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Abstract: This paper focuses on two Dirichlet boundary value problems whose differential operators
in the principal part exhibit a lack of ellipticity and contain a convection term (depending on the
solution and its gradient). They are driven by a degenerated (p, q)-Laplacian with weights and a
competing (p, q)-Laplacian with weights, respectively. The notion of competing (p, q)-Laplacians
with weights is considered for the first time. We present existence and approximation results that hold
under the same set of hypotheses on the convection term for both problems. The proofs are based
on weighted Sobolev spaces, Nemytskij operators, a fixed point argument and finite dimensional
approximation. A detailed example illustrates the effective applicability of our results.
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1. Introduction

Consider a bounded domain Ω in RN (N ≥ 1) with a Lipschitz boundary ∂Ω, numbers
1 < q < p < ∞, functions a, b ∈ L1(Ω) with a(x), b(x) > 0 for a.e. x ∈ Ω and a
Carathéodory function f : Ω×R×RN → R (i.e., f (·, t, ξ) is measurable on Ω for each
(t, ξ) ∈ R× RN and f (x, ·, ·) is continuous on R× RN for a.e. x ∈ Ω). The aim of this
paper is to investigate the quasilinear Dirichlet problems{

−div(a(x)|∇u|p−2∇u + b(x)|∇u|q−2∇u) = f (x, u,∇u) in Ω
u = 0 on ∂Ω

(1)

and {
−div(a(x)|∇u|p−2∇u− b(x)|∇u|q−2∇u) = f (x, u,∇u) in Ω
u = 0 on ∂Ω.

(2)

Notice that problem (1) is driven by a sum of weighted p-Laplacians, whereas problem
(2) by a difference of weighted p-Laplacians. The weights a ∈ L1(Ω) and b ∈ L1(Ω) are
strongly related to the ellipticity property, but act in a fundamentally different way in these
problems. The celebrated p-Laplacian and q-Laplacian are used instead of more general
operators in the above formulations just to highlight the main ideas.

The differential operator in the principal part of Equation (1) is the sum

u 7→ div(a(x)|∇u|p−2∇u) + div(b(x)|∇u|p−2∇u)

of the degenerated p-Laplacian with weight a ∈ L1(Ω) and the degenerated q-Laplacian
with weight b ∈ L1(Ω) that should be consistent. This operator was introduced in [1] where
it was called the degenerated (p, q)-Laplacian with weights a, b ∈ L1(Ω). Its construction
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is reviewed in Section 2. The characteristic property of this operator is the degeneracy,
meaning that one cannot guarantee the existence of a constant k > 0 to have

〈−div(a(x)|∇u|p−2 + b(x)|∇u|q−2)∇u), u〉 ≥ k
∫

Ω
(|∇u(x)|p + |∇u(x)|q)dx.

Due to this, one cannot apply the classical elliptic theory.
The differential operator in the principal part of Equation (2) is the difference

u 7→ div(a(x)|∇u|p−2∇u)− div(b(x)|∇u|p−2∇u)

of the degenerated p-Laplacian with weight a ∈ L1(Ω) and of the degenerated q-Laplacian
with weight b ∈ L1(Ω). Such a nonlinear operator with weights is considered for the
first time. We call it the competing (p, q)-Laplacian with weights a, b ∈ L1(Ω). In this
case, we go beyond the degeneracy, actually completely dropping the ellipticity because
the quantity

〈−div(a(x)|∇u|p−2∇u− b(x)|∇u|q−2∇u), u〉 =
∫

Ω
(a(x)|∇u(x)|p − b(x)|∇u(x)|q)dx

can have an arbitrary sign (note that a(x) and b(x) are positive). For problem (2), any
method of monotone type, including the use of pseudomonotone operators, fails to apply.

The right-hand side f (x, u,∇u) of the equations in (1) and (2) is a convection term;
that is, it depends on the solution u and on its gradient ∇u. The dependence on the
gradient ∇u generally prevents having a variational structure for problems (1) and (2),
so the variational methods are not applicable. In order to find the needed estimates, an
essential part of our development is devoted to the Nemytskij operator associated with
the convection term f (x, u,∇u) under an appropriate growth condition for the function
f (x, t, ξ) on Ω × R × RN . Different results regarding unweighted problems involving
(p, q)-Laplacian and convection terms can be found in [2].

The problems (1) and (2) have only recently been regarded in their generality. To the
best of our knowledge, there is solely the existence theorem for problem (1), obtained in [1]
through the theory of pseudomonotone operators. For the particular case of (1) where the
equation is governed by a degenerated p-Laplacian (i.e., b = 0 in (1)), existence results
based on minimization and degree theoretic methods can be found in [3] and a method
to create a sub-supersolution was developed in [4]. Concerning problem (2) driven by
competing operators, there is no available result except for the most particular situation
where a(x) = b(x) ≡ 1 in Ω (i.e., the problem without weights), whose study was initiated
in [5] and continued in [6,7].

In the present paper, we overcome the lack of ellipticity, monotonicity and variational
structure in problems (1) and (2) by means of a passing to limit process involving approxi-
mate solutions generated through fixed point arguments on finite dimensional spaces. This
approach was implemented in [6,7] for unweighted problems (i.e., a(x) = b(x) ≡ 1 in Ω).
Here, the development is substantially modified due to the completely different functional
setting under the weights a ∈ L1(Ω) and b ∈ L1(Ω).

