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1. Introduction

Fractional calculus is a very significant branch in Mathematics whose applications are
very useful for engineering students and researchers in both pure and applied field. The
concept of “fractional calculus” was developed in the early of 17th century when L’Hopital
asked Leibnitz the value of 1

2 th order derivative. After that many mathematicians showed
their interest on this topic. Initially the theory was developed mainly as a purely theoretical
area. However, in the last decade it has been used in various fields such as mechanics,
physics, chemistry, control theory, and many more, for instance one can see [1–4].

The analysis of time scales calculus is a fairly new topic for researchers. Stefen Hilger
and his Ph.D. supervisor, Bernd Aulbach, initiated the topic in the year 1988. After that,
Hilger published two more paper on this topic [5,6]. The theory was highly raised after
the publication of two book on time scales by Martin Bohner and Allan Peterson [7,8]. It
combines the traditional areas of continuous and discrete analysis into one theory, which
has various applications in discrete and continuous hybrid phenomena, quantum calculus
and in various problems of economics [9].

The inception of the idea of combining the time scales calculus and fractional calculus
occurred in the Ph.D. dissertation of N.R.O. Bastos in 2012, where the delta (Hilger), and
nabla derivative on time scales were discussed in fractional calculus using the tool of
Laplace transform on some specific real and discrete time scales [10,11]. After the inception
of the topic, a number of papers were published see [12–19]. Recently, D. F. M. Torres
introduced a generalized definition of Hilger derivative and integrals in a pure sense of
Riemann–Liouville (RL) derivative [20,21]. Many research works have been completed in a
conformable delta and nabla fractional derivative and integrals [22–24].
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2. Motivation of the Article

On the basis of above work, here we are motivated to study the nabla derivative
and integral using a Grünwald–Letnikov (GL) fractional derivative approach and then
we arrive to the Riemann–Liouville sense. We introduce nabla fractional derivative and
integral in unified approach of discrete and continuous time scales. Then, we generalize the
definition of nabla fractional derivative and integral in arbitrary time scales and develop
certain properties of nabla fractional derivative and fractional integral.

The paper is organized as follows. In Section 3, we review briefly the essentials of
time scales, as well as some basic definitions of nabla fractional derivative and integral
which helps the readers to recognize easily our main findings. We assume that the read-
ers are familiar with the basic view of time scales calculus and we refer the reader to
go through [7,8]. The paper also assess the Riemann–Liouville and Grünwald–Letnikov
fractional derivative and integral. Our main findings are given in Section 4 with some
preliminaries definition and then we present fractional integral and fractional derivative in
an arbitrary time scale T. After that we prove certain important characteristics of fractional
derivative and integral. We end with Section 5 of conclusions.

3. Preliminaries and Auxiliary Results

Definition 1 ([7]). A time scale T is a closed subset of R, with the subspace topology inher-
ited from the stranded topology of R. The backward jump operator ρ : T→ T is defined as
ρ(t) = sup{s < t : s ∈ T} for t ∈ T and forward jump operator σ(t) = inf{s > t : s ∈ T}.
If ρ(t) < t then t is said to be a left scattered and if ρ(t) = t, then we say t is a left dense point of T,
if σ(t) > t and σ(t) = t, then we say t is right scattered and right dense, respectively. Again, if T
has a right scattered minimum a, then let Tκ = T− {a}, or else set Tκ = T. Here we consider the
backward graininess ν : Tκ → [0, ∞], which is defined by ν(t) = t− ρ(t).

Definition 2 ([8]). A function h : T→ R is said to be a nabla differentiable at t ∈ T, if for any
ε > 0 there exists a neighborhood V of t, such that

|h(ρ(t)− h(u)− h∇(t)(ρ(t)− u)| ≤ ε|ρ(t)− u|

for all u ∈ V. If h∇(t) exists for all t ∈ Tκ then it is called nabla derivative of h.

Theorem 1 ([8]). Let us consider a function h : T→ R and let t ∈ Tκ . Then we have

(i) If h is continuous at a left-scattered t, then h is nabla differentiable at t with

h∇(t) =
h(t)− h(ρ(t))

ν(t)
;

(ii) If t is left dense, then h is nabla differentiable at t if and only if the limit

lim
u→t

h(t)− h(u)
t− u

exists as a finite number. In this case

h∇(t) = lim
u→t

h(t)− h(u)
t− u

.

