X)⊗B Y) and

η̃Y
X : TorB(X, Y)→ H(X⊗B L(Y)).

Proof. Let f : X → 1X and g : Y → 1Y be (B, B)-epigeneric homomorphisms of G-graded
B-bimodules X, 1X, and Y, 1Y, respectively. This induces a G-epigeneric homomorphism
of G-graded Z-graded B-bimodules TorB( f , g) : TorB(X, Y)→ TorB(1X, 1Y), where

TorB( f , g) := H(L( f )⊗B L(g)) (17)

with homogeneous components TorB
n ( f , g) : TorB

n (X, Y) → TorB
n (

1X, 1Y) being G|n|+2-
epigeneric, such that (TorB

n ( f , g))′ : TorB
n (B, B) → TorB

n (B, B), where A is embedded into
the unital algebra B as A1B. From Proposition 9 and Corollary 2 in [32], it follows that the
canonical T -linear homomorphism ĥ0,0 : H0(L(X))⊗B H0(L(Y))→ H0(L(X)⊗B L(Y)) is
bijective, where ĥ = ĥ(L(X), L(Y)). In view of Lemma 2 in [32] and the conditions imposed
on L0(X), L0(Y) and the maps pX , pY in Remark 1, there are G-epigeneric isomorphisms
of the G-graded B-bimodules θX : X → H0(L(X)) and θY : Y → H0(L(Y)). This induces a
canonical G-epigeneric isomorphism

ĥX,Y : X⊗B Y → TorB
0 (X, Y). (18)

This implies that
ĥ1X,1Y ◦ ( f ⊗ g) = TorB

0 ( f , g) ◦ ĥX,Y. (19)
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Notice that the G-epigeneric homomorphism of complexes

pX ⊗ pY : L(X)
⊗

B L(Y)→ X
⊗

B Y induces a G-epigeneric 0 isomorphism
ĥ−1

X,Y : TorB
0 (X, Y)→ X⊗B Y

inverse to ĥX,Y. Then one gets L(1X) = 1L(x) and L(1Y) = 1L(Y); consequently, TorB(1X , 1Y)

= 1TorB(X,Y). Assume that 1 f : 1X → 2X and 1g : 1Y → 2Y are (B, B)-epigeneric homo-
morphisms of G-graded B-bimodules 1X, 2X, and 1Y, 2Y, respectively, then L(1 f ◦ f ) =
L(1 f ) ◦ L( f ), L(1g ◦ g) = L(1g) ◦ L(g) and (L(1 f ◦ f ))′ = L(1 f ′ ◦ f ′) = L(1 f ′) ◦ L( f ′) =
(L(1 f ) ◦ L( f ))′ and (L(1g ◦ g))′ = L(1g′ ◦ g′) = L(1g′) ◦ L(g′) = (L(1g) ◦ L(g))′. Hence
TorB(1 f ◦ f , 1g ◦ g) = TorB(1 f , 1g) ◦ TorB( f , g), (TorB(1 f ◦ f , 1g ◦ g))′ = (TorB(1 f , 1g))′ ◦
(TorB( f , g))′ and (1 f ⊗ 1g) ◦ ( f ⊗ g) = (1 f ◦ f )⊗ (1g ◦ g). There are natural G-epigeneric
homomorphisms of G-graded B-bimodules

1⊗ pY : L(X)
⊗

B L(Y)→ L(X)
⊗

B Y and
pX ⊗ 1 : L(X)

⊗
B L(Y)→ X

⊗
B L(Y).

In view of Proposition 4 in [32] 1⊗ pY and pX ⊗ 1 are (B, B)-epigeneric homologisms. They
induce G-epigeneric bijective homomorphisms

ηX
Y : TorB(X, Y)→ H(L(X)

⊗
B Y) and η̃Y

X : TorB(X, Y)→ H(X
⊗

B L(Y)).

This implies the assertion of this proposition.

Corollary 1. If the conditions of Proposition 2 are satisfied and either X or Y is flat, then
TorB

n (X, Y) = 0 for each n > 0.

Proof. Assume that a module either X or Y is flat, then either pX ⊗ 1 : L(X)
⊗

B Y →
X

⊗
B Y or 1

⊗
B pY : X

⊗
B L(Y) → X

⊗
B Y, respectively, is a (B, B)-epigeneric homolo-

gism by Proposition 4 in [32]. Therefore a module either Hn(L(X)
⊗

B Y) or Hn(X
⊗

B L(Y)),
respectively, is null for each n > 0. Then, from Proposition 2, it follows that TorB

n (X, Y) = 0
for each n > 0.

Proposition 3. Let X, Y be G-graded B-bimodules and let 1X, 1Y be G-graded left B-modules.
Then a map Ψ : ( f , g) 7→ TorB( f , g) is T -bilinear, where

Ψ : Homs;(B,B),(B,B)(X, 1X)× Homl,s;B,B(Y, 1Y)→
→ Homl,s;B,B(TorB(X, Y), TorB(1X, 1Y)).

Proof. For any f and p in Homs;(B,B),(B,B)(X, 1X), g and v in Homl,s;B,B(Y, 1Y), and a and
b in T , we infer that homomorphisms a(L( f ) ⊗ g) + b(L( f ) ⊗ v) and L( f ) ⊗ (ag + bv)
from L(X)

⊗
B Y into L(1X)

⊗
B

1Y coincide, and a( f
⊗

L(g)) + b(p
⊗

L(g)) and (a f +
bp)

⊗
L(g) from X

⊗
B L(Y) into 1X

⊗
B L(1Y) coincide. From Proposition 2 and

Remarks 1 and 2, it follows that TorB( f , ag+ bv) = aTorB( f , g)+ bTorB( f , v) and TorB(a f +
bp, g) = aTorB( f , g) + bTorB(p, g).

Corollary 2. Assume that X, Y are G-graded B-bimodules. If b ∈ T annihilates X or Y, then b
annihilates TorB(X, Y).

Proof. The assertion of this corollary follows from Proposition 3 and b1TorB(X,Y) = TorB

(b1X , 1Y) and b1TorB(X,Y) = TorB(1X , b1Y).

Proposition 4. Assume that {jX : j ∈ J} is a family of G-graded B-bimodules and {kY : k ∈ K}
is a family of left G-graded B-modules, j f : jX → X with X =

⊕
i∈J

iX, kg : kY → Y with
Y =

⊕
l∈K

lY are canonical homomorphisms for each j ∈ J and k ∈ K, where J and K are sets.
Then there exists a G-epigeneric bijective homomorphism

⊕
i∈J,l∈K TorB(iX, lY)→ TorB(X, Y).
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Proof. Certainly X is a G-graded B-bimodule, and Y is a G-graded left B-module. Ev-
idently, the canonical homomorphism j f is injective and (B, B)-exact for each j ∈ J,
kg is injective and B-exact for each k ∈ K. This induces G-epigeneric isomorphisms⊕

k∈K(L(X)
⊗

B
kY) → (L(X)

⊗
B Y) and

⊕
j∈J(

jX
⊗

B L(Y)) → (X
⊗

B L(Y)). Therefore,
in view of Propositions 2 and A2, there exist G-epigeneric bijective homomorphisms⊕

k∈K TorB(X, kY)→ TorB(X, Y) and
⊕

j∈J TorB(jX, Y)→ TorB(X, Y).