For problem (1), we are able to establish the existence of a solution in a weak sense,
whereas for problem (2), we prove the existence of a solution in a generalized sense. It is
worth noting that in the case of problem (1) any generalized solution is a weak solution.
Moreover, our results can be viewed as providing approximations in the sense of strong con-
vergence for solutions to problems (1) and (2) by finite dimensional approximate solutions.

Inspired by [3], a major step in our treatment is a reduction within the framework of
classical Sobolev spaces. We impose a suitable growth condition for the convection term
f (x, u,∇u) to match this reduction. The growth condition is expressed using a positive
quantity (ps in the text) described by the weights a ∈ L1(Ω) and b ∈ L1(Ω), which provide
the best integrability rate.
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We plan to use the present work for studying evolutionary counterparts for problems
(1) and (2).

The rest of the paper is organized as follows. Section 2 presents the degenerated and
competing (p, q)-Laplacians with weights. Section 3 sets forth the associated Nemytskij
operator. Section 4 contains our main result on the solvability and approximation for
problem (1). Section 5 focuses on the solvability of problem (2). Section 6 illustrates by an
example the effective applicability of our theorems.

2. Degenerated and Competing (P, Q)-Laplacians with Weights

Throughout the text, we denote by→ the strong convergence and by ⇀ the weak
convergence in any normed space X under consideration. The norm on X is denoted by
‖ · ‖X , while the notation 〈·, ·〉X stands for the duality pairing between X and its dual X∗.
For the rest of the paper, by a bounded map we understand a map between normed spaces
that maps bounded sets to bounded sets.

We fix the framework for the underlying weighted Sobolev spaces related to problems
(1) and (2). For a systematic study of weighted Sobolev spaces, we refer to [3,8]. The
completeness property for such spaces is discussed in [9]. This functional setting was also
discussed in [1].

Given a real number p ∈ (1,+∞) and a positive function a ∈ L1(Ω), the weighted space

W1,p(a, Ω) := {u ∈ Lp(Ω) :
∫

Ω
a(x)|∇u(x)|pdx < ∞},

is endowed with the norm

‖u‖W1,p(a,Ω) :=
(
‖u‖p

Lp(Ω)
+
∫

Ω
a(x)|∇u(x)|pdx

) 1
p
, ∀u ∈W1,p(a, Ω).

We note that C∞
0 (Ω) ⊂W1,p(a, Ω). The closure of C∞

0 (Ω) in W1,p(a, Ω) with respect to
the norm ‖ · ‖W1,p(a,Ω) is the space W1,p

0 (a, Ω). The dual spaces of W1,p(a, Ω) and W1,p
0 (a, Ω)

are denoted by W1,p(a, Ω)∗ and W1,p
0 (a, Ω)∗, respectively.

A reduction in the setting of classical Sobolev spaces is based on the following condi-
tion from [3] (p. 26):

(H1). a−s ∈ L1(Ω) for some s ∈
(

max
{

N
p , 1

p−1

}
,+∞

)
.

Proposition 1. Under condition (H1), there are the continuous embeddings

W1,p(a, Ω) ↪→W1,ps(Ω) ↪→ Lp(Ω), (3)

where

ps =
ps

s + 1
. (4)

In addition, the embedding W1,ps(Ω) ↪→ Lp(Ω) is compact. Furthermore,

‖u‖
W1,p

0 (a,Ω)
:=
(∫

Ω
a(x)|∇u(x)|pdx

) 1
p
, ∀u ∈W1,p

0 (a, Ω),

is an equivalent norm on W1,p
0 (a, Ω) for which W1,p

0 (a, Ω) becomes a uniformly convex Banach space.

Proof. The proof is essentially completed in [3]. For the sake of clarity, we highlight aspects
relevant for problems (1) and (2).
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It can be seen from (4) that ps > 1 if and only if s > 1/(p− 1), which by assumption
(H1) is true. In order to prove the first inclusion in (3), let u ∈W1,p(a, Ω). Using Hölder’s
inequality, hypothesis (H1) and (4) (note ps < p), we infer that∫

Ω
|∇u(x)|ps dx =

∫
Ω
(a(x)

ps
p |∇u(x)|ps)a(x)−

ps
p dx

≤
(∫

Ω
a(x)|∇u(x)|pdx

) ps
p
(∫

Ω
a(x)−

ps
p−ps dx

) p−ps
p

≤ ‖a−s‖
1

s+1
L1(Ω)

‖u‖ps
W1,p(a,Ω)

, ∀u ∈W1,p
0 (a, Ω).

The continuous inclusion W1,p(a, Ω) ↪→W1,ps(Ω) is proven.
The Rellich–Kondrachov embedding theorem ensures the compact embedding W1,ps

(Ω) ↪→ Lr(Ω), with 1 ≤ r < p∗s , where p∗s is the critical exponent corresponding to ps,
that is,

p∗s :=


Nps

N−ps
if N > ps(⇔ ps < N(s + 1))

+∞ if N ≤ ps(⇔ ps ≥ N(s + 1)).

We have that p∗s > p if and only if s > N/p. Since the latter holds by assumption (H1),
the compactness of the second inclusion in (3) follows.

The desired equivalence of norms is a consequence of (3) and the Poincaré inequality
on W1,ps

0 (Ω) because with a positive constant C,

‖u‖Lp(Ω) ≤ C‖u‖W1,p(a,Ω), ∀u ∈W1,p
0 (a, Ω).