Definition 3 ([8,11]). (Higher order nabla derivative): Assume a function h : T → R, we first
define the second order derivative h∇∇ provided h∇ is differentiable on TK2

= (Tκ)κ with derivative
h∇∇ = (h∇)∇ : TK2 → R. Similarly, proceeding up to nth order, here we obtain h∇n : TKn → R,
where TKn

is a time scales which is obtained by removing n right scattered left end point.
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Definition 4 ([3]). The Riemann–Liouville fractional differentiation of random order α is defined
in the following manner:

RLD−α
x =

1
Γ(α)

∫ x

0
(x− t)α−1h(t)dt

for Re(α) > 0.
Riemann–Liouville derivative of order α ∈ R is given by

RLDα
x = Dn

{
RLDα−n

x h(t)
}

for α < n < α + 1.

Definition 5 ([2]). Let α > 0. The Grünwald–Letnikov derivative of fractional order α of a
function h is defined by

GLDαh(t) =
1
hα

∞

∑
i=0

(
α

i

)
h(t− ih), t ∈ R.

Referring Definition 5 as the Grünwald–Letnikov fractional derivative is quite com-
mon in literature (see [25]). Moreover, once a starting point t0 has been assigned, for
practical reason then the following (see [26]) is often preferred, since it can be applied to
function not defined (or simply not known) in (−∞, t0).

Definition 6 ([22]). A function h : T→ R is called ld-continuous if h is continuous at left dense
point in T and right sided limit exists (finite) at right dense point in T.

Definition 7 ([27]). (Change of order of integration) If we have any function h(x, y, z) which
is integrable with respect to y and z, then the change of order of integration is given by the
following formula: ∫ x

x0

∫ y

x0

h(x, y, z)dzdy =
∫ x

x0

∫ x

z
h(x, y, z)dydz.

Definition 8 ([11]). Let B ⊂ R. A subset J ⊂ T is called a time scales interval if J = B ∩ T.
A function h : J → T is said to be left-dense absolutely continuous, if for all ε > 0 there exists

δ > 0, such that
m
∑

k=1
|h(yk)− h(xk)| < ε, whenever a disjoint finite collection of sub-time scales

intervals (xk, yk) ∩ T ⊂ J for 1 ≤ k ≤ n satisfies
m
∑

k=1
|yk − xk| < δ. One denotes h ∈ AC∇, if

h(n−1)
∇ ∈ AC then one denotes h ∈ AC(n)

∇ .

4. Nabla Fractional Derivative and Nabla Fractional Integral

Definition 9. For any time scale T, a function h : T→ R is said to be nabla fractional differentiable
of order µ at t ∈ Tκ , where 0 < µ ≤ 1, if for any ε > 0, there exists a neighborhood V of t, such that

|h(ρ(t))− h(u)− h(µ)∇ (t)(ρ(t)− u)µ)| ≤ ε|(ρ(t)− u)µ| (1)

for all u ∈ V. If for all t ∈ Tκ , h holds the Equation (1), then we call h(µ)∇ (t) the nabla fractional
derivative of order µ.

Theorem 2. Nabla fractional derivative is not well defined in T, but in Tκ .
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Proof. Let h(µ)∇ (t) be defined at a point t on a time scale T, and assume that t /∈ Tκ . Then,
t ∈ T \ Tκ . From Definition 1, t must be unique which is equal to a, later, for any ε > 0
there exists a neighborhood V = {t} of t, we obtain for u ∈ V

h(ρ(t)) = h(u) = h(ρ(a)) = h(a).

Thus for ζ ∈ R and µ ∈ (0, 1] we have

|h(ρ(t))− h(u)− ζ[(ρ(t)− u)µ]| = |h(a)− h(a)− ζ(a− a)µ| ≤ ε|(ρ(t)− u)µ|. (2)

Here, Equation (2) is true for each ζ ∈ R, which means for each ζ is the nabla derivative of
h of order µ if t /∈ Tκ , which cannot be true, so h(µ)∇ is well defined only on Tκ .

Theorem 3. For any time scale T, let h : Tκ → R. Then, for µ ∈ (0, 1] we have the following:

(i) If t is left dense and h is nabla differentiable of order µ at t, then h is continuous at t;
(ii) If h is continuous at t and t is left scattered, then h is nabla differentiable at t of order µ with

h(µ)∇ (t) =
h(t)− h(ρ(t))

ν(t)µ ;

(iii) If t is left dense, then h is differentiable at t if and only if the limit

lim
u→t

h(t)− h(u)
(t− u)µ

exists as a finite number. In this case

h(µ)∇ (t) = lim
u→t

h(t)− h(u)
(t− u)µ ;

(iv) If h is nabla differentiable of order µ at t, then

h(ρ(t)) = h(t)− h(µ)∇ (t)(ν(t))µ.

