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Abstract: In this paper, the upper and lower solution method is proposed in order to solve the
second order interval boundary value problem. We study first a class of linear interval boundary
value problems and then investigate a class of nonlinear interval boundary value problems by the
upper and lower solution method under the gH-derivative, and we prove that there exist at least
two solutions.
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1. Introduction

In the process of mathematical modeling for solving problems, the initial data or
parameter values are often uncertain due to measurement error. People often express
these data and parameters as an interval number or fuzzy number. 1979, Markov pro-
posed the interval-valued calculus [1]. This paper remained essentially un-cited for more
than 30 years and was “rediscovered” after the publication of [2–4]. Stefanini consid-
ered a generalization of the Hukuhara difference and division for interval arithmetic
and generalized Hukuhara differentiability of interval-valued functions and interval
differential equations.

Recently, the interest for this topic increased significantly, in particular after the imple-
mentation of specific tools and classes in the C++ and Julia (among others) programming
languages, or in computational systems, such as MATLAB or Mathematica [5]. The research
activity in the calculus for interval-valued or set-valued functions is now very extended,
particularly in connection with the more general calculus for fuzzy-valued functions with
applications to almost all fields of applied mathematics [6–8].

Interval-valued differential equations are introduced as a good tool to study non-
probabilistic uncertainty in real world phenomena. 2009, Stefanini and Bede studied
several kinds of derivatives of an interval-valued function, and provided some properties
of solutions to interval-valued differential equations under the gH-derivative [4]. 2011,
Chalco-Cano et al. revisited the expression of the gH-derivative of an interval-valued
function in terms of the endpoints functions [9]. In 2013, Lupulescu discussed the gH-
differentiability of interval-valued functions, and studied interval differential equations on
time-scales [10]. In 2017, by using a Krasnoselskii–Krein-type condition, Hoa, Lupulescu
and O’Regan studied the existence and uniqueness of the solutions to initial value problems
of fractional interval-valued differential equations [11].

In 2018, by applying the monotone iterative technique, Hoa considered the ex-
tremal solutions to initial value problems of fractional interval-valued integro-differential
equations [12]. These studies expanded the scope of the research on interval-valued differ-
ential equations.
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It is well known that the upper and lower solution method is a powerful tool for the
solvability of differential equation [13]. Rodríguez-López applied the upper and lower
solution method to develop a monotone iterative technique to approximate extremal
solutions for the initial value problem relative to a fuzzy differential equation in a fuzzy
functional interval [14]. Motivated by this idea, in order to solve the nonlinear interval
boundary value problem {

U′′(x) = F
(
x, u(x)

)
, x ∈ I,

U(0) = A, U(1) = B,

where A, B ∈ KC, U(x) ∈ C2(I,KC
)
, F(x, U) ∈ C

(
I ×KC,KC

)
, I = [0, 1], we propose an

upper and lower solution method and obtain at least four solutions similar to linear fuzzy
boundary value problems.

In what follows, we introduce some preliminaries, in Section 3, we study a class of
linear interval boundary value problems and give conditions that ensure that linear interval
boundary value problems have solutions, and, in Section 4, we propose an upper and lower
solution method for a class of nonlinear interval boundary value problems. In the last
section, we give a example to illustrate the effectiveness of the results in this paper.

2. Preliminaries

In this section, we introduce some preliminaries that can be found in [7].
We denote by KC the family of all bounded closed intervals in R, i.e.,

KC = {[a−, a+]|a−, a+ ∈ R and a− 6 a+}.

The well-known midpoint-radius representation is very useful: for A = [a−, a+], and
we define the midpoints â and ã, respectively, by

â =
a− + a+

2
and ã =

a+ − a−

2
,

so that a− = â − ã and a+ = â + ã. We will denote the interval by A = [a−, a+] or,
in midpoint notation, by A = (â; ã); thus,

KC = {(â; ã)|â; ã ∈ R and ã > 0}.

The gH-difference of two intervals always exists and, in midpoint notation, is given by

A	gH B = (â− b̂; |ã− b̃|);

the gH-addition for intervals is defined by

A⊕gH B = A	gH (−B) = (â + b̂; |ã− b̃|).