It remains to show that W1,p
0 (a, Ω) is a uniformly convex Banach space. It suffices

to have a−
1

p−1 ∈ L1(Ω) (see [3] Theorem 1.3). From hypothesis (H1), it is known that
a−s ∈ L1(Ω) with s > 1/(p− 1), which results in∫

Ω
a(x)−

1
p−1 dx =

∫
{a(x)<1}

a(x)−
1

p−1 dx +
∫
{a(x)≥1}

a(x)−
1

p−1 dx

≤
∫

Ω
a(x)−sdx + meas(Ω) < ∞,

thus completing the proof.

The degenerated p-Laplacian with the weight a ∈ L1(Ω) is defined as the map ∆a
p :

W1,p
0 (a, Ω)→W1,p

0 (a, Ω)∗ given by ∆a
p(u) = div(a(x)|∇u|p−2∇u) for all u ∈W1,p

0 (a, Ω), i.e.,

〈−∆a
p(u), v〉

W1,p
0 (a,Ω)

=
∫

Ω
a(x)|∇u(x)|p−2∇u(x)∇v(x)dx, ∀u, v ∈W1,p

0 (a, Ω).

The definition makes sense as can be seen through Hölder’s inequality∣∣∣∣∫Ω
a(x)|∇u(x)|p−2∇u(x)∇v(x)dx

∣∣∣∣
≤
∫

Ω
(a(x)

p−1
p |∇u(x)|p−1)(a(x)|

1
p |∇v(x)|)dx

≤
(∫

Ω
a(x)|∇u(x)|pdx

) p−1
p
(∫

Ω
a(x)|∇v(x)|pdx

) 1
p
< ∞, ∀u, v ∈W1,p

0 (a, Ω).

The ordinary p-Laplacian is recovered when a(x) ≡ 1 in Ω.
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The degenerated p-Laplacian ∆a
p : W1,p

0 (a, Ω) → W1,p
0 (a, Ω)∗ is continuous and

bounded. We denote by λ1 the first eigenvalue of −∆a
p : W1,p

0 (a, Ω) → W1,p
0 (a, Ω)∗

corresponding to the weight a ∈ L1(Ω) with a−
1

p−1 ∈ L1(Ω). Specifically, λ1 is the least
λ > 0 for which the problem{

−div(a(x)|∇u|p−2∇u) = λ|u|p−2u in Ω
u = 0 on ∂Ω

possesses a nontrivial solution. It can be variationally characterized as

λ1 = inf
u∈W1,p

0 (a,Ω)\{0}

∫
Ω a(x)|∇u(x)|pdx

‖u‖p
Lp(Ω)

. (5)

More details on the degenerated p-Laplacian with weight can be seen in [3].
For the positive weights a ∈ L1(Ω) and b ∈ L1(Ω) entering problems (1) and (2), we

have the degenerated p-Laplacian ∆a
p : W1,p

0 (a, Ω)→W1,p
0 (a, Ω)∗ with weight a ∈ L1(Ω)

and the degenerated q-Laplacian ∆b
q : W1,2

0 (b, Ω) → W1,2
0 (b, Ω)∗ with weight b ∈ L1(Ω).

The two operators need to be consistent, which is achieved under the following compatibil-
ity condition for the weights:

(H2). 1 < q < p < +∞ and a−
q

p−q b
p

p−q ∈ L1(Ω).

Proposition 2. Assume that condition (H2) holds. Then, one has the continuous embedding
W1,p

0 (a, Ω) ↪→W1,q
0 (b, Ω).

Proof. By hypothesis (H2) and Hölder’s inequality, we infer that∫
Ω

b(x)|∇u(x)|qdx =
∫

Ω
(a(x)−

q
p b(x))(a(x)

q
p |∇u(x)|q)dx

≤
(∫

Ω
a(x)−

q
p−q b(x)

p
p−q dx

) p−q
p
(∫

Ω
a(x)|∇u(x)|pdx

) q
p

≤ ‖a−
q

p−q b
p

p−q ‖
p−q

p

L1(Ω)
‖u‖q

W1,p(a,Ω)
, ∀u, v ∈W1,p

0 (a, Ω),

which proves the result.

Under condition (H2), on the basis of Proposition 2, the map ∆a
p + ∆b

q : W1,p
0 (a, Ω)→

W1,p
0 (a, Ω)∗ called the degenerated (p, q)-Laplacian with weights a, b ∈ L1(Ω) is well-

defined. It is given by

〈−(∆a
p + ∆b

q)u, v〉
W1,p

0 (a,Ω)
(6)

=
∫

Ω
(a(x)|∇u(x)|p−2∇u(x) + b(x)|∇u(x)|q−2∇u(x))∇v(x)dx, ∀u, v ∈W1,p

0 (a, Ω).

The degenerated (p, q)-Laplacian with weights a, b ∈ L1(Ω) was introduced in [1].
Again on the basis of Proposition 2, the map ∆a

p − ∆b
q : W1,p

0 (a, Ω) → W1,p
0 (a, Ω)∗

given by

〈−(∆a
p − ∆b

q)u, v〉
W1,p

0 (a,Ω)
(7)

=
∫

Ω
(a(x)|∇u(x)|p−2∇u(x) + b(x)|∇u(x)|q−2∇u(x))∇v(x)dx, ∀u, v ∈W1,p

0 (a, Ω),

is well-defined provided condition (H2) is satisfied. We call it the competing (p, q)-Laplacian
with weights a, b ∈ L1(Ω) and is introduced here for the first time.
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Proposition 3. Under assumption (H2), the maps ∆a
p + ∆b

q : W1,p
0 (a, Ω) → W1,p

0 (a, Ω)∗ and

∆a
p − ∆b

q : W1,p
0 (a, Ω)→W1,p

0 (a, Ω)∗ are continuous and bounded. In addition, under (H1) and

(H2), the (S)+ property holds for the map −(∆a
p + ∆b

q) : W1,p
0 (a, Ω)→W1,p

0 (a, Ω)∗; that is, any

sequence {un} ⊂W1,p
0 (a, Ω) satisfying un ⇀ u in W1,p

0 (a, Ω) and

lim sup
n→∞

〈−(∆a
p + ∆b

q)un, un − u〉
W1,p

0 (a,Ω)
≤ 0 (8)

is strongly convergent. Thus, un → u in W1,p
0 (a, Ω).