Proof. (i) Given that h is nabla fractional differentiable at t, then for ε > 0 there exists a
neighborhood V of t, such that

|h(ρ(t))− h(u)− h(µ)∇ (t)(ρ(t)− u)µ| ≤ ε|(ρ(t)− u)µ|

for u ∈ V. Therefore,

|h(t)− h(u)| ≤|h(ρ(t))− h(u)− h(µ)∇ (t)(ρ(t)− u)µ|+ |h(ρ(t))− h(t)− h(µ)∇ (t)(ρ(t)− t)µ|

+|h(µ)∇ (t)||(ρ(t)− u)µ + (ρ(t)− t)µ|

for all u ∈ V ∩ (t− ε, t + ε) and since t is a left dense point, so

|h(t)− h(u)| ≤ |h(ρ(t))− h(u)− h(µ)∇ (t)(ρ(t)− u)µ|+ |h(µ)∇ (t)|(t− u)µ|

≤ ε|t− u|µ + |h(µ)∇ (t)|t− u|µ

≤ εµ
[
ε + |h(µ)∇ (t)|

]
.

It follows the continuity of h at t.
(ii) Given that h is continuous and t is left scattered, by continuity

lim
u→t

h(ρ(t))− h(u)
(ρ(t)− u)µ =

h(ρ(t))− h(t)
(ρ(t)− t)µ =

h(t)− h(ρ(t))
(t− ρ(t))µ .
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Hence, there exists a neighborhood V of t, such that∣∣∣∣h(ρ(t))− h(u)
(ρ(t)− u)µ − h(t)− h(ρ(t))

(t− ρ(t))µ

∣∣∣∣ ≤ ε.

For all u ∈ V, it follows that

∣∣h(ρ(t))− h(u)− h(tt− h(ρ(t))
(t− ρ(t))µ (ρ(t)− u)µ

∣∣ ≤ ε|(ρ(t)− u)µ|.

From Definition 9, we obtain our result:

h(µ)∇ (t) =
h(t)− h(ρ(t))

ν(t)µ .

(iii) Given that t is left dense, then we obtain ρ(t) = t, so there exists a neighborhood V of t,
such that

|h(t)− h(u)− h(µ)∇ (t)(t− u)µ| ≤ ε|(t− u)µ|

for all u ∈ V. It follows that ∣∣∣h(t)− h(u)
(t− u)µ − h(µ)∇ (t)

∣∣∣ ≤ ε.

So, we obtain

h(µ)∇ (t) = lim
u→t

h(t)− h(u)
(t− u)µ .

Now, assume that lim
u→t

h(t)−h(u)
(t−u)µ exists as a finite number, say L, and t is left dense. Then,

for any ε > 0, ∣∣∣∣h(t)− h(u)
(t− u)µ −L

∣∣∣∣ = ∣∣∣∣h(ρ(t)− h(u)
(ρ(t)− u)µ −L

∣∣∣∣ ≤ ε.

Therefore,
|h(ρ(t))− h(u)−L(ρ(t)− u)α| ≤ ε|(ρ(t)− u)µ|

from which we conclude that h is fractional differentiable of order µ at t and h(µ)∇ (t) = L.
(iv) For all t ∈ Tκ , there exist two possibilities of t.
Case 1: If t is left dense, then ρ(t) = t, and we have ν(t)µ = 0,

h(ρ(t)) = h(t)− h(µ)∇ (t)(ν(t))µ,

so left hand side =⇒ right hand side.
Case 2: If t is left scattered, then ρ(t) < t, and by using Theorem 3 (ii), we obtain

h(ρ(t)) = h(t)− h(µ)∇ (t)(ν(t))µ.

The proof is complete.

Proposition 1. Let h : Tκ → R. If h(t) = k for all t ∈ Tκ , and k ∈ R, then h(µ)∇ (t) = 0 for all
µ ∈ R.

Proof. From the results (ii) and (iii) of Theorem 3, we have: if t is left-scattered, then

h(µ)∇ (t) =
h(t)− h(ρ(t))

(ν(t))µ =
(k− k)
(ν(t))µ = 0,
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if t is left dense, then

h(µ)∇ (t) = lim
u→t

h(t)− h(u)
(t− u)µ = lim

u→t

(k− k)
(t− u)µ = 0,

which completes the proof.

Proposition 2. For h : Tκ → R, if h(t) = t, then for all t ∈ Tκ

h(µ)∇ (t) =

{
ν(t)1−µ if µ 6= 1,
1 if µ = 1.