This implies the assertion of this proposition.

Theorem 1. Let J and K be directed sets and let DX = {jX, j
l f , J} be a direct system of G-

graded B-bimodules with B-epigeneric homomorphisms j
l f : jX → lX for each j < l in J, and let

DY = {kY, k
l g, K} be a direct system of left G-graded B-modules with B-epigeneric homomorphisms

k
i g : kY → iY for each k < i in K. Then there exists a G-epigeneric bijective homomorphism
−→
lim(i,k)∈J×KTorB(iX, kY)→ TorB(X, Y) with X =

−→
limDX , Y =

−→
limDY.

Proof. The limits of directed systems DX and DY are a G-graded B-bimodule X and a
G-graded left B-module Y, respectively. For the limits of direct systems there are natural
injective (B, B)-epigeneric homomorphisms j f : jX → X for each j ∈ J, injective B-
epigeneric kg : kY → Y for each k ∈ K. On the other hand, A is embedded into the unital
A-algebra B as A1B, while G is embedded into A as G1A, where 1B is the unit element
in B. Hence there are G-epigeneric isomorphisms

−→
limk∈K(L(X)

⊗
B

kY) → (L(X)
⊗

B Y)
and
−→
limj∈J(

jX
⊗

B L(Y)) → (X
⊗

B L(Y)). In view of Propositions 2 and A2, there exist
G-epigeneric bijective homomorphisms

−→
limk∈KTorB(X, kY) → TorB(X, Y) and

−→
limj∈J TorB(jX, Y) → TorB(X, Y). This induces

the G-epigeneric bijective homomorphism
−→
lim(i,k)∈J×KTorB(iX, kY)→ TorB(X, Y).

Remark 3. Let X be a G-graded B-bimodule, where A = T [G] is a metagroup algebra, G is a
metagroup, T is a commutative associative unital ring, and B is a unital G-graded A-algebra.
Let also

0→ 1Y−−−−→p Y−−−−→s
2Y → 0 (20)

be an exact sequence of G-graded left B-modules with B-epigeneric (or B-exact) homomorphisms p
and s. The sequence in (20) will be denoted by P = P(1Y, Y, 2Y; p, s). In view of Proposition 10
and Lemma 5 in [32] and Proposition 1 above, a sequence of G-graded left B-complexes

0→ L(X)
⊗

B

1Y−−−−−−→
1⊗p

L(X)
⊗

B
Y−−−−−−→

1⊗s
L(X)

⊗
B

2Y → 0 (21)

is exact with B-epigeneric (or B -exact respectively) homomorphisms 1⊗ p and 1⊗ s. We denote
the sequence in (21) by XP . In view of Lemma 4 in [32] and (20), there exists a B-epigeneric
homomorphism

∂(XP) : H(L(X)
⊗

B

2Y)→ H(L(X)
⊗

B

1Y). (22)

Definition 3. A composition of the G-epigeneric bijective homomorphisms ηX
1Y and ηX

2Y and the
B-epigeneric homomorphism ∂(XP)

∂(X,P) = (ηX
1Y)
−1 ◦ ∂(XP) ◦ ηX

2Y : TorB(X, 2Y)→ TorB(X, 1Y) (23)

is called a connecting homomorphism of torsion products relative to the module X and the exact
sequence P .
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Theorem 2. Assume that modules are as in Remark 3. Then there exists no boundary on the
left sequence of G-epigeneric homomorphismsTorB

n (1, p), TorB
n (1, s), ∂n(X,P), 1⊗ p, 1⊗ s of

G-graded left B-modules

...→ TorB
n (X, 1Y)−−−−−−→

TorB
n (1,p)

TorB
n (X, Y)−−−−−→

TorB
n (1,s)

TorB
n (X, 2Y)

−−−−−→
∂n(X,P)TorB

n−1(X, 1Y)−−−−−−−→
TorB

n−1(1,p)
...−−−−−→

TorB
1 (1,s)

TorB
1 (X, 2Y)

−−−−−→
∂1(X,P)X

⊗
B

1Y−−−−−−→
1⊗p

X
⊗

B
Y−−−−−−→

1⊗s
X

⊗
B

2Y → 0. (24)

Proof. Notice that ∂(X,P) is the graded homomorphism of degree −1 with components
relative to the Z-gradation

∂n(X,P) : TorB
n (X, 2Y)→ TorB

n−1(X, 1Y).

The latter homomorphism is B-epigeneric. The homomorphisms (ηX
1Y)
′ and (ηX

2Y)
′

from G into G are bijective by Proposition 2. There exists the commutative diagram

TorB(X, 1Y)−−−−−−−−−−→
TorB(1,p)

TorB(X, Y)−−−−−−−−−−→
TorB(1,s)

TorB(X, 2Y)→

ηX
1Y ↓ ηX

Y ↓ ηX
2Y ↓

H(L(X)
⊗

B
1Y)−−−−−−−→

H(1⊗p)
H(L(X)

⊗
B Y)−−−−−−−→

H(1⊗s)
H(L(X)

⊗
B

2Y)→

−−−−→
∂(X,P)TorB(X, 1Y)−−−−−−−−−−→

TorB(1,p)
TorB(X, Y)

ηX
1Y ↓ ηX

Y ↓
−−−→
∂(XP)

H(L(X)
⊗

B
1Y)−−−−−−−→

H(1⊗p)
H(L(X)

⊗
B Y).

In view of Proposition 2, the homomorphisms ηX
Y , ηX

1Y, and ηX
2Y are G-epigeneric

bijective. This diagram is commutative based on Remarks 1 and 3. The lower line of this
commutative diagram is exact by Theorem 1 in [32].

Corollary 3. If the conditions of Remark 3 are satisfied and TorB
1 (X, 2Y) = 0, then the following

sequence

0→ X
⊗

B
1Y−−−−−−→

1⊗p
X

⊗
B Y−−−−−−→

1⊗s
X

⊗
B

2Y → 0

is exact with G-epigeneric homomorphisms 1⊗ p, 1⊗ s.

Corollary 4. Let the following sequence of complexes of G-graded left B-modules be exact with
B-epigeneric homomorphisms p and s

0→ 1C−−−−→p C−−−−→s
2C → 0

and let 3C be a complex of G-graded B-bimodules. If 2C or 3C is flat, then the following sequence

0→ 3C⊗B
1C−−−−−−→

1⊗p
3C⊗B C−−−−−−→1⊗s

3C⊗B
2C → 0

is exact with G-epigeneric homomorphisms 1⊗ p and 1⊗ s.

Proof. This follows from Theorem 2 and Corollary 1.

Proposition 5. Assume that there is the following commutative diagram of G-graded left B-
modules with B-epigeneric homomorphisms p, s, 1 p, 1s, 1h, h, 2h

0→ 1Y−−−−→p Y−−−−→s
2Y → 0

1h ↓ h ↓ 2h ↓
0→ 1W−−−→1 p

W−−−→1s
2W → 0

(25)
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with exact (horizontal) lines.
Assume also that there is a B-epigeneric homomorphism of G-graded B-bimodules f : X → 1X.
Then the following diagram of G-graded left B-modules is commutative with G-epigeneric Z-graded
homomorphisms:

TorB(X, 2Y)−−−−−−−−−−→
∂(X,P) TorB(X, 1Y)

TorB( f , 2h) ↓ TorB( f , 1h) ↓
TorB(1X, 2W)−−−−−−−−−−→

∂(1X,1P)
TorB(1X, 1W).