Proof. Due to the continuous embedding W1,p(a, Ω) ↪→ W1,q(b, Ω) in Proposition 2,
∆a

p + ∆b
q and ∆a

p − ∆b
q inherit the continuity and boundedness from ∆a

p and ∆b
q.

For the second part of the statement, let a sequence {un} ⊂ W1,p
0 (a, Ω) with the

required properties. By (6), the monotonicity of −∆b
q and Hölder’s inequality, we obtain

〈−(∆a
p + ∆b

q)(un) + (∆a
p + ∆b

q)(u), un − u〉
W1,p

0 (a,Ω)

≥ 〈−∆a
p(un) + ∆a

p(u), un − u〉
W1,p

0 (a,Ω)

≥ (‖un‖W1,p
0 (a,Ω)

− ‖u‖
W1,p

0 (a,Ω)
)(‖un‖p−1

W1,p
0 (a,Ω)

− ‖u‖p−1

W1,p
0 (a,Ω)

) ≥ 0.

It follows from the above estimate, (8) and un ⇀ u in W1,p
0 (a, Ω) that there holds

lim
n→+∞

‖un‖W1,p
0 (a,Ω)

= ‖u‖
W1,p

0 (a,Ω)
. From Proposition 1, we know that the space W1,p

0 (a, Ω)

is uniformly convex. Therefore, we can conclude that un → u in W1,p
0 (a, Ω).

3. An Associated Nemytskij Operator

In this section we focus on the right-hand side of the equations in (1) and (2), i.e., the
convection term f (x, u,∇u). Our goal is to identify the growth condition for the function
f (x, t, ξ) to match the reduction in Proposition 1 to the unweighted Sobolev space W1,ps

0 (Ω).
The appropriate growth for f (x, t, ξ) is the one used in [1].

In order to simplify the presentation, for any real number r > 1, we denote r′ := r/(r− 1)
(the Hölder conjugate of r). This convention will be preserved for the rest of the paper.

Lemma 1. Assume (H1) and (H2) and in addition that the Carathéodory function f : Ω×R×
RN → R satisfies the growth condition:

(H3).

| f (x, t, ξ)| ≤ σ(x) + c1|t|α + c2|ξ|β for a.e x ∈ Ω, ∀(t, ξ) ∈ R×RN , (9)

with σ ∈ Lγ′(Ω) for γ ∈ (1, p∗s ) and constants c1 > 0, c2 > 0, α ∈ [0, p∗s − 1), β ∈ [0, ps
(p∗s )′

).

Set

θ := min
{

γ′,
p∗s
α

,
ps

β

}
. (10)

Then, the Nemytskij operator N f : Lp∗s (Ω) × (Lps(Ω))N → Lθ(Ω) associated with the
function f which is given by

N f (v, z) = f (·, v(·), z(·)), ∀v, z ∈ Lp∗s (Ω)× (Lps(Ω))N (11)

is well-defined, continuous and bounded.
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Proof. The requirements in (H3) postulate γ′ > 1 (note γ > 1),

p∗s
α

>
p∗s

p∗s − 1
= (p∗s )

′ > 1,
ps

β
> (p∗s )

′ > 1

(note that p∗s > p > 1). Then, a consequence of (10) is that θ > 1.
We observe that (9) yields

| f (x, t, ξ)| ≤ σ̃(x) + c1|t|
p∗s
θ + c2|ξ|

ps
θ for a.e x ∈ Ω, ∀(t, ξ) ∈ R×RN , (12)

with σ̃ ∈ Lθ(Ω). Indeed, (10) gives

α ≤ p∗s
θ

and β ≤ ps

θ
.

Hence (12) is derived from (9) with σ̃(x) = σ(x) + c1 + c2 for a.e. x ∈ Ω obtaining
σ̃ ∈ Lγ′(Ω) ⊂ Lθ(Ω).

Using Krasnoselskij’s theorem, we infer from (12) that N f introduced in (11) has the
required properties, thus proving the result.

Let N f : W1,p(a, Ω)→W1,p(a, Ω)∗ be defined by

〈N f (u), v〉W1,p(a,Ω) =
∫

Ω
f (x, u(x),∇u(x))v(x)dx, ∀u, v ∈W1,p

0 (a, Ω).

Due to the first inclusion in (3), it holds that (u,∇u) ∈ Lp∗s (Ω)× (Lps(Ω))N whenever
u ∈W1,p

0 (a, Ω). It turns out

〈N f (u), v〉W1,p(a,Ω) = 〈N f (u,∇u), v〉Lθ(Ω), ∀u, v ∈W1,p
0 (a, Ω). (13)

The assertion below provides a key tool for investigating problems (1) and (2).

