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Abstract: In the present research, we initiate the study of boundary value problems for sequential
Riemann–Liouville and Hadamard–Caputo fractional derivatives, supplemented with iterated frac-
tional integral boundary conditions. Firstly, we convert the given nonlinear problem into a fixed
point problem by considering a linear variant of the given problem. Once the fixed point operator
is available, we use a variety of fixed point theorems to establish results regarding existence and
uniqueness. Some properties of iteration that will be used in our study are also discussed. Examples
illustrating our main results are also constructed. At the end, a brief conclusion is given. Our results
are new in the given configuration and enrich the literature on boundary value problems for fractional
differential equations.

Keywords: fractional differential equations; Riemann–Liouville fractional derivative; Hadamard–
Caputo fractional derivative; boundary value problems; iterated boundary conditions; existence;
uniqueness; fixed point theorems

1. Introduction

Differential equations of fractional order have been of great interest in recent years
because they play a vital role in describing many phenomena concerning biology, ecol-
ogy, physics, chemistry, economics, chaotic synchronization, control theory and so on;
for instance, see [1,2]. This is because fractional differential equations describe many real
world processes related to memory and hereditary properties of various materials more
accurately as compared to classical order differential equations. For a systematic develop-
ment on the topic we refer to the monographs as [3–10]. Fractional order boundary value
problems attracted considerable attention and the literature on the topic was enriched
with a huge number of articles, for instance, see [11–23] and references cited therein. In
the literature there are several kinds of fractional derivatives, such as Riemann–Liouville,
Caputo, Hadamard, Hilfer, Katugampola, and so on. In many papers in the literature
the authors studied existence and uniqueness results for boundary value problems and
coupled systems of fractional differential equations by using mixed types of fractional
derivatives. For example Riemann–Liouvile and Caputo fractional derivatives are used in
the papers [14,19,21], Riemann–Liouville and Hadamard–Caputo fractional derivatives in
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the papers [15] and Caputo–Hadamard fractional derivatives in the papers [20,22]. Multi-
term fractional differential equations also gained considerable importance in view of their
occurrence in the mathematical models of certain real world problems, such as behavior of
real materials [24], continuum and statistical mechanics [25], an inextensible pendulum
with fractional damping terms [26], etc.

In [20] the authors studied the existence and uniqueness of solutions for two sequential
Caputo–Hadamard and Hadamard–Caputo fractional differential equations subject to
separated boundary conditions as

CDp(H Dqx)(t) = f (t, x(t)), t ∈ (a, b),

α1x(a) + α2(
H Dqx)(a) = 0, β1x(b) + β2(

H Dqx)(b) = 0,
(1)

and 
H Dq(CDpx)(t) = f (t, x(t)), t ∈ (a, b),

α1x(a) + α2(
CDpx)(a) = 0, β1x(b) + β2(

CDpx)(b) = 0,
(2)

where CDp and H Dq are the Caputo and Hadamard fractional derivatives of orders p and q,
respectively, 0 < p, q ≤ 1, f : [a, b]×R→ R is a continuous function, a > 0 and αi, βi ∈ R,
i = 1, 2.

In a recent paper [15] the authors investigated the existence and uniqueness of solu-
tions for the following coupled system of sequential Riemann–Liouville and Hadamard–
Caputo fractional differential equations supplemented with nonlocal coupled fractional
integral boundary conditions

RLDp1
(

HCDq1 x
)
(t) = f (t, x(t), y(t)), t ∈ [0, T],

RLDp2
(

HCDq2 y
)
(t) = g(t, x(t), y(t)), t ∈ [0, T],

HCDq1 x(0) = 0, x(T) =
m

∑
i=1

αi
RL Iβi y(ξi),

HCDq2 y(0) = 0, y(T) =
k

∑
j=1

λj
RL Iδj x(ηj),

(3)

where RLDpr and HCDqr are the Riemann–Liouville and Hadamard–Caputo fractional
derivatives of orders pr and qr, respectively, 0 < pr, qr < 1, r = 1, 2, the nonlinear
continuous functions f , g : [0, T] × R2 → R, RL Iφ is the Riemann–Liouville fractional
integral of orders φ > 0, φ ∈ {βi, δj} and given constants αi, λj ∈ R, ξi, ηj ∈ (0, T),
i = 1, . . . , m, j = 1, . . . , k.

Inspired by the above-mentioned papers, our goal in this paper is to enrich the
problems concerning sequential Riemann–Liouville and Hadamard–Caputo fractional
derivatives with a new research area—iterated boundary conditions. Thus, in this work, we
initiate the study of boundary value problems containing sequential Riemann–Liouville and
Hadamard–Caputo fractional derivatives, supplemented with iterated fractional integral
conditions of the form:

RLDp
(

HCDqx
)
(t) = f (t, x(t)), t ∈ [0, T],

HCDqx(0) = 0,

x(T) = λ1R̃(αn ,βn−1,...,β1,α1)x(ξ1) + λ2R̂(δm ,γm ,...,δ1,γ1)x(ξ2),

(4)

where RLDp and HCDq are the Riemann–Liouville and Hadamard–Caputo fractional deriva-
tives of orders p and q, respectively, 0 < p, q < 1, f : [0, T] × R → R is a continuous
function, m, n ∈ Z+, the given constants λ1, λ2 ∈ R and
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R̃(αn , ...,β1,α1)x(t) = RL Iαn H Iβn−1 RL Iαn−1 H Iβn−2 · · · H Iβ2 RL Iα2 H Iβ1 RL Iα1 x(t),

and

R̂(δm , ...,δ1,γ1)x(t) = H Iδm RL Iγm H Iδm−1 RL Iγm−1 · · · H Iδ2 RL Iγ2 H Iδ1 RL Iγ1 x(t),

are the iterated fractional integrals, where t = ξ1 and t = ξ2, respectively, ξ1, ξ2 ∈ (0, T),
RL Iφ, H Iψ are the Riemann–Liouville and Hadamard fractional integrals of orders φ, ψ > 0,
respectively, φ ∈ {α(·), γ(·)}, ψ ∈ {β(·), δ(·)}.