(26)

Proof. There is the following commutative diagram with G-epigeneric homomorphisms
1⊗ p, 1⊗ s, 1⊗ 1 p, 1⊗ 1s, L( f )⊗ 1h, L( f )⊗ h, L( f )⊗ 2h:

0→ L(X)
⊗

B
1Y−−−−−−→

1⊗p
L(X)

⊗
B Y−−−−−−→

1⊗s
L(X)

⊗
B

2Y → 0

L( f )⊗ 1h ↓ L( f )⊗ h ↓ L( f )⊗ 2h ↓
0→ L(1X)

⊗
B

1W−−−−−→
1⊗1 p

L(1X)
⊗

B W−−−−−→
1⊗1s

L(1X)
⊗

B
2W → 0.

From the latter commutative diagram and Proposition A3, the assertion of this proposition
follows.

Remark 4. Symmetrically to the case considered above, let X be a G-graded B-bimodule, where
A = T [G] is a metagroup algebra, G is a metagroup, T is a commutative associative unital ring,
and B is a unital G-graded A-algebra. Let also

0→ 1Y−−−−→p Y−−−−→s
2Y → 0 (27)

be an exact sequence of G-graded right B-modules with B-epigeneric (or B-exact) homomorphisms
p and s. We denote the sequence in (27) by S = S(1Y, Y, 2Y; p, s). From Proposition 10 and
Lemma 5 in [32] and Proposition 1 above, it follows that a sequence of G-graded right B-complexes

0→ 1Y
⊗

B
L(X)−−−−→

p⊗1
Y
⊗

B
L(X)−−−−→

s⊗1
2Y

⊗
B

L(X)→ 0 (28)

is exact with B-epigeneric (or B -exact, respectively) homomorphisms p⊗ 1 and s⊗ 1. We denote the
sequence in (28) by XS . By virtue of Lemma 4 in [32], there exists a B-epigeneric homomorphism

∂(XS) : H(2Y
⊗

B
L(X))→ H(1Y

⊗
B

L(X)) (29)

Definition 4. A composition of G-epigeneric bijective homomorphisms η̃X
1Y and η̃X

2Y and the B-
epigeneric homomorphism ∂(XS)

∂(X,S) = (η̃X
1Y)
−1 ◦ ∂(XS) ◦ η̃X

2Y : TorB(2Y, X)→ TorB(1Y, X) (30)

is called a connecting homomorphism of torsion products relative to the module X and the exact
sequence S .

Theorem 3. Let modules be as in Remark 4. Then there exists a sequence unbounded on the left of
the G-epigeneric homomorphisms TorB

n (p, 1), TorB
n (s, 1), ∂n(X,S), p⊗ 1, s⊗ 1 of G-graded right

B-modules

...→ TorB
n (

1Y, X)−−−−−−→
TorB

n (p,1)
TorB

n (Y, X)−−−−−→
TorB

n (s,1)
TorB

n (
2Y, X)

−−−−−→
∂n(X,S)TorB

n−1(
1Y, X)−−−−−−−→

TorB
n−1(p,1)

...−−−−−→
TorB

1 (s,1)
TorB

1 (
2Y, X)

−−−−−→
∂1(X,S)

1Y
⊗

B X−−−−−−→
p⊗1

Y
⊗

B X−−−−−−→
s⊗1

2Y
⊗

B X → 0.

(31)
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Proof. From Remark 4 and Definition 4, one gets that the homomorphism ∂(X,S) is
Z-graded of degree −1 with components

∂n(X,S) : TorB
n (

2Y, X)→ TorB
n−1(

1Y, X),

which are B-epigeneric. Then the homomorphisms (η̃X
1Y)
′ and (η̃X

2Y)
′ from G into G are

bijective. We consider the commutative diagram

TorB(1Y, X)−−−−−−−−−−→
TorB(p,1)

TorB(Y, X)−−−−−−−−−−→
TorB(s,1)

TorB(2Y, X)→

η̃X
1Y ↓ η̃X

Y ↓ η̃X
2Y ↓

H(1Y
⊗

B L(X))−−−−−−−→
H(p⊗1)

H(Y
⊗

B L(X))−−−−−−−→
H(s⊗1)

H(2Y
⊗

B L(X))→

−−−−→
∂(X,S)TorB(1Y, X)−−−−−−−−−−→

TorB(p,1)
TorB(Y, X)

η̃X
1Y ↓ η̃X

Y ↓
−−−→
∂(XS)

H(1Y
⊗

B L(X))−−−−−−−→
H(p⊗1)

H(Y
⊗

B L(X)).

According to Proposition 2, the homomorphisms η̃X
Y , η̃X

1Y, and η̃X
2Y are G-epigeneric

bijective. In view of Theorem 1 in [32] and Remarks 1 and 4 above the latter diagram is
commutative possessing the exact lower (horizontal) line.

Corollary 5. Assume that the conditions of Remark 4 are satisfied and TorB
1 (

2Y, X) = 0. Then
the following sequence

0→ 1Y
⊗

B X−−−−−−→
p⊗1

Y
⊗

B X−−−−−−→
s⊗1

2Y
⊗

B X → 0

is exact with G-epigeneric homomorphisms p⊗ 1, s⊗ 1.

Corollary 6. Suppose that the following sequence of complexes of G-graded right B-modules is
exact with B-epigeneric homomorphisms p and s

0→ 1C−−−−→p C−−−−→s
2C → 0

and let 3C be a complex of G-graded B-bimodules. If 2C or 3C is flat, then the following sequence

0→ 1C⊗B
3C−−−−−−→

p⊗1
C⊗B

3C−−−−−−→
s⊗1

2C⊗B
3C → 0

is exact with G-epigeneric homomorphisms p⊗ 1 and s⊗ 1.

Proof. This follows from Theorem 3 and Corollary 1.

Proposition 6. Let the following commutative diagram of G-graded right B-modules

0→ 1Y−−−−→p Y−−−−→s
2Y → 0

1h ↓ h ↓ 2h ↓
0→ 1W−−−→1 p

W−−−→1s
2W → 0

(32)

be with B-epigeneric homomorphisms p, s, 1 p, 1s, 1h, h, 2h and with exact (horizontal) lines.
Let also a homomorphism f : X → 1X of G-graded B-bimodules be B-epigeneric. Then the following
diagram of G-graded right B-modules

TorB(2Y, X)−−−−−−−−−−→
∂(X,S) TorB(1Y, X)

TorB(2h, f ) ↓ TorB(1h, f ) ↓
TorB(2W, 1X)−−−−−−−−−−→

∂(1X,1S)
TorB(1W, 1X)

(33)

is commutative with G-epigeneric Z-graded homomorphisms.



Axioms 2021, 10, 319 11 of 21

Proof. We take the following commutative diagram

0→ 1Y
⊗

B L(X)−−−−−−→
p⊗1

Y
⊗

B L(X)−−−−−−→
s⊗1

2Y
⊗

B L(X)→ 0
1h⊗ L( f ) ↓ h⊗ L( f ) ↓ 2h⊗ L( f ) ↓

0→ 1W
⊗

B L(1X)−−−−−→1 p⊗1
W

⊗
B L(1X)−−−−−→1s⊗1

2W
⊗

B L(1X)→ 0

possessing G-epigeneric homomorphisms p⊗ 1, s⊗ 1, 1 p⊗ 1, 1s⊗ 1, 1h⊗ L( f ), h⊗ L( f ),
2h⊗ L( f ). Then Proposition A3 implies the assertion of this proposition.