Proposition 4. Assume (H1)–(H3). If un ⇀ u in W1,p
0 (a, Ω), it holds that

lim
n→∞
〈N f (un), un − u〉

W1,p
0 (a,Ω)

= 0. (14)

Proof. Recalling the convention made in the beginning of this section, (10) entails

θ′ = max

{
γ,
(

p∗s
α

)′
,
(

ps

β

)′}
. (15)

By (H3) we have γ < p∗s ,(
p∗s
α

)′
=

p∗s
α

p∗s
α − 1

=
p∗s

p∗s − α
< p∗s ,

(
ps

β

)′
=

ps
β

ps
β − 1

=
ps

ps − β
<

ps

ps − ps
(p∗s )′

=
(p∗s )′

(p∗s )′ − 1
= p∗s .

Hence, (15) yields 1 < θ′ < p∗s and we can apply the Rellich–Kondrachov compact
embedding theorem to deduce that the embedding W1,ps(Ω) ↪→ Lθ′(Ω) is compact, which
results in un → u in Lθ′(Ω).

Since (13) implies that

|〈N f (un), un − u〉W1,p(a,Ω)| ≤ ‖N f (un,∇un)‖Lθ(Ω)‖un − u‖Lθ′ (Ω). (16)
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and Lemma 1 ensures that {N f (un,∇un)} is bounded in Lθ(Ω), from (16) we arrive at (14),
as desired.

4. Solvability and Approximation for the Degenerate Elliptic Problem (1)

The object of this section is to develop an approach based on finite dimensional
approximations for problem (1).

Since the Banach space W1,p
0 (a, Ω) is separable (see Section 2), there exists a Galerkin

basis for it. This amounts to saying that there is a sequence {Xn} of vector subspaces of
W1,p

0 (a, Ω) such that

(i) dim(Xn) < ∞, ∀n;
(ii) Xn ⊂ Xn+1, ∀n;
(iii) ⋃

n
Xn = W1,p

0 (a, Ω).

We fix such a sequence of subspaces {Xn}. Each approximate problem on Xn will be
resolved by means of a consequence of Brouwer’s fixed point theorem.

Proposition 5. Assume the conditions (H1)–(H3) and in addition

(H4). there exists ρ ∈ L1(Ω) and constants d1 > 0 and d2 > 0 provided λ−1
1 d1 + d2 < 1, where

λ1 denotes the first eigenvalue of −∆a
p on W1,p

0 (a, Ω), such that

f (x, t, ξ)t ≤ ρ(x) + d1|t|p + d2a(x)|ξ|p (17)

for a.e x ∈ Ω and all (t, ξ) ∈ R×RN .

Then for each n there exists un ∈ Xn such that

〈−(∆a
p + ∆b

q)(un), v〉
W1,p

0 (a,Ω)
=
∫

Ω
f (x, un(x),∇un(x))v(x)dx, ∀v ∈ Xn. (18)

Proof. For each n, consider the continuous map An : Xn → X∗n defined by

〈An(u), v〉Xn = 〈−(∆a
p + ∆b

q)(u), v〉
W1,p

0 (a,Ω)
−
∫

Ω
f (x, u(x),∇u(x))v(x)dx, ∀v ∈ Xn.

The definition of the operator An, (17) and (5) lead to

〈An(v), v〉Xn =
∫

Ω
(a(x)|∇v|p + b(x)|∇v|q − f (x, v,∇v)v)dx

≥ ‖v‖p

W1,p
0 (a,Ω)

− ‖ρ‖L1(Ω) − d1‖v‖
p
Lp(Ω)

− d2‖v‖
p

W1,p
0 (a,Ω)

≥ (1− d1λ−1
1 − d2)‖v‖

p

W1,p
0 (a,Ω)

− ‖ρ‖L1(Ω), ∀v ∈ Xn.

Thanks to the assumption 1− d1λ−1
1 − d2 > 0 in (H4), it follows that

〈An(v), v〉Xn ≥ 0 whenever v ∈ Xn with ‖v‖
W1,p

0 (a,Ω)
= R

provided R = R(n) > 0 is sufficiently large. In view of the fact that Xn is a finite dimen-
sional space, by a well-known consequence of Brouwer’s fixed point theorem (see, e.g., [10]
(p. 37)) there exists un ∈ Xn solving the equation An(un) = 0. This means exactly that
un ∈ Xn is a solution for problem (18), which completes the proof.

We are in a position to state our main result on problem (1).
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Theorem 1. Assume that the conditions (H1)–(H4) are fulfilled. Then, the sequence {un}, with
un ∈ Xn constructed in Proposition 5, contains a subsequence which is strongly convergent in
W1,p

0 (a, Ω) to a weak solution of problem (1) meaning that∫
Ω
(a(x)|∇u|p−2∇u + b(x)|∇u|q−2∇u)∇vdx =

∫
Ω

f (x, u,∇u)vdx (19)

for all v ∈W1,p
0 (a, Ω).

Proof. We claim that the sequence {un} built in Proposition 5 is bounded in W1,p
0 (a, Ω).

Acting with v = un in (18) gives

‖un‖p

W1,p
0 (a,Ω)

+ ‖un‖q

W1,q
0 (a,Ω)

=
∫

Ω
f (x, un,∇un)undx.

Then, through (17) and (5) we obtain

‖un‖p

W1,p
0 (a,Ω)

≤ ‖ρ‖L1(Ω) + d1‖u‖
p
Lp(Ω)

+ d2‖u‖
p

W1,p
0 (a,Ω)

≤ ‖ρ‖L1(Ω) + (d1λ−1
1 + d2)‖u‖

p

W1,p
0 (a,Ω)

.