Observe that R̃(·)(·)(t) and R̂(·)(·)(t) are odd and even iterations, for example,

R̃( 1
4 , 1

3 , 1
2 )x(t) = RL I

1
4 H I

1
3 RL I

1
2 x(t),

and
R̂( 1

8 , 1
7 , 1

6 , 1
5 )x(t) = H I

1
8 RL I

1
7 H I

1
6 RL I

1
5 x(t),

respectively. In addition, these notations can be reduced to a single fractional integral
of Riemann–Liouville and Hadamard types by R̃(α1)x(t) = RL Iα1 x(t) and R̂(δ1,0)x(t) =
H Iδ1 x(t). Furthermore, this is the first paper to define the iteration notation alternating
between two different types of fractional integrals.

We establish existence and uniqueness results for the boundary value problem (4)
by applying a variety of fixed point theorems. More precisely, the existence of a unique
solution is proved by using Banach’s contraction mapping principle, Banach’s contraction
mapping principle combined with Hölder’s inequality and Boyd–Wong fixed point theorem
for nonlinear contractions, while the existence result is established via Leray–Schauder
nonlinear alternative.

Comparing problem (4) with the previous problem studied (3), in which sequential
Riemann–Liouville and Hadamard–Caputo fractional derivatives were also used, we note
that, except for the fact that both problems deal with sequential Riemann–Liouville and
Hadamard–Caputo fractional derivatives, they are entirely different. Problem (3) concerns
a coupled system subject to nonlocal coupled fractional integral boundary conditions, while
problem (4) concerns a boundary value problem supplemented with iterated fractional
boundary conditions. The methods of study are based on applications of fixed point
theorems and are obviously different. As far as we know, this is the first paper in the
literature which concerns iterated boundary conditions, and in this fact lies the novelty of
the paper.

The rest of the paper is arranged as follows: Section 2 contain some preliminary
notations and definitions from fractional calculus. The main results are presented in
Section 3. Some special cases are discussed in Section 4, while illustrative examples are
constructed in the final Section 5. The paper closes with a brief conclusion.

2. Preliminaries

Let us introduce some notations and definitions of fractional calculus [4,27] in the sense
of Riemann–Liouville and Hadamard–Caputo and present preliminary results needed in
our proofs later.

Definition 1. The Riemann–Liouville fractional derivative of order p > 0 of a continuous function
f : (0, ∞)→ R is defined by

RLDp f (t) =
1

Γ(n− p)

(
d
dt

)n ∫ t

0
(t− s)n−p−1 f (s)ds, n− 1 < p < n,

where n = [p] + 1, [p] denotes the integer part of a real number p and Γ is the Gamma function
defined by Γ(p) =

∫ ∞
0 e−ssp−1ds.
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Definition 2. The Riemann–Liouville fractional integral of order p of a function f : (0, ∞)→ R
is defined as

RL Ip f (t) =
1

Γ(q)

∫ t

0
(t− s)p−1 f (s)ds, p > 0,

provided the right side is pointwise defined on R+.

Definition 3. For an at least n-times differentiable function g : (0, ∞) → R, the Hadamard–
Caputo derivative of fractional order q > 0 is defined as

HCDqg(t) =
1

Γ(n− q)

∫ t

0

(
log

t
s

)n−q−1
δng(s)

ds
s

, n− 1 < q < n, n = [q] + 1,

where δ = t d
dt and log(·) = loge(·).

Definition 4. The Hadamard fractional integral of order q > 0 is defined as

H Iqg(t) =
1

Γ(α)

∫ t

0

(
log

t
s

)q−1
g(s)

ds
s

,

provided the integral exists.

Lemma 1 (see [4]). Let p > 0. Then for y ∈ C(0, T) ∩ L(0, T) it holds

RL Ip
(

RLDpy
)
(t) = y(t) + c1tp−1 + c2tp−2 + · · ·+ cntp−n,

where ci ∈ R, i = 1, 2, . . . , n and n− 1 < p < n.

Lemma 2 ([27]). Let u ∈ ACn
δ [0, T] or Cn

δ [0, T] and q ∈ C, where Xn
δ [0, T] = {g : [0, T]→ C :

δn−1g(t) ∈ X[0, T]}. Then, we have

H Iq(HCDq)u(t) = u(t) + c0 + c1 log t + c2(log t)2 + · · ·+ cn−1(log t)n−1,

where ci ∈ R, i = 0, 1, 2, . . . , n− 1 (n = [q] + 1).

Lemma 3 ([4], page 113). Let q > 0 and β > 0 be given constants. Then the following formula

H Iqtβ = β−qtβ,
holds.

Next we establish two new formulas for iteration of fractional integrals of Riemann–
Liouville and Hadamard types.