Endowed with the Pompeiu–Hausdorff distance dH : KC ×KC → R+ ∪ {0}, defined by

dH(A, B) = max
{

max
a∈A

d(a, B), max
b∈B

d(b, A)
}

with d(a, B) = minb∈B |a − b| and given also as dH(A, B) = ‖A 	gH B‖ (here, for C ∈
KC, ‖C‖ = max{|c|; c ∈ C} = dH(C, {0})), the metric space (KC, dH) is complete.
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Definition 1. ([7]) Given two intervals A = [a−, a+] = (â; ã) and B = [b−, b+] = (b̂; b̃) and
γ− 6 0, γ+ > 0 (eventually γ− = −∞ and/or γ+ = +∞), we define the following order relation,
denoted wγ− ,γ+ ,

A wγ− ,γ+ B⇐⇒


â 6 b̂,

ã > b̃ + γ+(â− b̂),
ã 6 b̃ + γ−(â− b̂).

The space (KC,wγ− ,γ+) is a lattice. The reverse order is defined by A vγ− ,γ+ B⇐⇒
B wγ− ,γ+ A, i.e.,

A vγ− ,γ+ B⇐⇒


â > b̂,

ã 6 b̃ + γ+(â− b̂),
ã > b̃ + γ−(â− b̂).

An interval-valued function is defined to be any F : [a, b] −→ KC with F(x) =
[ f−(x), f+(x)] ∈ KC and f−(x) 6 f+(x) for all x ∈ [a, b]. In midpoint representation,
we write F(x) = ( f̂ (x); f̃ (x)), where f̂ (x) ∈ R is the midpoint value of interval F(x) and
f̃ (x) ∈ R+ ∪ {0} is the nonnegative half-length of F(x) :

f̂ (x) =
f+(x) + f−(x)

2
and f̃ (x) =

f+(x)− f−(x)
2

> 0,

so that
f−(x) = f̂ (x)− f̃ (x) and f+(x) = f̂ (x) + f̃ (x).

Limits and continuity can be characterized, in the Pompeiu–Hausdorff metric dH
for intervals, by the gH-difference. For a function F : K −→ KC, K ∈ R, an interval
L = [l−, l+] ∈ KC and an accumulation point x0, we have

lim
x→x0

F(x) = L⇐⇒ lim
x→x0

(F(x)	gH L) = 0,

where the limits are in the metric dH . If, in addition, x0 ∈ K, we have

lim
x→x0

F(x) = F(x0)⇐⇒ lim
x→x0

(F(x)	gH F(x0)) = 0.

In midpoint notation, let F(x) = ( f̂ (x); f̃ (x)) and L = (l̂; l̃); then, the limits and
continuity can be expressed, respectively, as

lim
x→x0

F(x) = L⇐⇒ lim
x→x0

f̂ (x) = l̂ and lim
x→x0

f̃ (x) = l̃

and
lim

x→x0
F(x) = F(x0)⇐⇒ lim

x→x0
f̂ (x) = f̂ (x0) and lim

x→x0
f̃ (x) = f̃ (x0).

Let C
(

I,KC
)

be the set of all continuous interval-value functions.

Theorem 1. Let Cn, A, B ∈ KC, n = 1, 2, · · · , and A wγ− ,γ+ Cn wγ− ,γ+ B. Then, there exists
an interval C ∈ KC such that

lim
n→∞

Cn = C.

Proof. Let Cn = (ĉn; c̃n), A = (â; ã), B = (b̂; b̃). Since

A wγ− ,γ+ Cn wγ− ,γ+ B,

we have 
â 6 ĉn,

ã > c̃n + γ+(â− ĉn),
ã 6 c̃n + γ−(â− ĉn)

and


ĉn 6 b̂,

c̃n > b̃ + γ+(ĉn − b̂),
c̃n 6 b̃ + γ−(ĉn − b̂).
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It follows that
â 6 ĉn 6 b̂,

ã− γ+ â + γ+ b̂ > ã− γ+ â + γ+ ĉn > c̃n > b̃ + γ+(ĉn − b̂) > c̃n > b̃ + γ+(â− b̂)

when γ+ < +∞,

ã− γ− â + γ− b̂ 6 ã− γ− â + γ− ĉn 6 c̃n 6 b̃ + γ− ĉn − γ− b̂ 6 b̃ + γ− â− γ− b̂

when γ− > −∞. Hence, there exist ĉ and c̃ such that

lim
n→∞

ĉn = ĉ, lim
n→∞

c̃n = c̃.

Let C = (ĉ; c̃). It is clear that
lim

n→∞
Cn = C.

Theorem 2. Let Fn(x) = ( f̂n(x); f̃n(x)), F(x) = ( f̂ (x); f̃ (x)) be interval-value functions. Then,

lim
n→∞

Fn(x) = F(x)

if and only if
lim

n→∞
f̂n(x) = f̂ (x), lim

n→∞
f̃n(x) = f̃ (x).