Proof. Let h(µ)∇ exist at t ∈ Tκ . Then, from Theorem 3 (iv), we have

h(ρ(t)) = h(t)− h(µ)∇ (t)(ν(t))µ,

that is, ν(t) = (ν(t))µh(µ)∇ (t). If ν(t) 6= 0, then we obtain our desired result which is

h(µ)∇ (t) = (ν(t))1−µ for µ 6= 1. If µ = 1 then we obtain h(µ)∇ (t) = (ν(t))1−1 = (ν(t))0 = 1,
hence the proof is complete.

Theorem 4. Let h, g : T→ R be two nabla differentiable functions of order µ ∈ (0, 1] at t ∈ Tκ .
Then, the following holds:

(i) The sum (λ1h + λ2g) : T→ R is nabla differentiable at t of order µ,

(λ1h + λ2g)(µ)∇ (t) = λ1h(µ)∇ (t) + λ2g(µ)∇ (t),

where λ1 and λ2 are any two arbitrary constants;
(ii) The product hg : T→ R is nabla differentiable of order µ at t,

(hg)(µ)∇ = h(µ)∇ (t)g(t) + h(ρ(t))g(µ)∇ (t) = h(t)g(µ)∇ (t) + h(µ)∇ (t)g(ρ(t));

(iii) If h(t)h(ρ(t)) 6= 0 then 1
h is nabla differentiable at t of order µ,

(
1
h

)(µ)

∇
(t) = −

h(µ)∇ (t)
h(t)h(ρ(t))

;

(iv) If g(t)g(ρ(t)) 6= 0, then h
g is nabla differentiable at t of order µ,

(
h
g

)(µ)

∇
(t) =

h(µ)∇ (t)g(t)− h(t)g(µ)∇ (t)
g(t)g(ρ(t))

.

Proof. (i) Let µ ∈ (0, 1]. Given that h and g are nabla differentiable at t ∈ Tκ of order µ, for
any ε > 0 there exist neighborhoods V1 and V2 of t, thus for all u ∈ V1

|λ1h(ρ(t))− λ1h(u)− λ1h(µ)∇ (t)((ρ(t)− u)µ| ≤ ε

2
|(ρ(t)− u)µ|, (3)

also for all u ∈ V2

|λ2g(ρ(t))− λ2g(u)− λ2g(µ)∇ (t)((ρ(t)− u)µ| ≤ ε

2
|(ρ(t)− u)µ|. (4)
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Let u ∈ V = V1 ∩V2. Then, we obtain

|(λ1h + λ2g)(ρ(t))− (λ1h + λ2g)(u)− [λ1h(µ)∇ (t) + λ2g(µ)∇ (t)]((ρ(t)− u)µ|

≤ |[λ1h(ρ(t))− λ1h(u)− λ1h(µ)∇ (t)((ρ(t)− u)µ]|

+ |[λ2g(ρ(t))− λ2g(u)− λ2g(µ)∇ (t)((ρ(t)− u)µ]|.

(5)

By using the Equations (3) and (4), we obtain that

|(λ1h + λ2g)(ρ(t))− (λ1h + λ2g)(u)− [λ1h(µ)∇ (t) + λ2g(µ)∇ (t)]((ρ(t)− u)µ|

<
ε

2
|(ρ(t)− u)µ|+ ε

2
|(ρ(t)− u)µ|

= ε|(ρ(t)− u)µ|.

From Theorem 3, it holds that (λ1h + λ2g)(µ)∇ is a nabla differentiable at t ∈ Tκ of order µ.
(ii) If t is left dense, i.e., ρ(t) = t for t ∈ Tκ , then

(hg)(µ)∇ (t) = lim
u→t

(hg)(t)− (hg)(t)
(t− u)(µ)

= lim
u→t

h(t)− h(u)
(t− u)µ g(t) + lim

u→t

g(t)− g(u)
(t− u)µ h(u)

= h(µ)∇ (t)g(t) + g(µ)∇ (t)h(t)

= h(µ)∇ (t)g(t) + g(µ)∇ (t)h(ρ(t)).

Additionally, if ρ(t) < t, then

(hg)(µ)∇ (t) =
(hg)(t)− (hg)(ρ(t))

(ν(t))µ

=
h(t)− h(ρ(t))

(ν(t))µ g(t) +
g(t)− g(ρ(t))

(ν(t))µ f (ρ(t))

= h(µ)∇ (t)g(t) + h(ρ(t))g(µ)∇ (t).