Lemma 4. Let m > −1, αj, βi > 0, i = 1, 2, . . . , n, be constants. Then we have

(i)

R̃(αn ,βn−1,...,β1,α1)tm = Γ(m + 1)
∏n−1

i=1

(
m + ∑i

j=1 αj

)−βi

Γ
(

1 + m + ∑n
j=1 αj

) tm+∑n
j=1 αj

(ii)

R̂(βn ,αn ,...,β1,α1)tm = Γ(m + 1)
∏n

i=1

(
m + ∑i

j=1 αj

)−βi

Γ
(

1 + m + ∑n
j=1 αj

) tm+∑n
j=1 αj .
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Proof. From RL Iα1 tm =
Γ(m + 1)

Γ(1 + m + α1)
tm+α1 , we get that (i) holds for n = 1. Applying the

Lemma 3, we have

H Iβ1
(

RL Iα1(1)
)
(t) =

Γ(m + 1)
Γ(1 + m + α1)

H Iβ1 tm+α1

=
Γ(m + 1)

Γ(1 + m + α1)
(m + α1)

−β1 tm+α1 , (5)

which implies that (ii) is true for n = 1. In the next step, we suppose that (i)–(ii) are fulfilled
for n = k. Then, from

RL Iαk+1 tm+∑k
j=1 αj =

Γ(1 + m + ∑k
j=1 αj)

Γ(1 + m + ∑k+1
j=1 αj)

tm+∑k+1
j=1 αj ,

we have

RL Iαk+1 R̂(βk ,αk ,...,β1,α1)tm = Γ(m + 1)
∏k

i=1

(
m + ∑i

j=1 αj

)−βi

Γ
(

1 + m + ∑k
j=1 αj

) RL Iαk+1 tm+∑k
j=1 αj

= Γ(m + 1)
∏k

i=1

(
m + ∑i

j=1 αj

)−βi

Γ
(

1 + m + ∑k+1
j=1 αj

) tm+∑k+1
j=1 αj ,

= R̃(αk+1,βk ,...,β1,α1)tm,

which yields that (i) holds when n = k + 1.
Further, we get

H Iβk+1 R̃(αk+1,βk ,...,β1,α1)tm = Γ(m + 1)
∏k

i=1

(
m + ∑i

j=1 αj

)−βi

Γ
(

1 + m + ∑k+1
j=1 αj

) H Iβk+1 tm+∑k+1
j=1 αj

= Γ(m + 1)
∏k

i=1

(
m + ∑i

j=1 αj

)−βi

Γ
(

1 + m + ∑k+1
j=1 αj

)
×
(

m +
k+1

∑
j=1

αj

)−βk+1

tm+∑k+1
j=1 αj

= Γ(m + 1)
∏k+1

i=1

(
m + ∑i

j=1 αj

)−βi

Γ
(

1 + m + ∑k+1
j=1 αj

) tm+∑k+1
j=1 αj

= R̂(βk+1,αk+1 ...,β1,α1)tm,

which yields that (ii) is true for n = k + 1. Therefore, by mathematical induction, (i) and (ii)
hold and the proof is completed.

Corollary 1. If we put m = 0 in Lemma 4, we obtain

(i)

R̃(αn ,βn−1,...,β1,α1)(1)(t) =
∏n−1

i=1

(
∑i

j=1 αj

)−βi

Γ
(

1 + ∑n
j=1 αj

) t∑n
j=1 αj
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(ii)

R̂(βn ,αn ,...,β1,α1)(1)(t) =
∏n

i=1

(
∑i

j=1 αj

)−βi

Γ
(

1 + ∑n
j=1 αj

) t∑n
j=1 αj .

The following lemma dealing with a linear variant of problem (4) plays a key role in
defining the solution of problem (4).

Lemma 5. Let z : [0, T]→ R be a continuous function and

Ω = 1− λ1
∏n−1

i=1

(
∑i

j=1 αj

)−βi

Γ
(

1 + ∑n
j=1 αj

) ξ
∑n

j=1 αj

1 − λ2
∏m

i=1

(
∑i

j=1 γj

)−δi

Γ
(

1 + ∑m
j=1 γj

) ξ
∑m

j=1 γj
2 6= 0.

Then x is a solution of the boundary value problem
RLDp

(
HCDqx

)
(t) = z(t), t ∈ [0, T],

HCDqx(0) = 0,

x(T) = λ1R̃(αn ,βn−1,...,β1,α1)x(ξ1) + λ2R̂(δm ,γm ,...,δ1,γ1)x(ξ2),

(6)

if and only if

x(t) =
λ1

Ω
R̃(αn ,βn−1,...,α1,q,p)z(ξ1) +

λ2

Ω
R̂(δm ,γm ,...,γ1,q,p)z(ξ2)

− 1
Ω

H Iq RL Ipz(T) + H Iq RL Ipz(t). (7)

Proof. For t ∈ [0, T], taking Riemann–Liouville fractional integral of order p in (4),
results in

HCDqx(t) = c1tp−1 + RL Ipz(t), c1 ∈ R. (8)

Since 0 < p < 1, the condition HCDqx(0) = 0 implies c1 = 0. Applying the Hadamard
fractional integral of order q to (8) and substituting the value of c1, we obtain

x(t) = c0 +
H IqRL Ipz(t). (9)

Now, we consider the terms

R̃(αn ,βn−1,...,β1,α1)x(t) = c0R̃(αn ,...,β1,α1)(1)(t) + R̃(αn ,...,β1,α1)H Iq RL Ipz(t)

= c0
∏n−1

i=1

(
∑i

j=1 αj

)−βi

Γ
(

1 + ∑n
j=1 αj

) t∑n
j=1 αj + R̃(αn ,...,α1,q,p)z(t),

and

R̂(δm ,γm ,...,δ1,γ1)x(t) = c0R̂(δm ,...,δ1,γ1)(1)(t) + R̂(δm ,...,δ1,γ1)H Iq RL Ipz(t)