Proof. It is similar to prove that

lim
x→x0

F(x) = L⇐⇒ lim
x→x0

f̂ (x) = l̂ and lim
x→x0

f̃ (x) = l̃.

Definition 2. Given two interval-value functions F(x) and G(x), we define the distance of F(x)
and G(x) as

DH(F, G) = max
x∈[0,1]

dH(F(x), G(x)).

Theorem 3. Let Fn(x), E(x), G(x) ∈ C
(

I,KC
)

be interval-value functions and

E(x) wγ− ,γ+ Fn(x) wγ− ,γ+ G(x).

If
lim

n→∞
Fn(x) = F(x),

then
lim

n→∞
Fn = F.

Proof. Let Fn(x) = ( f̂n(x); f̃n(x)), E(x) = (ê(x); ẽ(x)), G(x) = (ĝ(x); g̃(x)). It follows that
f̂n(x) and f̃n(x) are two continuous functions. Similar to the proof of Theorem 1, it is easy
obtain that f̂n(x) and f̃n(x) are uniformly bounded. Hence,

lim
n→∞

f̂n = f̂ , lim
n→∞

f̃n = f̃ .

Therefore,
lim

n→∞
Fn = F.
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Definition 3. Let x0 ∈ (a, b) and h be such that x0 + h ∈ (a, b), and then the gH-derivative of a
function F : (a, b)→ KC at x0 is defined as

F
′
gH(x0) = lim

h→0

1
h
[F(x0 + h)	gH F(x0)]

if the limit exists. The interval F
′
gH(x0) ∈ KC is called the generalized Hukuhara derivative of F

(gH-derivative for short) at x0.

For a gH-differentiable function, higher-order gH-derivatives are defined analo-
gously to the ordinary case using the gH-differences applied to the gH-derivatives of
previous order.

Definition 4. Let F : (a, b) → KC be gH-differentiable on (a, b) and x0 ∈ (a, b) and h be such
that x0 + h ∈ (a, b). The second order gH-derivative of F(x) at x0 is defined as

F
′′
gH(x0) = lim

h→0

1
h
[F′gH(x0 + h)	gH F′gH(x0)]

if the limit exists. The interval F
′′
gH(x0) ∈ KC is called the second order gH-derivative of F at x0.

Remark 1. In the case of an interval-valued function in the form F(x) = ( f̂ (x); f̃ (x)) with
f̂ (x) = |ϕ(x)| where f̂ (x) and ϕ(x) have derivatives f̂ (i)(x), ϕ(i)(x) for i = 1, 2, we have that
F(x) has all the gH-derivatives Fi

gH(x) = ( f̂ (i)(x); | ˜ϕ(i)(x))|, i = 1, 2. Let Ci(I,KC
)

be the set of
all i order continuous differentiable interval-value functions, i = 1, 2.

3. The Linear Interval Boundary Problems

In this section, we consider a class of linear interval boundary problems under the
gH-derivative. Let {

U′′(t) = F(t), t ∈ I,
U(0) = A, U(1) = B,

(1)

where A, B ∈ KC, F(t) ∈ C
(

I,KC
)
.

Definition 5. If U(t) ∈ C2(I,KC
)

and U(t) satisfies Problem (1), then we say that U(t) is a
solution of Problem (1).

The following theorems concern the existence of solutions of a two-point boundary
value problem of linear interval differential equation under the gH-derivative.

Theorem 4. Let F(t) = ( f̂ (x); f̃ (x)) ∈ C
(

I,KC
)
, A = (â, ã), B = (b̂, b̃). Then, Problem (1)

has at least four solutions
U(t) = (û(x); ũ(x)),

where

û(x) =
∫ x

0

∫ t

0
f̂ (t)dtdx +

(
b̂− â−

∫ 1

0

∫ t

0
f̂ (t)dtdx

)
x + â,

ũ(x) =
∣∣∣∣ ∫ x

0

∫ t

0

(
± f̃ (t)

)
dtdx +

[
b̂− â−

∫ 1

0

∫ t

0

(
± f̃ (t)

)
dtdx

]
x + â

∣∣∣∣
or

ũ(x) =
∣∣∣∣ ∫ x

0

∫ t

0

(
± f̃ (t)

)
dtdx +

[
− b̂− â−

∫ 1

0

∫ t

0

(
± f̃ (t)

)
dtdx

]
x + â

∣∣∣∣
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or

ũ(x) =
∣∣∣∣ ∫ x

0

∫ t

0

(
± f̃ (t)