Other part of the proof is very similar to this.
(iii) Using the above result and Proposition 1, we obtain(

h · 1
h

)(µ)

∇
(t) = (1)(µ)∇ (t) = 0

and hence, by (ii), (
1
h

)(µ)

∇
(t)h(ρ(t)) + h(µ)∇ (t)

1
h(t)

= 0.

Since h(t)h(ρ(t)) 6= 0, so we obtain

(
1
h

)(µ)

∇
(t) = −

h(µ)∇ (t)
h(t)h(ρ(t))

.
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(iv) Using the result of Theorem 4 (ii) and (iii) we obtain the following:(
h
g

)(µ)

∇
(t) =

(
h · 1

g

)(µ)

∇
(t)

= h(t)
(

1
g

)(µ)

∇
(t) + h(µ)∇ (t)

1
g(ρ(t))

= −h(t)
g(µ)∇ (t)

g(t)g(ρ(t))
+ h(µ)∇ (t)

1
g(ρ(t))

=
h(µ)∇ (t)g(t)− h(v)g(µ)∇ (t)

g(t)g(ρ(v))
.

This completes the proof.

Theorem 5. Let k be a constant, n ∈ N. Then, for 0 < µ ≤ 1, we obtain the following:

(i) If h(t) = (t− k)n, then

hµ
∇(t) = (ν(t))1−µ

n−1

∑
j=0

(ρ(t)− k)j(t− k)n−1−j;

(ii) If g(t) = 1
(t−k)n , then

g(µ)∇ (t) = −(ν(t))1−µ
n−1

∑
j=0

1
(ρ(t)− k)n−j(t− k)j+1

provided (t− k)(ρ(t)− k) 6= 0.

Proof. (i) Here we prove this result by using the method of induction. If n = 1, then
h(t) = t− k hence h(µ)∇ (t) = (ν(t))1−µ is true from Propositions 4 and 2. We assume that

hµ
∇(t) = (ν(v))1−µ

n−1

∑
j=0

(ρ(t)− k)j(t− k)n−1−j

holds for h(t) = (t− k)n. We shall prove the result is true for

H(t) = (t− k)n+1 = (t− k)h(t).

By using Theorem 4 (ii), we obtain

h(µ)∇ (t) = (t− k)(µ)∇ h(ρ(t)) + h(µ)∇ (t)(t− k) = (ν(t))1−µh(ρ(t)) + h(µ)∇ (t)(t− k)

= (ν(t))1−µ(ρ(t)− k)n + (ν(t))1−µ(t− k)
n−1

∑
j=0

(ρ(t)− k)j(t− k)n−1−j

= (ν(t))1−µ
[
(ρ(t)− k)n +

n−1

∑
j=0

(ρ(t)− k)j(t− k)n−j]
= (ν(t))1−µ

n

∑
j=0

(ρ(t)− k)j(t− k)n−j.
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(ii) Let g(t) = 1
(t−k)n = 1

h(t) . Using Theorem 4 (iii), we obtain

g(µ)∇ (t) =
(

1
h(t)

)(µ)

∇
(t)

= −
h(µ)∇ (t)

h(t)h(ρ(t))

= −(ν(t))1−µ

n−1
∑

j=0
(ρ(t)− k)j(t− k)n−1−j

(t− k)n(ρ(t)− k)n

= −(ν(t))1−µ
n−1

∑
j=0

1
(t− k)j+1(ρ(t)− k)n−j ,

provided (t− k)(ρ(t)− k) 6= 0.

Example 1. Let µ ∈ (0, 1].

(i) If g(t) = t2, then from Theorem 5, we obtain

g(µ)∇ (t) = (ν(t))1−µ

[
1

∑
j=0

(ρ(t))j(t)1−j

]
= (ν(t))1−µ

[
(ρ(t))0(t)1 + (ρ(t))1(t)0

]
= (ν(t))1−µ(t + ρ(t)).

By using Theorem 5, we obtain the following results:
(ii) If g(t) = t3, then g(µ)∇ (t) = (ν(t))1−µ[t2 + tρ(t) + (ρ(t))2].

(iii) If g(t) = 1
t , then g(µ)∇ (t) = − (ν(t))1−µ

t(ρ(t)) .

(iv) If g(t) = 1
t2 , then g(µ)∇ (t) = − ν(t)1−µ

t(ρ(t))2+t2ρ(t) .

Corollary 1. Nabla fractional derivative in some specific time scales T.