= c0
∏m

i=1

(
∑i

j=1 γj

)−δi

Γ
(

1 + ∑m
j=1 γj

) t∑m
j=1 γj + R̂(δm ,...,γ1,q,p)z(t),

Then the second condition in (4) yields

c0 =
λ1

Ω
R̃(αn ,βn−1,...,α1,q,p)z(ξ1) +

λ2

Ω
R̂(δm ,γm ,...,γ1,q,p)z(ξ2)−

1
Ω

H Iq RL Ipz(T),
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which leads to the integral Equation (7) by substituting the value of c0 in (9).
Conversely, by taking the Hadamard–Caputo of order q to (7), we have HCDqx(t) =

RL Ipz(t), which implies HCDqx(0) = 0. Applying R̃(αn ,βn−1,...,α1) and R̂(δm ,γm ,...,γ1) to (7) at
points ξ1, ξ2, and multiplying constants λ1 and λ2, respectively, we obtain x(T). Therefore,
the proof is completed.

3. Main Results

Let C = C([0, T],R) be the set of all continuous functions from [0, T] to R. Then, C is a
Banach space endowed with the supremum norm defined as ‖x‖ = supt∈[0,T] |x(t)|.

By Lemma 5 we define an operator K : C → C by

Kx(t) =
λ1

Ω
R̃(αn ,βn−1,...,α1,q,p) fx(ξ1) +

λ2

Ω
R̂(δm ,γm ,...,γ1,q,p) fx(ξ2)

− 1
Ω

H Iq RL Ip fx(T) + H Iq RL Ip fx(t), (10)

where fx(φ) is the abbreviation of the nonlinear function f (φ, x(φ)), φ ∈ {t, T, ξ1, ξ2}.
The existence and uniqueness theorems will be established by considering the operator
equation x = Kx and using fixed point theorems. Let us set a constant

Φ1 =
|λ1|
|Ω| R̃

(αn ,βn−1,...,α1,q,p)(1)(ξ1) +
|λ2|
|Ω| R̂

(δm ,γm ,...,γ1,q,p)(1)(ξ2)

+

(
1
|Ω| + 1

)
R̂(q,p)(1)(T), (11)

where

R̃(αn ,βn−1,...,α1,q,p)(1)(ξ1) =
∏n−1

i=0

(
∑i

j=0 αj

)−βi

Γ
(

1 + ∑n
j=0 αj

) ξ
∑n

j=0 αj

1 ,

R̂(δm ,γm ,...,γ1,q,p)(1)(ξ2) =
∏m

i=0

(
∑i

j=0 γj

)−δi

Γ
(

1 + ∑m
j=0 γj

) ξ
∑m

j=0 γj
2 ,

R̂(q,p)(1)(T) =
p−qTp

Γ(p + 1)
,

with α0 = γ0 = p and β0 = δ0 = q.

3.1. Existence and Uniqueness Result via Banach’s Fixed Point Theorem

Theorem 1. Suppose that the nonlinear function f : [0, T]×R satisfies the following condition:

(H1) there exists a function ω(t) > 0 with

| f (t, x)− f (t, y)| ≤ ω(t)|x− y|,

for each t ∈ [0, T] and x, y ∈ R.

If LΦ1 < 1, where L = supt∈[0,T] |ω(t)| and Φ1 given by (11), then the sequential Riemann–
Liouville and Hadamard–Caputo fractional differential equation with iterated fractional integral
conditions (4) has a unique solution on [0, T].

Proof. Let us start by setting Br = {x ∈ C : ‖x‖ ≤ r} such that

r ≥ Φ1M
1− LΦ1

(12)
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and M := sup{ f (t, 0) : t ∈ [0, T]}. Using relations | fx(t)| ≤ | fx(t)− f0(t)|+ | f0(t)| ≤
|ω(t)|‖x‖+ | f0(t)| ≤ Lr + M for all t ∈ [0, T] and from Corollary 1, it follows that

|Kx(t)| ≤ |λ1|
|Ω| R̃

(αn ,βn−1,...,α1,q,p)| fx|(ξ1) +
|λ2|
|Ω| R̂

(δm ,γm ,...,γ1,q,p)| fx|(ξ2)

+
1
|Ω|

H Iq RL Ip| fx|(T) + H Iq RL Ip| fx|(t)

≤ |λ1|
|Ω| (Lr + M)R̃(αn ,βn−1,...,α1,q,p)(1)(ξ1)

+
|λ2|
|Ω| (Lr + M)R̂(δm ,γm ,...,γ1,q,p)(1)(ξ2)

+

(
1
|Ω| + 1

)
(Lr + M)H Iq RL Ip(1)(T)

≤ r,

which leads to K(Br) ⊆ Br. To show that K is a contraction, for any x, y ∈ Br, we get that

|Kx(t)−Ky(t)| ≤ |λ1|
|Ω| R̃

(αn ,βn−1,...,α1,q,p)| fx − fy|(ξ1) +
|λ2|
|Ω| R̂

(δm ,γm ,...,γ1,q,p)| fx − fy|(ξ2)

+
1
|Ω|

H Iq RL Ip| fx − fy|(T) + H Iq RL Ip| fx − fy|(t)

≤
{
|λ1|
|Ω| R̃

(αn ,βn−1,...,α1,q,p)(1)(ξ1) +
|λ2|
|Ω| R̂

(δm ,γm ,...,γ1,q,p)(1)(ξ2)

+

(
1
|Ω| + 1

)
R̂(q,p)(1)(T)

}
‖ω‖‖x− y‖

= LΦ1‖x− y‖,

which yields ‖Kx−Ky‖ ≤ LΦ1‖x− y‖. Since, by assumption, LΦ1 < 1, K is a contraction
operator and then there exists a unique fixed point in Br. Then the sequential Riemann–
Liouville and Hadamard–Caputo fractional differential equation with iterated fractional
integral conditions (4) has a unique solution on [0, T].