Theorem 4. Let X be a G-graded B-bimodule. Then the following conditions are equivalent:

(i) X is flat;
(ii) TorB

n (X, Y) = 0 for each G-graded left B-module Y and for each positive integer n;
(iii) the following sequence

0→ 2X
⊗

B Y−−−−−−→
p⊗1

1X
⊗

B Y−−−−−−→
s⊗1

X
⊗

B Y → 0
is exact with B-epigeneric homomorphisms p⊗ 1 and s⊗ 1 for each exact sequence
0→ 2X−−−−→p

1X−−−−→s X → 0
of G-graded B-bimodules with B-epigeneric homomorphisms p and s and for each G-graded
left B-module Y.

Proof. From (i), it follows that (ii) by Corollary 1. In view of Corollary 4, we get that (i)
implies (iii).

Assume that the conditions in (iii) are satisfied. Then from Remark 1 it follows that

0→ Zn(X)−−−−−−−−−−−−−−−→
iZn−1(X)

Ln(X)−−−−−−−−−−−−−−−→pZn−1(X)
Zn−1(X)→ 0

is the exact sequence with B-epigeneric homomorphisms iZn−1(X) and pZn−1(X) for each
integer n ≥ 1, since Ln(X) = L0(Zn−1(X)) and Zn(X) = Z0(Zn−1(X)). By virtue of
Proposition 2, this induces the following exact sequence

0→ TorB
n (X, Y)→ Zn(X)

⊗
B Y−−−−−−−−−−−−−−−−−→

iZn−1(X)⊗1
Ln(X)

⊗
B Y

−−−−−−−−−−−−−−−−−→
pZn−1(X)⊗1

Zn−1(X)
⊗

B Y → 0

with 1B-epigeneric homomorphisms iZn−1(X) ⊗ 1 and pZn−1(X) ⊗ 1 for each integer n ≥ 1.
Together with the conditions in (iii), this implies that TorB

n (X, Y) = 0 for each positive
integer n ≥ 1.

From Proposition 1 in [32] and Theorem 2 above, it follows that X is flat if the condi-
tions in (ii) are satisfied.

Corollary 7. Assume that there is an exact sequence

0→ 2X−−−−→p
1X−−−−→s X → 0

of G-graded B-bimodules with B-epigeneric homomorphisms p and s and X is flat. Then 1X is flat
if and only if 2X is flat.

Proof. There is an exact sequence

0→ TorB
n (

2X, Y)→ TorB
n (

1X, Y)→ 0

for each G-graded left B-module Y and each positive integer n ≥ 1 by (i) ⇔ (ii) in
Theorem 4. This implies the assertion of this corollary.

Remark 5. We consider a G-graded B-complex (C, d) of G-graded B-bimodules and a G-graded
B-complex (1C, 1d) of G-graded left B-modules. There are exact sequences

0→ Z(C)−−−−→
j
C−−−−→

δ
B(C)(−1)→ 0 (34)
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0→ B(C)−−−→
i
Z(C)−−−−−→vs. H(C)→ 0 (35)

with B-epigeneric homomorphisms j, δ, i, v. From (34) and (35), B-epigeneric homomorphisms
are induced

H(δ⊗ 1) : H(C
⊗

B

1C)→ H(B(C)
⊗

B

1C)(−1) (36)

∂(H(1C)) : TorB
1 (H(C), H(1C))→ B(C)

⊗
B

H(1C) (37)

(see Remark 1 and Definition 7 in [32]). Then TorB
1 (H(C), H(1C)) can be supplied with the

Z-gradation such that

(TorB
1 (H(C), H(1C)))n = ∑

l+m=n
TorB

1 (Hl(C), Hm(
1C)). (38)

This implies that ∂(H(1C)) is the Z-graded homomorphism of zero degree.
By virtue of Proposition 9 in [32], there exists the homomorphism

ĥ(B(C), 1C) : B(C)
⊗

B
H(1C)→ H(B(C)

⊗
B

1C). (39)

Theorem 5. Let the conditions of Remark 5 be satisfied and let G-graded B-bimodules Z(C) and
B(C) be flat and let the homomorphisms j, δ, i, v be B-epigeneric. Then there exists a unique
G-epigeneric Z-graded homomorphism of degree −1

w : H(C
⊗

B

1C)→ TorB
1 (H(C), H(1C)). (40)

such that the following diagram is commutative

H(C⊗B
1C)−−−−−−−−−−−−−−−−−−−−−→w TorB

1 (H(C), H(1C))(−1)
H(δ⊗ 1) ↓ ∂(H(1C)) ↓

H(B(C)⊗B
1C)(−1)←−−−−−−−−−

ĥ(B(C),1C)
(B(C)⊗B H(1C))(−1)

(41)

and the following sequence of G-graded left B-modules

0→ H(C)⊗B H(1C)−−−−−→
ĥ(C,1C)

H(C⊗B
1C)−→w

→ TorB
1 (H(C), H(1C))(−1)→ 0

(42)

is exact with G-epigeneric homomorphisms ĥ(C, 1C) and w.

Proof. In view of Corollary 7, C and H(C) are flat, since the sequences (34) and (35) are
exact and since the homomorphisms j, δ, i, v are B-epigeneric. Then the following sequence

0→ Z(C)
⊗

B

1C−−→
j⊗1
C
⊗

B

1C−−−→
δ⊗1
→ (B(C)

⊗
B

1C)(−1)→ 0 (43)

is exact with G-epigeneric homomorphisms j⊗ 1 and δ⊗ 1 by Corollary 4. The sequence
in (42) for each n takes the form:

0→ ⊕
l+m=n Hl(C)

⊗
B Hm(1C)−−−−−−→

ĥn(C,1C)
Hn(C

⊗
B

1C)−→w
→ ⊕

l+m=n−1 TorB
1 (Hl(C), Hm(1C))→ 0.

(44)

The lemmas below are used for the proof continuation of this theorem.

Lemma 1. The connecting homomorphism ρ : H(B(C)⊗B
1C)→ H(Z(C)⊗B

1C) associated
with the exact sequence (43) is H(i⊗ 1).
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Proof. Since B(C) is flat, then b belongs to the image of B(C)⊗B Z(1C) for each b ∈
Z(B(C)⊗B

1C). Therefore, there exists cm ∈ C and um ∈ 1C such that b = ∑m dcm ⊗ um
with dum = 0 for each m. A class of ρ(b) is a class of D(∑m cm ⊗ um) = ∑m dcm ⊗ um =
(i⊗ 1)(b).

Lemma 2. Let 1C be a split G-graded B-complex of G-graded left B-modules, and let H(1C) be
flat. Let also C be a G-graded B-complex of G-graded B-bimodules. Then the map

ĥ(C, 1C) : H(C)⊗B H(1C)→ H(C⊗B
1C)

is G-epigeneric and bijective.