(i) If we consider the real time scale T = R, then all the elements of T are dense. So, by using
Theorem 3 (iii), we have that

h(µ)∇ (t) = lim
u→t

h(t)− h(u)
(t− u)µ

exists, if µ = 1, then we have h(µ)∇ = h′(t), which is similar to the ordinary derivative.
(ii) If T = Z, for t ∈ T one has ρ(t) = t− 1 and then ν(t) = t− (t− 1) = 1. Now, by using

Theorem 3 (ii), we obtain

h(µ)∇ (t) =
h(t)− h(ρ(t))
(t− ρ(t))µ

=
h(t)− h(t− 1)
(t− (t− 1))µ .

If α = 1 we have that h(µ)∇ (t) = h(t)− h(t− 1) = ∇h(t), which is similar as the usual
backward operator;

(iii) Let T = hZ, where h > 0. Then we obtain

ρ(t) = sup{u ∈ T : u < t} = sup{t− nh : for n ∈ N} = t− h
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and then the function ν(t) = t− ρ(t) = t− (t− h) = h, which is constant.
For g : hZ→ R, we have from Theorem 1 that

g∇(t) = g(1)∇ (t) =
g(t− h(ρ(t))

ρ(t)− t
=

g(t− h)− g(t)
(t− h− t)

=
g(t)− g(t− h)

h
.

From Definition 3, the second order nabla derivative is

g∇∇(t) = g(2)∇ (t) =
g∇(t)− g∇(t− h)

h
=

g(t)− 2g(t− h) + g(t− 2h)
h2 .

In general, the mth derivative for t ∈ hZ and m ∈ N,

g(m)
∇ (t) =

1
hm

m

∑
r=0

(−1)r
(

m
j

)
g(t− rh),

where the binomial coefficient (m
r ) is defined as follows:(

m
r

)
=

m(m− 1)(m− 2) · · · (m− r + 1)
r!

=

{
m!

r!(m−r)! , r = 0, 1, 2, · · ·
0, r > m.

(6)

Since the binomial coefficient vanish when r > m, so no contribution in the summation is
given from the presence of terms with r > m, the upper limit of the formula can be raised to
any value greater than m and hence, the finite summation in this formula can be replaced with
the infinite series, i.e.,

g(m)
∇ (t) =

1
hm

∞

∑
r=0

(−1)r
(

m
j

)
g(t− rh).

Letting h tend to zero, then all points of the time scale become dense, and the time scale becomes
the continuous time scale. If the value of m is replaced by an arbitrary real number µ ∈ R,
µ > 0, and changing the factorial function with a Euler gamma function using the recurrence
relation (n− 1)! = Γ(n), then without losing the generality, if we replace m by any arbitrary
real number µ ∈ R, then the nabla fractional derivative, from Definition 3 and Theorem 3, is

TDµ
t = g(µ)∇ (t) = lim

h→0

1
hµ

∞

∑
r=0

(−1)r
(

µ

r

)
g(t− rh). (7)

Moreover, once a starting point a assign as nh = t− a for t > a, such that

T
a Dµ

t g(t) = lim
h→0

1
hµ

n

∑
r=0

(−1)r
(

µ

r

)
g(t− rh). (8)

Since for any continuous function g(t) Grünwald–Letnikov derivative and Riemann–Liouville
derivative coincide with positive non integer order derivative, so we have

T
a Dµ

t g(t) =RL
a Dµ

t g(t),

where RL
a Dµ

t g(t) denote the Riemann–Liouville fractional derivative defined on time scales,
which is most useful in the study of fractional calculus.
If µ < 0, then we have[

µ
r

]
=

(µ)(µ + 1)(µ + 2)(µ + 3) · · · (µ + r− 1)
r!

, (9)
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i.e., when µ = −µ, then from Equations (6) and (9) we obtain(
−µ

r

)
=

(−µ− 1)(−µ− 2)(−µ− 3) · · · (−µ− r + 1)
r!

= (−1)r
[

µ
r

]

or we can write (−1)r(µ
r) =

[
µ
r

]
. For any ld-continuous function and for µ = −µ, then

from Equation (8) we obtain

T
a D−µ

t g(t) = lim
h→0

hµ
n

∑
r=0

[
µ
r

]
g(t− rh)

= lim
h→0

n

∑
r=0

1
rµ−1

[
µ
r

]
h(rh)µ−1g(t− rh)

=
1

Γ(µ)
lim
h→0

n

∑
h→0

Γ(µ)
rµ−1

[
µ
r

]
h(rh)µ−1g(t− rh)

=
1

Γ(µ)
lim

n→∞

n

∑
r=0

Γ(µ)
rµ−1

[
µ
r

]( t− a
n

)(
r

t− a
n

)µ−1
g
(

t− r
t− a

n

)
.