3.2. Existence and Uniqueness Result via Banach’s Fixed Point Theorem and Hölder’s Inequality

For convenience we put:

Φ2 =
|λ1|
|Ω|Γ(p)

(
1− σ

p− σ

)1−σ

(p− σ)−qΓ((p− σ) + 1)

×
∏n−1

i=1

(
(p− σ) + ∑i

j=1 αj

)−βi

Γ
(

1 + (p− σ) + ∑n
j=1 αj

) ξ
(p−σ)+∑n

j=1 αj

1

+
|λ2|
|Ω|Γ(p)

(
1− σ

p− σ

)1−σ

(p− σ)−qΓ((p− σ) + 1)

×
∏m

i=1

(
(p− σ) + ∑i

j=1 γj

)−δi

Γ
(

1 + (p− σ) + ∑m
j=1 γj

) ξ
(p−σ)+∑m

j=1 γj
2

+

(
1
|Ω| + 1

)
1

Γ(p)

(
1− σ

p− σ

)1−σ

(p− σ)−qTp−σ. (13)

Theorem 2. Assume that the function f satisfies condition (H1) in Theorem 1 with ω ∈

L
1
σ ([0, T],R+), where σ ∈ (0, p). Denote ‖ω‖σ =

(∫ t

0
(ω(s))

1
σ ds
)σ

.
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If ‖ω‖σΦ2 < 1, where Φ2 is given by (13), then the boundary value problem (4) has a unique
solution on [0, T].

Proof. Setting x, y ∈ C, for t ∈ [0, T], we obtain by using (H1) that

|Kx(t)−Ky(t)| ≤ |λ1|
|Ω| R̃

(αn ,βn−1,...,α1,q,p)| fx − fy|(ξ1) +
|λ2|
|Ω| R̂

(δm ,γm ,...,γ1,q,p)| fx − fy|(ξ2)

+
1
|Ω|

H Iq RL Ip| fx − fy|(T) + H Iq RL Ip| fx − fy|(t)

≤ |λ1|
|Ω| ‖x− y‖R̃(αn ,βn−1,...,α1,q,p)ω(ξ1)

+
|λ2|
|Ω| ‖x− y‖R̂(δm ,γm ,...,γ1,q,p)ω(ξ2)

+

(
1
|Ω| + 1

)
‖x− y‖H Iq RL Ipω(T). (14)

Now, we consider the application of Hölder’s inequality as

RL Ipω(t) =
1

Γ(p)

∫ t

0
(t− s)p−1ω(s)ds

≤ 1
Γ(p)

(∫ t

0

(
(t− s)p−1

) 1
1−σ ds

)1−σ(∫ t

0
(ω(s))

1
σ ds
)σ

≤ ‖ω‖σ

Γ(p)

(
1− σ

p− σ

)1−σ

tp−σ,

which yields

H IqRL Ipω(t) ≤ ‖ω‖σ

Γ(p)

(
1− σ

p− σ

)1−σ

(p− σ)−qtp−σ. (15)

Then we have

R̃(αn ,βn−1,...,α1,q,p)ω(ξ1) = R̃(αn ,βn−1,...,α1)H IqRL Ipω(ξ1)

≤ ‖ω‖σ

Γ(p)

(
1− σ

p− σ

)1−σ

(p− σ)−qR̃(αn ,βn−1,...,α1)tp−σ(ξ1)

=
‖ω‖σ

Γ(p)

(
1− σ

p− σ

)1−σ

(p− σ)−qΓ((p− σ) + 1)

×
∏n−1

i=1

(
(p− σ) + ∑i

j=1 αj

)−βi

Γ
(

1 + (p− σ) + ∑n
j=1 αj

) ξ
(p−σ)+∑n

j=1 αj

1 , (16)

by applying Lemma 4. In the same way, we obtain

R̂(δm ,γm ,...,γ1,q,p)ω(ξ2) = R̂(δm ,γm ,...,γ1)H IqRL Ipω(ξ2)

≤ ‖ω‖σ

Γ(p)

(
1− σ

p− σ

)1−σ

(p− σ)−qR̂(δm ,γm ,...,γ1)tp−σ(ξ2)

=
‖ω‖σ

Γ(p)

(
1− σ

p− σ

)1−σ

(p− σ)−qΓ((p− σ) + 1)

×
∏m

i=1

(
(p− σ) + ∑i

j=1 γj

)−δi

Γ
(

1 + (p− σ) + ∑m
j=1 γj

) ξ
(p−σ)+∑m

j=1 γj
2 . (17)
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Therefore, from (14)–(17), we have

‖Kx−Ky‖ ≤ ‖ω‖σΦ2‖x− y‖,

which implies that K is a contraction operator. Hence, the Banach’s fixed point theorem
implies that K has a unique fixed point, which is the unique solution of the boundary value
problem (4) on [0, T]. The proof is finished.

3.3. Existence and Uniqueness Result via Nonlinear Contractions

Definition 5. Assume that E is a Banach space. The operator K : E→ E, is said to be a nonlinear
contraction if there exists a continuous nondecreasing function Ψ : R+ → R+ such that Ψ(0) = 0
and Ψ(u) < u for all u > 0 satisfying

‖Kx−Ky‖ ≤ Ψ(‖x− y‖), ∀x, y ∈ E.