Thanks to λ−1
1 d1 + d2 < 1, as known from hypothesis (H4), the claim is verified.

Recall from Proposition 1 that W1,p
0 (a, Ω) is a uniformly convex Banach space, so it is

reflexive. Hence, the bounded sequence {un} possesses a subsequence denoted again {un}
such that for some u ∈W1,p

0 (a, Ω) it holds un ⇀ u in W1,p
0 (a, Ω).

Proposition 3 and Lemma 1 ensure that the operators ∆a
p + ∆b

q : W1,p
0 (a, Ω) →

W1,p
0 (a, Ω)∗ and N f : W1,p

0 (a, Ω) → W1,p
0 (a, Ω)∗ are bounded. Then, in view of the re-

flexivity of W1,p
0 (a, Ω) along a relabeled subsequence, one has

−(∆a
p + ∆b

q)(un)− N f (un) ⇀ η in W1,p
0 (a, Ω)∗ (20)

for some η ∈W1,p
0 (a, Ω)∗.

Let us prove that η = 0. For v ∈ ⋃
n

Xn choose m with v ∈ Xm. According to

Proposition 5 and property (ii) in the definition of Galerkin basis, we may apply (18) for all
n ≥ m, which reads as

〈−(∆a
p + ∆b

q)(un)− N f (un), v〉
W1,p

0 (a,Ω)
= 0 for all n ≥ m.

Letting n→ ∞ enables us to derive from (20) that

〈η, v〉
W1,p

0 (a,Ω)
= 0, ∀v ∈

⋃
n

Xn.

The property (iii) in the definition of Galerkin basis {Xn} highlights the density of the
set

⋃
n

Xn in W1,p
0 (a, Ω). As η vanishes on

⋃
n

Xn, it follows that η = 0.

Therefore, (20) becomes

−(∆a
p + ∆b

q)(un)− N f (un) ⇀ 0 in W1,p
0 (a, Ω)∗. (21)

In particular, we have

lim
n→∞
〈−(∆a

p + ∆b
q)(un)− N f (un), u〉

W1,p
0 (a,Ω)

= 0. (22)
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Now, we return to (18) and insert v = un, obtaining

〈−(∆a
p + ∆b

q)(un)− N f (un), un〉W1,p
0 (a,Ω)

= 0, ∀n,

which in conjunction with (22) yields

lim
n→∞
〈−(∆a

p + ∆b
q)(un)− N f (un), un − u〉

W1,p
0 (a,Ω)

= 0.

Taking into account Proposition 4, this amounts to saying that

lim
n→∞
〈−(∆a

p + ∆b
q)(un), un − u〉

W1,p
0 (a,Ω)

= 0.

Consequently, the sequence {un} satisfies (8). We are thus allowed to apply Proposition 3
which provides the strong convergence un → u in W1,p

0 (a, Ω).
Using the continuity of the nonlinear operators ∆a

p + ∆b
q : W1,p

0 (a, Ω)→W1,p
0 (a, Ω)∗

and N f : W1,p
0 (a, Ω) → W1,p

0 (a, Ω)∗ as known by Proposition 2 and Lemma 1, we infer

from the strong convergence un → u in W1,p
0 (a, Ω) that

−(∆a
p + ∆b

q)(un)− N f (un)→ −(∆a
p + ∆b

q)(u)− N f (u) in W1,p
0 (a, Ω)∗.

A simple comparison with (21) confirms that

−(∆a
p + ∆b

q)(u)− N f (u) = 0,

which is just (19). The proof is complete.

5. Resolving the Non-Elliptic Problem (2)

Due to the total lack of ellipticity of the competing (p, q)-Laplacian ∆a
p − ∆b

q with
weights a ∈ L1(Ω) and b ∈ L1(Ω) as introduced in (7), i.e., the differential operator
div(a(x)|∇u|p−2∇u− b(x)|∇u|q−2∇u), when the weights a(x) and b(x) are positive, we
are not able to prove the existence of a weak solution for problem (2) in the weak sense.
For this reason, we seek a solution in the following generalized sense.

Definition 1. An element u ∈W1,p
0 (a, Ω) is called a generalized solution to problem (2) if there

exists a sequence {un} ⊂W1,p
0 (a, Ω) such that

(j) un ⇀ u in W1,p
0 (Ω);

(jj) for every v ∈W1,p
0 (a, Ω), it holds that

lim
n→∞

∫
Ω
((a(x)|∇un|p−2∇un − b(x)|∇un|q−2∇un)∇v− f (x, un,∇un)v)dx = 0;

(jjj)

lim
n→∞

∫
Ω
((a(x)|∇un|p−2∇un − b(x)|∇un|q−2∇un)∇(un − u)dx = 0.

Our result for the non-elliptic problem (2) is as follows.