(10)

Let us take

βr =
Γ(µ)
rµ−1

[
µ
r

]
, ηn,r =

( t− a
n

)(
r

t− a
n

)µ−1
g
(

t− r
t− a

n

)
.

Now,

lim
r→∞

βr = lim
r→∞

Γ(µ)
rµ−1

[
µ
r

]
= 1. (11)

lim
n→∞

n

∑
r=0

ηn,r = lim
n→∞

n

∑
r=0

( t− a
n

)(
r

t− a
n

)µ−1
g
(

t− r
t− a

n

)
= lim

n→∞

n

∑
r=0

h(rh)µ−1g(t− rh)

=
∫ t

a

(
t− s

)µ−1g(s)∇s.

(12)

Here, we obtain a condition (see [28]) that, if

lim
r→∞

βr = A and lim
n→∞

n

∑
r=0

ηn,r = B, then lim
n→∞

n

∑
r=0

ηn,rβr = AB. (13)

By using the Equations (10)–(13), we obtain

T
a D−µ

t g(t) =
1

Γ(µ)

∫ t

a
(t− s)µ−1g(s)∇s, (14)

which represents the nabla integral of any arbitrary order µ in a Riemann–Liouville sense.

Remark 1. The definition of nabla fractional integral defined in Equation (14) is not the natural
one for arbitrary time scales T. For showing this we take an example. If g(t) = t2, then from
Example 1, gµ

∇(t) = t + ρ(t), for µ = 1. If the time scale is the continuous time scale T = R,

then ρ(t) = t and, hence, from Corollary 1, we find that g(µ)∇ (t) = g′(v) = 2t. But if we take
the discrete time scale, we obtain ρ(t) = t − 1, and the nabla derivative on T = Z means the
backward difference of t2, i.e.,∇(t2) = g(t)− g(t− 1) = 2t− 1. Again, since every ld-continuous
function is nabla integrable, so in this case we can claim that

∫ t
0 g(µ)∇ = t2. In T = R also means
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that
∫ b

a f (s)∇s =
∫ b

a f (s)ds, so
∫ t

0 (s + ρ(s))∇s =
∫ t

0 (2s)ds = t2, but in T = Z we obtain∫ b
a f (s)∇s =

b
∑
a

f (s) for a < b, so
∫ t

0 (s + ρ(s))∇s =
t

∑
0
(2s − 1) = t2 for t > 0. For the

appearance of ρ(s), we claim that the correct definition of nabla fractional integral on an arbitrary
time scale T must be

T
a I

µ
t g(t) =

1
Γ(µ)

∫ t

a
(t− ρ(s))µ−1g(s)∇s, (15)

which is the generalization of the nabla fractional integral defined on the Equation (14), in a
Riemann–Liouville sense.

Proposition 3. The nabla fractional integral for any function g defined on [a, b] satisfies

T
a I

µ
t ◦

T
a I

β
t = T

a I
µ+β
t

for µ > 0, β > 0.

Proof. By using the generalized definition of nabla derivative of fractional order from the
Equation (15), we have(

T
a I

µ
t ◦

T
a I

β
t

)
(g(t)) = T

a I
µ
t

(
T
a I

β
t (g(t))

)
=

1
Γ(µ)

∫ t

a

(
t− ρ(s)

)µ−1(T
a I

β
t (g(s))

)
∇s

=
1

Γ(µ)

∫ t

a

(
t− ρ(s))µ−1 1

Γ(β)

∫ s

a
(s− ρ(v))β−1g(v)∇v)

)
∇s

=
1

Γ(µ)Γ(β)

∫ t

a

∫ s

a

(
(t− ρ(s))µ−1(s− ρ(v))β−1g(v)∇v

)
∇s.

By using Definition 7, we obtain(
T
a I

µ
t ◦

T
a I

β
t

)
(g(t)) =

1
Γ(µ)Γ(β)

∫ t

a

[ ∫ t

v
(t− ρ(s))µ−1(s− ρ(v))β−1∇s

]
g(v)∇u.

Let s = ρ(v) + x(t− ρ(v)) for x ∈ R. We have(
T
a I

µ
t ◦

T
a I

β
t

)
(g(t))

=
1

Γ(µ)Γ(β)

∫ t

a

[∫ 1

0
(1− x)µ−1(t− ρ(v))µ−1xβ−1(t− ρ(v))β−1(t− ρ(v))dx

]
g(v)∇v

=
1

Γ(µ)Γ(β)

∫ 1

0
(1− x)µ−1xβ−1dx

∫ t

a
(t− ρ(v))µ+β−1g(v)∇v

=
B(µ, β)

Γ(µ)Γ(β)

∫ t

a
(t− ρ(v))µ+β−1g(v)∇v

=
1

Γ(µ + β)

∫ t

a
(t− ρ(v))µ+β−1g(v)∇v

= T
a I

µ+β
t g(t).