Lemma 6. (Boyd and Wong) [28]. Assume that E is a Banach space and K : E→ E is a nonlinear
contraction. Then K has a unique fixed point in E.

Theorem 3. Suppose that f : [0, T]×R→ R is a continuous function satisfying the assumption:

(H2) | f (t, x)− f (t, y)| ≤ g(t)
|x− y|

G∗ + |x− y| , for t ∈ [0, T], x, y ∈ R, where g : [0, T]→ R+ is a

continuous function and G∗ is a constant defined by

G∗ :=
|λ1|
|Ω| R̃

(αn ,βn−1,...,α1,q,p)g(ξ1) +
|λ2|
|Ω| R̂

(δm ,γm ,...,γ1,q,p)g(ξ2)

+

(
1
|Ω| + 1

)
H Iq RL Ipg(T).

Then problem (4) has a unique solution on [0, T].

Proof. Now, we will show that the operator K : C → C defined in (10) is a nonlinear
contraction. Next, we define a continuous nondecreasing function Ψ : R+ → R+ by

Ψ(u) =
G∗u

G∗ + u
, ∀u ≥ 0.

It is easy to see that Ψ satisfies Ψ(0) = 0 and Ψ(u) < u for all u > 0.
Then, for any x, y ∈ C, t ∈ [0, T], we obtain

|(Kx)(t)− (Ky)(t)|

≤ |λ1|
|Ω| R̃

(αn ,βn−1,...,α1,q,p)| fx − fy|(ξ1) +
|λ2|
|Ω| R̂

(δm ,γm ,...,γ1,q,p)| fx − fy|(ξ2)

+

(
1
|Ω| + 1

)
H Iq RL Ip| fx − fy|(T)

≤ |λ1|
|Ω| R̃

(αn ,βn−1,...,α1,q,p)
(

g(s)
|x− y|

G∗ + |x− y|

)
(ξ1)

+
|λ2|
|Ω| R̂

(δm ,γm ,...,γ1,q,p)
(

g(s)
|x− y|

G∗ + |x− y|

)
(ξ2)

+

(
1
|Ω| + 1

)
H Iq RL Ip

(
g(s)

|x− y|
G∗ + |x− y|

)
(T)

≤ Ψ(‖x− y‖)
G∗

(
|λ1|
|Ω| R̃

(αn ,βn−1,...,α1,q,p)g(ξ1) +
|λ2|
|Ω| R̂

(δm ,γm ,...,γ1,q,p)g(ξ2)



Axioms 2021, 10, 277 11 of 16

+

(
1
|Ω| + 1

)
H Iq RL Ipg(T)

)
= Ψ(‖x− y‖),

which means that ‖Kx−Ky‖ ≤ Ψ(‖x− y‖). Thus we can deduce that K is a nonlinear
contraction operator. Therefore, by applying Lemma 6 the operator A has a unique fixed
point, which is the unique solution on [0, T] of problem (4). The proof is completed.

3.4. Existence Result via Leray–Schauder Nonlinear Alternative

Lemma 7 ((Nonlinear alternative for single valued maps) [29]). Suppose that E is a Banach
space, C is a closed, convex subset of E and U is an open subset of C with 0 ∈ U. Assume that
K : U → C is a continuous map and K(U) is a relatively compact subset of C. Then either

(i) K has a fixed point in U, or
(ii) there is a x ∈ ∂U (the boundary of U in C) and θ ∈ (0, 1) with x = θK(x).

Theorem 4. Suppose that:

(H3) there exist a continuous nondecreasing function h : [0, ∞) → (0, ∞) and a function v ∈
C([0, T],R+) such that

| f (t, x)| ≤ v(t)h(‖x‖) for all (t, x) ∈ [0, T]×R;

(H4) there exists a constant M > 0 such that

M
‖v‖h(M)Φ1

> 1.

Then the boundary value problem (4) has at least one solution on [0, T].

Proof. Let Br = {x ∈ C : ‖x‖ ≤ r}. Then Br is a closed and convex subset of C. Define
sequence {xn} in Br converging to x. We can show the continuity of K as

|(Kx)(t)− (Kxn)(t)|

≤ |λ1|
|Ω| R̃

(αn ,βn−1,...,α1,q,p)| fx − fxn |(ξ1) +
|λ2|
|Ω| R̂

(δm ,γm ,...,γ1,q,p)| fx − fxn |(ξ2)

+

(
1
|Ω| + 1

)
H Iq RL Ip| fx − fxn |(T)

→ 0,

which concludes that K is continuous.
The compactness of K can be proved as follows. Setting x ∈ Br, we have

|Kx(t)| ≤ |λ1|
|Ω| R̃

(αn ,βn−1,...,α1,q,p)| fx|(ξ1) +
|λ2|
|Ω| R̂

(δm ,γm ,...,γ1,q,p)| fx|(ξ2)

+
1
Ω

H Iq RL Ip| fx|(T) + H Iq RL Ip| fx|(t)

≤ ‖v‖h(r) |λ1|
|Ω| R̃

(αn ,βn−1,...,α1,q,p)(1)(ξ1)

+ ‖v‖h(r) |λ2|
|Ω| R̂

(δm ,γm ,...,γ1,q,p)(1)(ξ2)

+ ‖v‖h(r)
(

1
|Ω| + 1

)
H Iq RL Ip(1)(T)