Proof. In view of Proposition 5 and Definition 11 in [32] and Remarks 1 and 5, a B-
epigeneric homotopism 1 f of (1C, 1d) onto (H(1C), 0) exists. By virtue of Proposition 10
in [32], there exists a homotopism 1C ⊗ 1 f : C⊗B

1C → C⊗B H(1C). Notice that

H(1C ⊗ 1 f ) ◦ ĥ(C, 1C) = ĥ(C, H(1C)) ◦ H(1C ⊗ H(1 f )).

Therefore, it remains to be proved that ĥ(C, H(1C)) is G-epigeneric and bijective, since
H(1C ⊗ 1 f ) and H(1 f ) are B-epigeneric and bijective, G1A ⊂ A, A1B ↪→ B. Hence it is
sufficient to consider the case such that 1C is flat and with zero 1d. On the other hand, there
are exact sequences

0→ Z(C)−→
i
C−→

δ
B(C)→ 0; (45)

0→ B(C)−→
j
Z(C)−→π H(C)→ 0; (46)

with B-epigeneric homomorphisms i, δ, j, π. For the flat G-graded B-complex 1C with zero
1d from (45) and (46), it follows that the following sequences are exact with G-epigeneric
homomorphisms i⊗ 1, δ⊗ 1, j⊗ 1, π ⊗ 1:

0→ Z(C)
⊗

B

1C−−→
i⊗1
C
⊗

B

1C−−−→
δ⊗1
B(C)

⊗
B

1C → 0; (47)

0→ B(C)
⊗

B

1C−−→
j⊗1
Z(C)

⊗
B

1C−−−→
π⊗1

H(C)
⊗

B

1C → 0. (48)

Therefore we infer that D = d ⊗ 11C and hence D = (i ⊗ 1) ◦ (j ⊗ 1) ◦ (δ ⊗ 1),
since d = i ◦ j ◦ δ. This implies that the canonical maps Z(C)⊗B

1C → Z(C⊗B
1C)

and B(C)⊗B
1C → B(C⊗B

1C) are bijective and G-epigeneric. Therefore, ĥ(C, 1C) is
G-epigeneric and bijective.

Continuation of the Proof of Theorem 5. Notice that the exact homological sequence re-
lated with (43) is:

H(B(C)⊗B
1C)−−−−−→

H(i⊗1)
H(Z(C)⊗B

1C)−−−−−→
H(j⊗1)

H(C⊗B
1C)→

−−−−−−→
H(δ⊗1)

H(B(C)⊗B
1C)(−1)−−−−−→

H(i⊗1)
H(Z(C)⊗B

1C)(−1).

Since Z(C) is flat, taking into account (35), we infer that the sequence

0→ TorB
1 (H(C), H(1C))−−−−−−−→

∂(H(1C))
B(C)⊗B H(1C)−−→

i⊗1
Z(C)⊗B H(1C)→

−−−→
v⊗1

H(C)⊗B H(1C)→ 0

is exact with G-epigeneric homomorphisms ∂(H(1C)), i⊗ 1, v⊗ 1 of Z-graded G-graded
left B-modules.

There are G-epigeneric homomorphisms

ĥ(B(C), 1C) : B(C)⊗B H(1C)→ H(B(C)⊗B
1C),

ĥ(Z(C), 1C) : Z(C)⊗B H(1C)→ H(Z(C)⊗B
1C),

ĥ(H(C), H(1C)) : H(C)⊗B H(1C)→ H(C⊗B
1C).
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This implies that the following diagram is commutative of G-graded left B-modules with
exact (horizontal) lines and G-epigeneric homomorphisms

B(C)⊗B H(1C)−−−−−−→
i⊗1

Z(C)⊗B H(1C)−−−−−−→
v⊗1

H(C)⊗B H(1C)→ 0

ĥ(B(C), 1C) ↓ ĥ(Z(C), 1C) ↓ ĥ(H(C), H(1C)) ↓
H(B(C)⊗B

1C)−−−−−−−→
H(i⊗1)

H(Z(C)⊗B
1C)−−−−−−−→

H(j⊗1)
H(C⊗B

1C)−−−−−−→
H(δ⊗1)

−−−−−−→
H(δ⊗1)

H(B(C)⊗B
1C)(−1)−−−−−−−→

H(i⊗1)

ĥ(B(C), 1C) ↑
0→ TorB

1 (H(C), H(1C))(−1)−−−−−−−→
∂(H(1C))

B(C)⊗B H(1C)(−1)−−−−−−→
i⊗1

−−−−−−−−→
H(i⊗1)

H(Z(C)⊗B
1C)(−1))

ĥ(Z(C), 1C) ↑
−−−−−−−−→

i⊗1
(Z(C)⊗B H(1C))(−1).

From Lemma 2, it follows that the maps ĥ(B(C), 1C) and ĥ(Z(C), 1C) are bijective,
since the G-graded B-complexes B(C) and Z(C) are flat and split. Hence the map ĥ(C, 1C)
is injective with ĥ(C, 1C)(H(C)⊗B H(1C) = KerH(δ⊗ 1) by Corollary A2. Using Corol-
lary A1, we deduce that the map ĥ(B(C), 1C) ◦ ∂(H(1C)) is injective with the image
Im(ĥ(B(C), 1C) ◦ ∂(H(1C))) = ImH(δ ⊗ 1). From this, the assertion of Theorem 5
follows.

Theorem 6. Assume that C and 1C are G-graded B-complexes of G-graded B-bimodules and
G-graded left B-modules, respectively, and that B(C) and B(1C) are projective. Then the canonical
homomorphism ĥ(C, 1C) : H(C)⊗B H(1C)→ H(C⊗B

1C) has a G-epigeneric retraction.

Proof. In view of Propositions 4 and 10 in [32], Remarks 1 and 5, there exist B-epigeneric
homologisms f : C → H(C) and 1 f : 1C → H(1C) such that H( f ) = 1H(C) and H(1 f ) =
1H(1C). There is the following commutative diagram with G-epigeneric homomorphisms

H(C)⊗B H(1C)−−−−−−−−−−−−−→
ĥ(C,1C)

H(C⊗B
1C)

H( f )⊗ H(1 f ) ↓ H( f ⊗ 1 f ) ↓
H(C)⊗B H(1C)−−−−−−−−−−−−→

ĥ(H(C),H(1C))
H(C)⊗B H(1C)

in which H( f ) ⊗ H(1 f ) and ĥ(H(C), H(1C)) are the identity maps; consequently,
H( f ⊗ 1 f ) ◦ ĥ(C, 1C) is the identity map. Hence ĥ(C, 1C) has the G-epigeneric retraction
H( f ⊗ 1 f ).

Corollary 8. Let C be a G-graded B-complex of G-graded B-bimodules, Y be a G-graded left
B-module, and let B(C) and Z(C) be flat. Then the following sequence is exact

0→ Hn(C)
⊗

B
Y−−−−−→

ĥn(C,Y)
Hn(C

⊗
B

Y)−−→wn
TorB

1 (Hn−1(C, Y))→ 0 (49)

for each integer n with G-epigeneric homomorphisms ĥn(C, Y) and wn.

Corollary 9. Let C and 1C be G-graded B-complexes of G-graded B-bimodules and G-graded left
B-modules, respectively; let also B(C) and B(1C) be projective, and let Z(C) be flat. Then the
sequences (44) and (49) are exact and split.

Proof. This follows from Theorems 5 and 6.