Theorem 2. Assume for 1 < q < p < +∞ that the positive weights a ∈ L1(Ω) and b ∈ L1(Ω)
and the Carathéodory function f : Ω×R×RN → R that the conditions (H1)–(H4) hold. Then,
there exists at least a generalized solution u ∈W1,p

0 (a, Ω) of problem (2) in the sense of Definition 1.
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Proof. The proof is carried over along the pattern of Theorem 1. Fix a Galerkin basis {Xn}
of W1,p

0 (a, Ω), i.e., a sequence of finite dimensional vector subspaces of W1,p
0 (a, Ω) such

that the properties (i)–(iii) in Section 4 hold.
We claim that for each n there exists un ∈ Xn such that∫
Ω
((a(x)|∇un|p−2∇un − b(x)|∇un|q−2∇un)∇v− f (x, un,∇un)v)dx = 0, ∀v ∈ Xn. (23)

To this end, define the continuous map Bn : Xn → X∗n by

〈Bn(u), v〉Xn =
∫

Ω
((a(x)|∇u|p−2∇u− b(x)|∇u|q−2∇u)∇v− f (x, u,∇u)v)dx

for all u, v ∈ Xn. The continuous embedding W1,p(a, Ω) ↪→W1,q(b, Ω) (see Proposition 2),
(17) and (5) imply that

〈Bn(v), v〉Xn ≥ (1− d1λ−1
1 − d2)‖v‖

p

W1,p
0 (a,Ω)

− C‖v‖q

W1,p
0 (a,Ω)

− ‖ρ‖L1(Ω), ∀v ∈ Xn.

with a constant C > 0. By the assumption 1− d1λ−1
1 − d2 > 0 in (H4) and the fact that

p > q, it turns out

〈Bn(v), v〉Xn ≥ 0 for all v ∈ Xn with ‖v‖
W1,p

0 (a,Ω)
= R

if R = R(n) > 0 is sufficiently large. According to condition (i) in the definition of
Galerkin basis, the space Xn is finite dimensional. This enables us to apply a well-known
consequence of Brouwer’s fixed point theorem (see, e.g., [10] (p. 37)) obtaining a un ∈ Xn
with Bn(un) = 0. Therefore, we obtain (23), thus proving the claim.

Next, we show that the sequence {un} is bounded in W1,p
0 (a, Ω). Since un ∈ Xn, we

can take v = un as a test function in (23), where

‖un‖p

W1,p
0 (a,Ω)

= ‖un‖q

W1,q
0 (a,Ω)

+
∫

Ω
f (x, un,∇un)undx. (24)

The continuous embedding W1,p(a, Ω) ↪→W1,q(b, Ω) in Proposition 2, in conjunction
with (17) and (5), ensures the estimate

‖un‖p

W1,p
0 (a,Ω)

≤ C‖un‖q

W1,p
0 (a,Ω)

+ ‖ρ‖L1(Ω) + d1‖u‖
p
Lp(Ω)

+ d2‖u‖
p

W1,p
0 (a,Ω)

≤ C‖un‖q

W1,p
0 (a,Ω)

+ ‖ρ‖L1(Ω) + (d1λ−1
1 + d2)‖u‖

p

W1,p
0 (a,Ω)

,

with a constant C > 0. On account of p > q and assumption λ−1
1 d1 + d2 < 1 in (H4), we

conclude that the sequence {un} is bounded in W1,p
0 (a, Ω).

Proposition 1 guarantees the reflexivity of the space W1,p
0 (a, Ω). We are thus allowed

to extract a subsequence still denoted as {un} such that un ⇀ u in W1,p
0 (Ω) for some

u ∈W1,p
0 (a, Ω). The requirement (j) in Definition 1 is fulfilled.

Equality (23) expresses that

〈−∆a
p(un) + ∆b

q(un)− N f (un), v〉
W1,p

0 (a,Ω)
= 0, ∀v ∈ Xn. (25)

Inserting v = un in (25) leads to

〈−∆a
p(un) + ∆b

q(un)− N f (un), un〉W1,p
0 (a,Ω)

= 0, ∀n. (26)

The sequence {(−∆a
p + ∆b

q − N f )(un)} is bounded in W1,p
0 (a, Ω)∗ because the nonlin-

ear operators ∆a
p, ∆b

q, N f : W1,p
0 (a, Ω)→ W1,p

0 (a, Ω)∗ are bounded. Due to the reflexivity of
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the space W1,p
0 (Ω)∗, we can pass to a relabeled subsequence such that for a ζ ∈W1,p

0 (Ω)∗

it holds that

(−∆a
p + ∆b

q − N f )(un) ⇀ ζ in W1,p
0 (Ω)∗. (27)

Let v ∈ Xm for some m. Assertion (ii) in the definition of Galerkin basis renders v ∈ Xn
for every n ≥ m. Then, (25) and (27) imply

〈ζ, v〉
W1,p

0 (a,Ω)
= 0.

By (iii) in the definition of Galerkin basis {Xn}, the set
⋃
n

Xn is dense in W1,p
0 (a, Ω).

Therefore, ζ = 0, so that (27) becomes

(−∆a
p + ∆b

q − N f )(un) ⇀ 0 in W1,p
0 (Ω)∗,

which establishes property (jj) in Definition 1.
Setting v = u in (jj) provides

lim
n→∞
〈−∆a

p(un) + ∆b
q(un)− N f (un), u〉

W1,p
0 (a,Ω)

= 0,

which, with (24), produces

lim
n→∞
〈−∆a

p(un) + ∆b
q(un)− N f (un), un − u〉

W1,p
0 (a,Ω)

= 0. (28)

Proposition 4 and (28) ensure that

lim
n→∞
〈−∆a

p(un) + ∆b
q(un), un − u〉

W1,p
0 (a,Ω)

= 0

which shows the validity of part (jjj) in Definition 1. Summarizing, u ∈ W1,p
0 (a, Ω) is a

generalized solution to problem (2) in the sense of Definition 1.