= ‖v‖h(r)Φ1 := Φ3,
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which leads to ‖Kx‖ ≤ Φ3. Therefore, the set KBr is a uniformly bounded set. By setting
τ1, τ2 ∈ Br with τ1 → τ2 and x ∈ Br, the equicontinuity of KBr can be considered as

|Kx(τ2)−Kx(τ1)| =
∣∣∣H Iq RL Ip fx(τ2)− H Iq RL Ip fx(τ1)

∣∣∣
≤ ‖v‖h(r)

∣∣∣H Iq RL Ip(1)(τ2)− H Iq RL Ip(1)(τ1)
∣∣∣

≤ ‖v‖h(r) p−q

Γ(p + 1)

∣∣∣τp
2 − τ

p
1

∣∣∣→ 0,

independently of an unknown x. Then KBr is an equicontinuous set. Hence we can
conclude that KBr is relatively compact. The benefit of the Arzelá–Ascoli theorem, implies
that the operator K is completely continuous.

In the final step, we will show that the second condition of Lemma 7 does not hold.
Let x be a solution of problem (4). Let us see the operator equation x = θKx for θ ∈ (0, 1).
From direct computation, we have

|x(t)| ≤ ‖v‖h(‖x‖)Φ1,

which means that
‖x‖

‖v‖h(‖x‖)Φ1
≤ 1.

By the hypothesis (H4), there exists M such that ‖x‖ 6= M. Now, we define the set
U = {x ∈ Br : ‖x‖ < M}. It is obvious that the operator K : U → C is continuous and
completely continuous. Then it is impossible that there exists x ∈ ∂U such that x = θKx
for any θ ∈ (0, 1). Hence, by applying the nonlinear alternative of Leray–Schauder type,
we can conclude that the operator K has a fixed point x ∈ U which is a solution on [0, T],
of the boundary value problem (4).

4. Special Cases

Form (H3) and (H4), we can give the following three corollaries. Firstly, if we choose
‖v‖ = N and h(·) ≡ 1, then by (H4), there exists a constant M > ‖v‖Φ1.

Corollary 2. If | f (t, x)| ≤ N, for (t, x) ∈ [0, T] × R and N > 0, then the boundary value
problem (4) has at least one solution on [0, T].

Secondly if we set v(·) ≡ 1 and h(u) = Au + B, A ≥ 0, B > 0, then, by (H4), there
exists a constant M > BΦ1

1−AΦ1
.

Corollary 3. Assume that | f (t, x)| ≤ A|x|+ B, for (t, x) ∈ [0, T]×R, A ≥ 0 and B > 0. If
AΦ1 < 1, then the nonlocal problem (4) has at least one solution on [0, T].

Finally, we recall the fact that if Cx2 − x + D < 0, where C > 0, D ≥ 0, then
x ∈

(
1−
√

1−4CD
2C , 1+

√
1−4CD
2C

)
. Now, we choose v(·) ≡ 1 and h(u) = Pu2 + Q, P > 0, Q ≥ 0.

Then, by (H4), there exists a constant M ∈
(

1−
√

1−4PQΦ2
1

2PΦ1
, 1+
√

1−4PQΦ2
1

2PΦ1

)
.

Corollary 4. Suppose that | f (t, x)| ≤ Px2 + Q, for (t, x) ∈ [0, T]×R, P > 0 and Q ≥ 0. If
PQΦ2

1 < 1
4 , then problem (4) has at least one solution on [0, T].

5. Examples

Next, we present some examples to illustrate our results.

Example 1. Consider the following sequential Riemann–Liouville and Hadamard–Caputo frac-
tional differential equation with iterated fractional integral conditions
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

RLD
3
4

(
HCD

1
2 x
)
(t) = f (t, x(t)), t ∈

[
0,

3
2

]
,

HCD
1
2 x(0) = 0,

x
(

3
2

)
=

2
17

R̃(
1
6 , 1

5 , 1
4 , 1

3 , 1
2 )x
(

6
5

)
+

3
19

R̂(
7
4 , 5

4 , 3
4 , 1

4 )x
(

13
15

)
.

(18)

Here p = 3/4 = α0 = γ0, q = 1/2 = β0 = δ0, T = 3/2, λ1 = 2/17, λ2 = 3/19, n = 3,
α1 = 1/2, α2 = 1/4, α3 = 1/6, β1 = 1/3, β2 = 1/5, ξ1 = 6/5, m = 2, γ1 = 1/4, γ2 = 5/4,
δ1 = 3/4, δ2 = 7/4 and ξ2 = 13/15. From all detail, we can find that

R̃(αn ,βn−1,...,α1,q,p)(1)(ξ1) =
∏n−1

i=0

(
∑i

j=0 αj

)−βi

Γ
(

1 + ∑n
j=0 αj

) ξ
∑n

j=0 αj

1

= R̃(
1
6 , 1

5 , 1
4 , 1

3 , 1
2 , 1

2 , 3
4 )(1)

(
6
5

)

=

( 3
4
)− 1

2
(

3
4 + 1

2

)− 1
3
(

3
4 + 1

2 + 1
4

)− 1
5

Γ
(

1 + 3
4 + 1

2 + 1
4 + 1

6

)
×
(

6
5

) 3
4+

1
2+

1
4+

1
6
≈ 0.8902306447,

and

R̂(δm ,γm ,...,γ1,q,p)(1)(ξ2) =
∏m

i=0

(
∑i

j=0 γj

)−δi

Γ
(

1 + ∑m
j=0 γj

) ξ
∑m

j=0 γj
2

= R̂(
7
4 , 5

4 , 3
4 , 1

4 , 1
2 , 3

4 )(1)
(

13
15

)