Axioms 2021, 10, 319 15 of 21

Corollary 10. Let the conditions of Remark 5 be satisfied, let the homomorphisms j, δ, i, v be
B-epigeneric, let C be bounded on the right, and let C and H(C) be flat. Then the canonical
homomorphism

ĥ(C, 1C) : H(C)⊗B H(1C)→ H(C⊗B
1C)

is bijective and G-epigeneric.

Proof. By virtue of Theorem 5, it is sufficient to prove that B(C) and Z(C) are flat. There
are exact sequences (34) and (35). From Corollary 7, it follows that if Bn−1(C) is flat,
then Zn(C) is flat; if Zn(C) is flat, then Bn(C) is flat. Notice that by the conditions of this
corollary there exists m ∈ Z such that Bk(C) = 0 for each k < m. This implies the assertion
of the corollary.

3. Conclusions

The results of this article can be used for subsequent studies of (co)homology theory
of nonassociative algebras with metagroup relations, modules, and complexes over them
and noncommutative manifolds. Other actual applications exist in mathematical coding
theory, autonomous mobile robotics, analysis of information flows, and their technical
realizations [33–36], because for these purposes, binary systems and algebras are indis-
pensable. This has the natural reason that metagroup relations are weaker than relations in
groups. Therefore, coding complexity and routing of autonomous mobile robots can be
more effective using algebras with metagroup relations in comparison with group algebras
or Lie algebras.

Other applications were outlined in the introduction. This can also be applied to
studies of PDEs or their system solutions with boundary conditions using (co)homologies,
which can have a practical importance in dynamical systems [25,34]. It is known that the
Cayley–Dickson algebras are related with the quasi Hopf algebras. The latter are used for
the quantum Yang–Baxter equation. Therefore on the other side, metagroup algebras also
provide new possibilities for investigations of the quantum Yang–Baxter equation.

4. Future Work

Besides areas of further studies in this area outlined in the introduction and in the
conclusions, it would be interesting to scrutinize different types of products of metagroup
algebras and their modules in relation to specific products of complexes over algebras with
metagroup relations and their (co)homologies. On the other hand, studies of the structure of
metagroups are related with those of metagroup algebras and their modules. This is natural
because many structures in physics, quantum field theory, systems of partial differential
equations, or systems of integral equations frequently lead to nonassociative structures.
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Appendix A

Definitions of metagroups G, metagroup algebras A, smashly G-graded A-algebras B,
smashly G-graded B-modules (left, right or bimodules), and G-graded B-complexes are given
in [12,32], where “smashly” may be omitted for shortening. In these works and [11,22–24],
examples of families of metagroups, their modules, and their complexes are given.

Proposition A1. Let jB be a unital jG-graded j A-algebra for each j ∈ {1, 2, 3}, X and 1X be left
2B-modules, Y and 1Y be left 1B-modules, and Z and 1Z be left 3B-modules, where j A = T [jG] is
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a metagroup algebra, where jG is a metagroup, and where T is an associative commutative unital
ring. Let

X−−−−−−−−−→u Y−−−−−−−−−→v Z
f ↓ g ↓ h ↓
1X−−−−−−−−−→1u

1Y−−−−−−−−−→1v
1Z

(A1)

be a commutative diagram with exact (horizontal) lines, where homomorphisms u and 1u are
(2B, 1B)-epigeneric, v and 1v are (1B, 3B)-epigeneric, f is 2B-epigeneric, g is 1B-epigeneric, and h
is 3B-epigeneric.

If h is injective, then (A2)

Im(g) ∩ Im(1u) = Im(1u ◦ f ) = Im(g ◦ u). (A3)

If f is surjective, then (A4)

Ker(g) + Im(u) = Ker(1v ◦ g) = Ker(h ◦ v). (A5)

Proof. Note that the homomorphisms v′ ◦ u′ : 2B → 3B and 1v′ ◦ 1u′ : 2B → 3B are
epimorphic and T -linear and from the conditions of this proposition, we get the commuta-
tive diagram

2B−−−−−−−−−−→
u′

1B−−−−−−−−−−→
v′

3B
f ′ ↓ g′ ↓ h′ ↓

2B−−−−−−−−−−−→1u′
1B−−−−−−−−−−−→1v′

3B.

(A6)

Let h be injective. From the diagram (A1), we get that Im(1u ◦ f ) = Im(g ◦ u) ⊆
Im(g) ∩ Im(1u). Assume that 1y ∈ Im(g) ∩ Im(1u). Then there exists y ∈ Y such that
1y = g(y). From 1v ◦ 1u = 0, it follows that 0 = 1v(1y) = 1v(g(y)) = h(v(y)); consequently,
v(y) = 0, because h is injective. The exactness of the sequence (u, v) implies that there
exists x ∈ M such that y = u(x); hence, 1y = g(u(x)) and consequently, Im(g) ∩ Im(1u) ⊆
Im(g ◦ u) = Im(1u ◦ f ).

Let f be surjective. From v ◦ u = 0 and 1v ◦ 1u = 0, it follows that Ker(g) + Im(u) ⊆
Ker(1v ◦ g) = Ker(h ◦ v). On the contrary, y ∈ Ker(1v ◦ g) implies that g(y) ∈ Ker(1v),
and hence there exists 1x ∈ 1X for which 1u(1x) = g(y), because the sequence (1u, 1v) is
exact. Therefore, there exists x ∈ X such that f (x) = 1x, because f is surjective. Hence
g(y) = 1u( f (x)) = g(u(x)); consequently, y− u(x) ∈ Ker(g).

Lemma A1. Assume that X and 1X are left 2B-modules, Y and 1Y are left 1B-modules, where
j A = T [jG] is the metagroup algebra, where jG is the metagroup, T is an associative commutative
unital ring, and jB is the unital jG-graded j A-algebra for each j ∈ {1, 2}. Assume also that

X−−−−−−−−−−−→u Y
f ↓ g ↓
1X−−−−−−−−−→1u

1Y
(A7)

is a commutative diagram, where homomorphisms u and 1u are (2B, 1B)-epigeneric, f is 2B-
epigeneric, g is 1B-epigeneric. Then there exist unique (2B, 1B)-epigeneric homomorphisms
w : Ker( f ) → Ker(g) and 1w : Coker( f ) → Coker(g), for which the following diagrams
are commutative

Ker( f )−−−−−−−−−−−→w Ker(g)
i ↓ j ↓
X−−−−−−−−−−−−−−−−−−−→u Y

(A8)
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1X−−−−−−−−−−−−−−−−−−−−−−→1u
1Y

p ↓ q ↓
Coker( f )−−−−−−−−−→1w

Coker(g),

(A9)

where i and j denote the canonical embeddings, and p and q are the canonical surjections. Moreover,
if u and 1u are (2B, 1B)-exact, f is 2B-exact, and g is 1B-exact, then w and 1w are (2B, 1B)-exact.