This completes the proof.

Next definition uses integration as an anti-derivative process.
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Definition 10. (Riemann–Liouville fractional derivative on time scales) For t ∈ T and g : T→ R,
the (left) Riemann–Liouville fractional derivative of order µ ∈ (0, 1] is defined by

RL
a Dµ

t g(t) =
1

Γ(1− µ)

∫ t

a

(
t− ρ(s))−µg(s)∇s

)∇
.

Remark 2. If T = R, then Definition 10 gives the classical (left) Riemann–Liouville derivative of
fractional order µ. Here, we are only studying the derivative in terms of left operators, the analogous
right operators are easily acquired by changing the limit of integration.

A different extension to time scales is obtained by using the nabla fractional derivative
in terms of Caputo sense, that will be more effective for integer order initial conditions and
are more easy to obtain in real world problems [3,11].

Definition 11. (Nabla derivative on time scales in a Caputo sense) For t, t0 ∈ T, let us assume a
finite time scale interval [t0, t] ∩Tκn

= [t0, t]Tκn . Then, for any g ∈ AC(n)
∇ [t0, t]Tκn of absolutely

continuous function as in Definition 8, we define the Caputo nabla fractional derivative of order
0 < µ ≤ 1 as

C
a Dµ

t g(t) =
1

Γ(n− µ)

∫ t

a
(t− ρ(s))n−µ−1g(n)∇ (s)∇s,

where n = [µ] + 1.

Definition 12. If µ < 0, then the nabla derivative of order µ in terms of Riemann–Liouville, is the
fractional integral of order −µ, that is, RL

a Dµ
t =T

a I−µ
t .

Definition 13. If µ < 0, then the nabla fractional integral of order µ is the nabla fractional
derivative of order −µ, i.e., Ta I

µ
t = RL

a D−µ
t .

Proposition 4. Let g : Tκ → R be a nabla fractional differentiable function. Then, for any
0 < µ ≤ 1,

RL
a Dµ

t g(t) = ∇ ◦ T
a I

1−µ
t g(t).

Proof. Let g : Tκ → R be a nabla fractional differentiable function. Then, from Definition 10
and Equation (15), we have

RL
a Dα

t g(t) =
1

Γ(1− α)

∫ t

a

(
(t− ρ(t))−αg(s)∇s

)∇
=
(T

a I1−α
t g(t)

)
=
(
∇ ◦ T

a I1−α
t
)

g(t).

The proof is complete.

Proposition 5. For any integrable function g defined on a time scales interval [a, b] one has

RL
a Dµ

t ◦
RL
a Iµ

t g(t) = g(t).

Proof. From Propositions 1 and 4, we obtain

RL
a Dµ

t ◦
T
a I

µ
t g(t) =

[
T
a I

1−µ
t

(
T
a I

µ
t (g(t))

)]∇
=
[
T
a Itg(t)

]∇
= g(t).

This concludes the proof.

Corollary 2. For 0 < µ ≤ 1, we have RL
a Dµ

t ◦ RL
a D−µ

t = I and T
a I
−µ
t ◦ Ta I

µ
t = I, where I denotes

the identity operator.
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Proof. From Definition 12 and Proposition 5, we find that

RL
a Dµ

t ◦
T
a D−µ

t = RL
a Dµ

t ◦
T
a Iµ

t = I.

Again, from Definition 13 and Proposition 5, we have

T
a I
−µ
t ◦

T
a I

µ
t = RL

a Dµ
t ◦

T
a I

µ
t = I,

which concludes the proof.

5. Conclusions

In this paper, we discussed the nabla fractional derivative on time scales in a unified
approach by using Grünwald–Letnikov and Riemann–Liouville derivative, respectively.
Then, we have initiated the generalized definition of nabla derivative in fractional order in
a pure sense of Riemann–Liouville and Caputo. We claim that a lot of further work can
be completed by using this new idea. The aim of formulating the derivative is to solve
fractional dynamic equations, stochastic dynamic equations, fuzzy dynamic equations, and
one can think to extend the concept in a complex dynamic setting. About applications,
it has great prospect in mathematical modeling, for example in epidemiology, anoma-
lous diffusion in magnetic resonance imaging [29], fractal derivatives modeling [30], and
consensus problems in time scales on fractional calculus.
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