=

( 3
4
)− 1

2
(

3
4 + 1

4

)− 3
4
(

3
4 + 1

4 + 5
4

)− 7
4

Γ
(

1 + 3
4 + 1

4 + 5
4

)
×
(

13
15

) 3
4+

1
4+

5
4
≈ 0.07941518582,

and R̂(q,p)(1)(T) = p−qTp

Γ(p+1) ≈ 1.702914149, Ω ≈ 0.6748988874, Φ1 ≈ 4.399890599. If we
choose σ = 1/4 ∈ (0, p), then we can compute that Φ2 ≈ 5.037579504. Let the nonlinear
Lipschitzian function f : [0, 3/2]×R −→ R be given by

f (t, x) =
1

t + 10

(
x2 + 2|x|
1 + |x|

)
+

1
3

e−2t +
1
4

. (19)

Now, we see that | f (t, x)− f (t, y)| ≤ (2/(t + 10))|x− y|, for all t ∈ [0, (3/2)], x, y ∈ R.
Setting ω(t) = 2/(t+ 10), we get L = 1/5, which gives the estimate LΦ1 ≈ 0.8799781198 < 1.
From the result in Theorem 1, problem (18) with f given by (19) has a unique solution on
[0, 3/2].

Example 2. Consider the following sequential Riemann–Liouville and Hadamard–Caputo frac-
tional differential equation with iterated fractional integral conditions of Example 1, where the
function f : [0, 3/2]×R −→ R is defined by

f (t, x) =
e−175t

2

(
x2 + 2|x|
1 + |x|

)
+

1
3

e−2t +
1
4

. (20)
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Then we can derive that | f (t, x)− f (t, y)| ≤ e−175t|x − y|. Choosing ω(t) = e−175t,
we get L = 1, which yields LΦ1 ≈ 4.399890599 > 1. This means that the Theorem 1 can not
be used to apply concerning problem (18) with f given by (20). However, we can compute
that ‖ω‖σ ≈ 0.1944130842, which leads to ‖ω‖σΦ2 ≈ 0.9793713683 < 1. By the benefit of
Theorem 2, we deduce the conclusion that problem (18) with f given by (20) has a unique
solution on [0, 3/2].

Example 3. Consider the following sequential Riemann–Liouville and Hadamard–Caputo frac-
tional differential equation with iterated fractional integral conditions of Example 1, where the
function f : [0, 3/2]×R −→ R is defined by

f (t, x) =
t2 + 1

7
F(x), where F(x) =


1
2 , x > 1,
x
2 , 0 ≤ x ≤ 1,
0, x < 0.

(21)

Choosing g(t) = (t2 + 1)/7, we find that G∗ ≈ 0.9254866186. Then we can show that

| f (t, x)− f (t, y)| ≤ t2 + 1
7

(
|x− y|

2

)
≤ t2 + 1

7

(
|x− y|

0.9254866186 + |x− y|

)
.

Therefore, condition (H2) in Theorem 3 holds. We can get the conclusion by applying
Theorem 3 so that problem (18) with f given by (21) has a unique solution on [0, 3/2].

Example 4. Consider the following sequential Riemann–Liouville and Hadamard–Caputo frac-
tional differential equation with iterated fractional integral conditions of Example 1, where the
function f : [0, 3/2]×R −→ R is defined by

f (t, x) =
(

1
t + 5

)
x32

|x|31 + 1
+ t +

1
2

cos8 x3. (22)

Then we can see the estimate

| f (t, x)| ≤ 1
5
|x|+ 2,

where A = 1/5 and B = 2. Since AΦ1 ≈ 0.8799781198 < 1, we apply Corollary 3 to obtain
that problem (18) with f given by (22) has at least one solution on [0, 3/2].

Example 5. Consider the following sequential Riemann–Liouville and Hadamard–Caputo frac-
tional differential equation with iterated fractional integral conditions of Example 1, where the
function f : [0, 3/2]×R −→ R is defined by

f (t, x) =
1

(t + 3)2

(
x36

x34 + 1

)
+

1
15

te−x2
. (23)

Observe that
| f (t, x)| ≤ 1

9
x2 +

1
10

.

Then we choose P = 1/9 and Q = 1/10. Hence all assumptions of Corollary 4 hold
by computing PQΦ2

1 ≈ 0.2151004142 < 1
4 . Therefore, problem (18) with (23) has at least

one solution on [0, 3/2].

6. Conclusions

In this paper we initiated the study of fractional boundary value problems consist-
ing of a differential equation with sequential Riemann–Liouville and Hadamard–Caputo
fractional derivatives, supplemented with iterated fractional integral boundary conditions.
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To the best of our knowledge, it is the first paper introducing iterated fractional boundary
conditions. Firstly, we established two new formulas for iteration of fractional integrals of
Riemann–Liouville and Hadamard types. Next, after proving an auxiliary lemma concern-
ing a linear variant of the considered problem, we transformed the problem into a fixed
point problem. By applying fixed point theorems, such as Banach’s contraction mapping
principle, Boyd–Wong fixed point theorem and Leray–Schauder nonlinear alternative, we
established the existence and uniqueness of the solutions of the problem at hand. Some
special cases are also discussed. The obtained results are well illustrated by numerical
examples. Our results are new and enrich the literature on boundary value problems for
fractional differential equations. We believe that it is an interesting and new problem that
the upcoming researchers can offer similar results for different types of iterated boundary
conditions or different kind of sequential fractional derivatives.
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