Proof. By the conditions of this lemma, the homomorphisms u′ : 2B→ 1B and 1u′ : 2B→
1B are epimorphic and T -linear, and the following diagram is commutative:

2B−−−−−−−−−−→
u′

1B
f ′ ↓ g′ ↓
2B−−−−−−−−−−−→1u′

1B.
(A10)

Notice that Ker( f ) is the left 2B-module, Im(g) is the left 1B-module, since the homo-
morphism f is 2B-epigeneric and the homomorphism g is 1B-epigeneric. If x ∈ Ker( f ),
then f (x) = 0 and g(u(x)) = 1u( f (x)) = 0; consequently, u(x) ∈ Ker(g) and hence a
unique (2B, 1B)-epigeneric homomorphism w exists. Then 1u( f (X)) = g(u(X)) ⊆ g(Y).
For the corresponding quotient modules, this induces the homomorphism 1w : Coker( f )→
Coker(g), which is (2B, 1B)-epigeneric by (A10) and unique for which the diagram (A9)
is commutative. If u and 1u are (2B, 1B)-exact, f is 2B-exact, g is 1B-exact, and then, from
(A10) and the proof above, it follows that w and 1w are (2B, 1B)-exact.

Remark A1. By Lemma A1 to the commutative diagram of Proposition A1 the following commu-
tative diagram corresponds

Ker( f )−−−−−−−−−−→w Ker(g)−−−−−−−−−→t Ker(h)
i ↓ j ↓ k ↓
X−−−−−−−−−−−−−−−→u Y−−−−−−−−−−−−−−−→v Z

f ↓ g ↓ h ↓
1X−−−−−−−−−−−−−−−→1u

1Y−−−−−−−−−−−−−−−→1v
1Z

p ↓ q ↓ r ↓
Coker( f )−−−−−−−−−→1w

Coker(g)−−−−−−−−−→1t
1Z,

(A11)

where the homomorphisms w, u, 1u, 1w are (2B, 1B)-epigeneric, t, v, 1v, 1t are (1B, 3B)-epigeneric,
i, f , p are 2B-epigeneric, j, g, q are 1B-epigeneric, k, h, r are 3B-epigeneric; i, j, k are the canonical
injections; p, q, r are the canonical surjections.

Proposition A2. Suppose that in the commutative diagram (A1) the (horizontal) lines (u, v),
(1u, 1v) are exact and the conditions of Remark A1 are satisfied. Then

t ◦ w = 0, and, if 1u is injective, (A12)

then the row (w, t) is exact;

1t ◦ 1w = 0, and, if v is surjective, (A13)

then the sequence (1w, 1t) is exact;

if 1u is injective and v is surjective, 1B = 2B = 3B, u, v, 1u, 1v are 1B -epigeneric, (A14)
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then there exists a unique 1B-epigeneric homomorphism d : Ker(h) → Coker( f ) such that the
following sequence is exact

Ker( f )−−−−−−−−−−→w Ker(g)−−−−−−−−−→t Ker(h)−−−−−−−−−→
d

Coker( f )−−−−−−−−−−→1w
Coker(g)−−−−−−−−−−→1t

Coker(h) (A15)

and d(z) = p(1x) for each z ∈ Ker(h), y ∈ Y, 1x ∈ 1X satisfying the equalities v(y) = k(z) and
1u(1x) = g(y). Moreover, if u, 1u, v, 1v, f , g, h are 1B-exact, then w, t, 1w, 1t, d are 1B-exact.

Proof. By the conditions of Remark A1, the homomorphisms w, u, 1u, and 1w are (2B, 1B)-
epigeneric, t, v, 1v, 1t are (1B, 3B)-epigeneric, i, f , p are 2B-epigeneric, j, g, and q are
1B-epigeneric, k, h, r are 3B-epigeneric. Therefore, the homomorphisms t ◦ w and 1t ◦ 1w
are (2B, 3B)-epigeneric.

Since w = u|Ker( f ) and t = v|Ker(g), then t ◦ w = 0. On the other hand, Ker(t) =

Ker(g) ∩ Ker(v) = Ker(g) ∩ Im(u) = Im(j) ∩ Im(u). From the injectivity of 1u and Propo-
sition A1, it follows that Ker(t) = Im(j ◦ w) = Im(w).

The homomorphisms 1w and 1t are obtained from u and v by using quotient modules;
hence 1t ◦ 1w = 0. If v is surjective, then from Proposition A1 and the surjectivity of p
and q, and it follows that Ker(1t) = q(Ker(1t ◦ q)) = q(Ker(1v) + Im(g)) = q(Im(1u)) =
Im(1w ◦ p) = Im(1w).

If z ∈ Ker(h), then there exists y ∈ Y for which v(y) = k(z), since the homomorphism
v is surjective. On the other hand, 1v(g(y)) = h(k(z)) = 0; consequently, a unique 1x ∈ 1X
exists such that 1u(1x) = g(y), because the homomorphism 1u is injective.

If 1y ∈ Y is such that v(1y) = k(z), then 1y = y + u(x), where x ∈ X. If 1
1x ∈ 1X

and 1u(1
1x) = g(1y), then 1u(1x + f (x)) = 1u(1x) + 1u( f (x)) = g(y) + g(u(x)) = g(y +

u(x)) = g(1y); consequently, p(1
1x) = p(1x) + p( f (x)) = p(1x). Thus 1

1x = 1x + f (x)
and hence p(1x) ∈ Coker( f ) is independent of y ∈ Y for which v(y) = k(z). Putting
d(z) = p(1x), we get a homomorphism d : Ker(h)→ Coker( f ).

It remains to be verified that the corresponding homomorphism d′ also exists. By the
conditions of this propositions, the homomorphisms u, v, and 1u, 1v are 1B-epigeneric and
1B = 2B = 3B; hence u′, v′, 1u′, 1v′ are the T -linear surjective homomorphisms.

The commmutative diagram (A11) implies the following commutative diagram:

1B−−−−−−−−−−−−−−−−→
w′

1B−−−−−−−−−−−−−−−−→
t′

1B
i′ ↓ j′ ↓ k′ ↓

1B−−−−−−−−−−−−−−−−→
u′

1B−−−−−−−−−−−−−−−−→
v′

1B
f ′ ↓ g′ ↓ h′ ↓

1B−−−−−−−−−−−−−−−−−→1u′
1B−−−−−−−−−−−−−−−−−→1v′

1B
p′ ↓ q′ ↓ r′ ↓

1B−−−−−−−−−−−−−−−−−→1w′
1B−−−−−−−−−−−−−−−−→1t′

1B,

(A16)

since the homomorphisms w, 1w, t, 1t, i, f , p, j, g, q, k, h, r are 1B-epigeneric.
If z1 and z2 are in Ker(h), a1 and a2 belong to 1B; if z = a1z1 + a2z2, then y1 and y2

in Y exist such that v(y1) = k(z1) and v(y2) = k(z2), y = b1y1 + b2y2 ∈ Y with b1 and
b2 belonging to 1B such that v(y) = k(z) with v′(b1) = k′(a1), v′(b2) = k′(a2). Therefore,
there exists a 1B-exact homomorphism d such that d(z) = d′(a1)d(z1) + d′(a2)d(z2).

It remains to be proven that the sequence (A15) is exact. Suppose that z = t(ξ) for
some ξ ∈ Ker(g). We choose y ∈ Y such that y = j(ξ). From g(j(ξ) = 0, it follows that
d(z) = 0 and hence d ◦ t = 0.