Remark 1. The notion of a generalized solution can be introduced for problem (2), too. Pre-
cisely, u ∈ W1,p

0 (a, Ω) is called a generalized solution to problem (1) if there exists a sequence
{un} ⊂W1,p

0 (a, Ω) such that (j) in Definition 1 holds with

(jj)′ for every v ∈W1,p
0 (a, Ω) one has

lim
n→∞

∫
Ω
((a(x)|∇un|p−2∇un + b(x)|∇un|q−2∇un)∇v− f (x, un,∇un)v)dx = 0;

(jjj)′′with u ∈W1,p
0 (a, Ω) in (j),

lim
n→∞

∫
Ω
((a(x)|∇un|p−2∇un + b(x)|∇un|q−2∇un)∇(un − u)dx = 0.

In the case of problem (1), u ∈W1,p
0 (a, Ω) is a generalized solution if and only if it is a weak

solution in the sense of (19). Indeed, if u ∈ W1,p
0 (a, Ω) is a weak solution to problem (1), then

the constant sequence {un = u} ⊂ W1,p
0 (a, Ω) verifies (j), (jj)’, (jjj)”; thus, u is a generalized

solution. Conversely, let u ∈ W1,p
0 (a, Ω) be a generalized solution for (1) with the sequence

{un} ⊂W1,p
0 (a, Ω) satisfying (j), (jj)’, (jjj)”. Condition (jjj)” reads as

lim
n→∞
〈−(∆a

p + ∆b
q)(un), un − u〉

W1,p
0 (a,Ω)

= 0.
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By (j) and Proposition 3 we deduce that un → u in W1,p
0 (Ω). Then from (jj)’ we get (19),

where u is a weak solution of problem (1).

6. An Application

The goal of this section is to illustrate the effective applicability of our results. For
the sake of simplicity, we focus on problems of types (1) and (2) on the unit open ball
B = {x ∈ R3 : |x| < 1} in R3 and for degenerated and competing (3, 2)-Laplacians
with weights.

Consider the Dirichlet problems
−div(|x|r|∇u|∇u + (1− |x|2)h∇u) = g(x, u) + k0

|x|ru
1+u2 |∇u|µ − k1u|∇u|ν in B

u = 0 on ∂B

(29)

and
−div(|x|r|∇u|∇u− (1− |x|2)h∇u) = g(x, u) + k0

|x|ru
1+u2 |∇u|µ − k1u|∇u|ν in B

u = 0 on ∂B

(30)

on B, with constants r ∈ (0, 3
2 ), h ≥ 0, k0 ∈ |0, 1), k1 ≥ 0, µ ∈ [0, 5

3 ), ν ∈ [0, 5
6 ), and a

Carathéodory function g : Ω×R→ R satisfying

|g(x, t)| ≤ a0t2 + b0 for a.e x ∈ Ω, ∀t ∈ R,

with constants a0 ≥ 0 and b0 ≥ 0 provided (a0 + b0)λ
−1
1 + k0 < 1, where λ1 represents

the first eigenvalue of −∆a
3 on W1,3

0 (a, B) with a(x) = |x|r. Notice that (29) and (30) are
particular cases of problems (1) and (2), respectively, with N = 3, p = 3, q = 2, Ω = B,
a(x) = |x|r, b(x) = (1− |x|2)h and

f (x, t, ξ) = g(x, t) + k0
|x|rt

1 + t2 |ξ|
µ − k1t|ξ|ν.

Let us check the conditions (H1)–(H4). Condition (H1) requires having a−s = |x|−rs ∈
L1(B) for some s ∈

(
max

{
N
p , 1

p−1

}
,+∞

)
= (1,+∞), which amounts to choosing 1 < s < 3

r .

Taking into account that r ∈ (0, 3
2 ), condition (H1) is fulfilled for instance with s = 2, a choice

that we keep in the sequel.
Since 2r < 3, we have

a−
q

p−q b
p

p−q = |x|−2r(1− |x|2)3h ∈ L1(B),

therefore, assumption (H2) is verified. For s = 2, it holds ps = ps/(s + 1) = 2, so we are in
the situation of N = 3 > ps = 2, where p∗s = Nps

N−ps
= 6, so (p∗s )′ =

6
5 and ps

(p∗s )′
= 5

3 .
We note that

| f (x, t, ξ)| ≤ a0t2 + b0 + k0|x|r|ξ|µ + k1|t||ξ|ν

≤ a0t2 + b0 + k0|ξ|µ +
k1

2
(t2 + |ξ|2ν)

≤ b0 + k0 +
k1

2
+ (a0 +

k1

2
)t2 + (k0 +

k1

2
)|ξ|γ

for a.e x ∈ B and all (t, ξ) ∈ R×R3, where

γ := max{µ, 2ν} < 5
3
=

ps

(p∗s )′
.
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Therefore assumption (H3) is satisfied with σ(x) = b0 + k0 +
k1
2 , c1 = a0 +

k1
2 , c2 = k0 +

k1
2 ,

α = 2 and β = γ. We also derive

f (x, t, ξ)t = g(x, t)t + k0
|x|rt2

1 + t2 ||
µ − k1t2|ξ|ν

≤ a0|t|3 + b0|t|+ k0|x|r|ξ|µ

≤ b0 + k0 + (a0 + b0)|t|3 + k0|x|r|ξ|3

for a.e x ∈ B and all (t, ξ) ∈ R× R3. Assumption (H4) is verified with ρ(x) = b0 + k0,
d1 = a0 + b0 and d2 = k0 having been supposed that λ−1

1 (a0 + b0) + k0 < 1.
Since the assumptions (H1)-(H4) are satisfied, Theorems 1 and 2 can be applied to

ensure the existence of a weak solution to problem (29) and of a generalized solution to
problem (30). The weak solution to problem (29) can be approximated as described in
Theorem 1.
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