On the contrary, assume that d(z) = 0. Then as above, d(z) = p(1x) with 1x ∈
1X and 1x = f (x) with x ∈ X. Therefore, g(y) = 1u( f (x)) = g(u(x)); consequently,
g(y− u(x)) = 0. Hence there exists η ∈ Ker(g) such that y− u(x) = j(η); consequently,
k(z) = v(y) = v(u(x) + j(η)) = v(j(η)) = k(t(η)). The homomorphism k is injective and
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hence z = t(η); consequently, the sequence (A15) is exact in the term Ker(h). Then we
deduce that 1w(d(z)) = 1w(p(1x)) = q(1u(1x)) = q(g(y)) = 0; consequently, 1w ◦ d = 0.

Assume that ξ = p(1x) belongs to Coker( f ) such that 1w(ξ) = 1w(p(1x)) = 0, where
1x ∈ 1X and hence q(1u(1x)) = 0; consequently, there exists y ∈ Y such that 1u(1x) = g(y).
From 1v(1u(1x)) = 0, it follows that 1v(g(y)) = 0 and hence h(v(y)) = 0. Therefore, there
exists z ∈ Ker(h) such that v(y) = k(z) and hence ξ = d(z). Thus, the sequence (A15)
is exact in the term Coker( f ). The homomorphisms in (A15) are 1B-epigeneric as proved
above. On the other hand, (A12) means that the sequence (A15) is exact in Ker(g) and
(A13) implies that it is exact in Coker(g). Moreover, if the homomorphisms u, 1u, v, 1v, f , g,
and h in the diagram (A11) are 1B-exact, then from Lemma A1 (A16) and the proof above,
it follows that w, t, 1w, 1t, d are 1B-exact.

Corollary A1. Assume that in the commutative diagram (A1), the (horizontal) lines are exact,
where homomorphisms u and 1u are (2B, 1B)-epigeneric, v and 1v are (1B, 3B)-epigeneric, f is
2B-epigeneric, g is 1B-epigeneric, and h is 3B-epigeneric. Then

(i) if 1u, f and h are injective homomorphisms, then g is injective;
(ii) if v, f and h are surjective, then g is surjective.

Proof. This follows from assertions (A12) and (A13) of Proposition A2.

Corollary A2. Suppose that in the commutative diagram (A1) (horizontal) lines are exact; 1B =
2B = 3B; the homomorphisms u, v, 1u, 1v are 1B-exact; and f , g, h are 1B-epigeneric. Then

(i) if g is injective, f and v are surjective, then h is injective;
(ii) if g is surjective, h and 1u are injective, then f is surjective.

Proof. We consider the following diagram

u(X)−−−−−−−−−→
ξ

Y−−−−−−−−−−−→v Z
1 f ↓ g ↓ h ↓
1u(1X)−−−−−−−−→1ξ

1Y−−−−−−−−−→1v
1Z,

(A17)

where 1 f = g|u(X), ξ, and 1ξ are the canonical injections. From the condition that u is
1B-exact, it follows that u is 1B-epigeneric and hence u(X) is the 1B-(sub)module. Then 1 f
is 1B-epigeneric, since g is 1B-epigeneric. The homomorphisms ξ and 1ξ are injective and
1B-exact, since u and 1u are 1B-exact. By (A14) of Proposition A2, the following sequence
is exact:

Ker(g)→ Ker(h)−−−→
d

Coker(1 f ). (A18)

The injectivity of g and the surjectivity of 1 f imply that Ker(h) = 0.
The following diagram proves (ii):

X−−−−−−−−−−−−→u Y−−−−−−−−−−−→η v(Y)
f ↓ g ↓ 1h ↓
1X−−−−−−−−−−→1u

1Y−−−−−−−−−→1η

1v(1Y),
(A19)

where 1h = h|v(Y), η and 1η are induced by v and 1v, respectively. This diagram is
commutative, and its (horizontal) lines are exact, where the homomorphisms u, 1u, η, 1η
are 1B-exact. From (A14), (A15) of Proposition A2 it follows that the following sequence
is exact:

Ker(1h)−−−→
d

Coker( f )→ Coker(g), (A20)

since g is surjective and 1h is injective; consequently, Coker( f ) = 0.
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Corollary A3. In the following commutative diagram, let horizontal lines be exact, the homomor-
phisms ju and jv be (jB, j+1B)-epigeneric for each j ∈ {1, . . . , 4}, and j f be jB-epigeneric for each
j ∈ {1, . . . , 5}.

1X−−−−−−−−−−→1u
2X−−−−−−−−−−→

u2
3X−−−−−−−−−−→3u

4X−−−−−−−−−−→4u
5X

1 f ↓ 2 f ↓ 3 f ↓ 4 f ↓ 5 f ↓
1Y−−−−−−−−−−−→1v

2Y−−−−−−−−−−−→2v
3Y−−−−−−−−−−−→3v

4Y−−−−−−−−−−−→4v
5Y

(A21)

Then
if homomorphisms 2 f and 4 f are injective and 1 f is surjective, (A22)

then 3 f is injective;

if B = jB for each j ∈ {1, . . . , 5}, the homomorphisms ju, jv are B-exact for each j ∈ {1, . . . , 4}; (A23)

if also 2 f and 4 f are surjective, 5 f is injective, then 3 f is surjective. In particular, if j f is the
isomorphism for each j ∈ {1, 2, 4, 5}, then 3 f is an isomorphism.

Proof. We consider 2Z = Coker(1u) and 2Q = Coker(1v) and a homomorphism 2g : 2Z →
2Q induced by 2 f . Then, we consider the commutative diagram

2Z−−−−−−−−−−→2w
3X−−−−−−−−−−→3u

4X
2g ↓ 3 f ↓ 4 f ↓

2Q−−−−−−−−−−−→2ξ

3Y−−−−−−−−−−−→3v
4Y

(A24)

with 2w and 2ξ induced by 2u and 2v. In view of (i) in Corollary A1, the homomorphism
3 f is injective. Now we put 4Z = Ker(4u) and 4Q = Ker(4v) and 4g : 4Z → 4Q to be
induced by the homomorphism 4 f . By virtue of (ii) in Corollary 12, the homomorphism 4g
is surjective. Next we consider the following commutative diagram:

2X−−−−−−−−−−→2w
3X−−−−−−−−−−→3η

4Z
2 f ↓ 3 f ↓ 4g ↓

2Y−−−−−−−−−−−→2v
3Y−−−−−−−−−−−→3ζ

4Q
(A25)

with 3η and 3ζ possessing the same graph as 3u and 3v, respectively. From (ii) in Corollary
A1, it follows that the homomorphism 3 f is surjective.

Proposition A3. Assume that there is a commutative diagram of G-graded B-complexes

0→ 1C−−−−−→p C−−−−−→s
2C → 0

1h ↓ h ↓ 2h ↓
0→ 1

1C−−−−−→1 p 1C−−−−→1s
2
1C → 0

(A26)

with B-epigeneric Z-graded homomorphisms p, s, 1h, h, 2h, 1 p, 1s, and exact rows. Then H(1h) ◦
∂(p, s) = ∂(1 p, 1s) ◦ H(2h).

Proof. Let 2u ∈ H(2C) and let 2v be a cocycle of class 2u. There exists x ∈ C such that
s(x) = 2v. In view of Theorem 1 and Definition 6 in [32],

(∂(1 p, 1s) ◦ H(2h))(2u) = ∂(1 p, 1s)(2h(2v)) = (1 p)−1(dh(x)) = 1h(p−1(dx)) = H(1h)
(p−1(dx)) = (H(1h) ◦ ∂(p, s))(2u).
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