)
dtdx +

[
b̂ + â−

∫ 1

0

∫ t

0

(
± f̃ (t)

)
dtdx

]
x− â

∣∣∣∣
or

ũ(x) =
∣∣∣∣ ∫ x

0

∫ t

0

(
± f̃ (t)

)
dtdx +

[
− b̂ + â−

∫ 1

0

∫ t

0

(
± f̃ (t)

)
dtdx

]
x− â

∣∣∣∣
Proof. Let U(t) = (û(x); ũ(x)) is a solution of Problem (1), where ũ(x) = |ϕ(x)|. By
Definition 4 and Remark 1, Problem (1) is equivalent to the following problems:

û′′(x) = f̂ (x),
û(0) = â,
û(1) = b̂,

and


|ϕ′′(x)| = f̃ (x),
|ϕ(0)| = ã,
|ϕ(1)| = b̃.

(2)

From (2), we have

û′(x) =
∫ x

0
f̂ (x)dx + c1,

û(x) =
∫ x

0

∫ t

0
f̂ (t)dtdx + c1x + c2.

ϕ′(x) =
∫ x

0

(
± f̃ (x)

)
dx + c3,

ϕ(x) =
∫ x

0

∫ t

0

(
± f̃ (t)

)
dtdx + c1x + c4.

By û(0) = â and û(1) = b̂, it is easy to find that

c1 = b̂− â−
∫ 1

0

∫ t

0
f̂ (t)dtdx and c2 = â,

that is to say

û(x) =
∫ x

0

∫ t

0
f̂ (t)dtdx +

(
b̂− â−

∫ 1

0

∫ t

0
f̂ (t)dtdx

)
x + â.

By |ϕ(0)| = ã and |ϕ(1)| = b̃, we have ϕ(0) = ±ã and ϕ(1) = ±b̃. If ϕ(0) = ã, ϕ(1) =
b̃, then

ϕ(x) =
∫ x

0

∫ t

0

(
± f̃ (t)

)
dtdx +

[
b̂− â−

∫ 1

0

∫ t

0

(
± f̃ (t)

)
dtdx

]
x + â.

If ϕ(0) = ã, ϕ(1) = −b̃, then

ϕ(x) =
∫ x

0

∫ t

0

(
± f̃ (t)

)
dtdx +

[
− b̂− â−

∫ 1

0

∫ t

0

(
± f̃ (t)

)
dtdx

]
x + â.

If ϕ(0) = −ã, ϕ(1) = b̃, then

ϕ(x) =
∫ x

0

∫ t

0

(
± f̃ (t)

)
dtdx +

[
b̂ + â−

∫ 1

0

∫ t

0

(
± f̃ (t)

)
dtdx

]
x− â.

If ϕ(0) = −ã, ϕ(1) = −b̃, then

ϕ(x) =
∫ x

0

∫ t

0

(
± f̃ (t)

)
dtdx +

[
− b̂ + â−

∫ 1

0

∫ t

0

(
± f̃ (t)

)
dtdx

]
x− â.
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Therefore, Problem (1) has at least four solutions

U(t) = (û(x); ũ(x)),

where

û(x) =
∫ x

0

∫ t

0
f̂ (t)dtdx +

(
b̂− â−

∫ 1

0

∫ t

0
f̂ (t)dtdx

)
x + â,

ũ(x) =
∣∣∣∣ ∫ x

0

∫ t

0

(
± f̃ (t)

)
dtdx +

[
b̂− â−

∫ 1

0

∫ t

0

(
± f̃ (t)

)
dtdx

]
x + â

∣∣∣∣
or

ũ(x) =
∣∣∣∣ ∫ x

0

∫ t

0

(
± f̃ (t)

)
dtdx +

[
− b̂− â−

∫ 1

0

∫ t

0

(
± f̃ (t)

)
dtdx

]
x + â

∣∣∣∣
or

ũ(x) =
∣∣∣∣ ∫ x

0

∫ t

0

(
± f̃ (t)

)
dtdx +

[
b̂ + â−

∫ 1

0

∫ t

0

(
± f̃ (t)

)
dtdx

]
x− â

∣∣∣∣
or

ũ(x) =
∣∣∣∣ ∫ x

0

∫ t

0

(
± f̃ (t)

)
dtdx +

[
− b̂ + â−

∫ 1

0

∫ t

0

(
± f̃ (t)

)
dtdx

]
x− â

∣∣∣∣

Theorem 5. Let U(x) be a solution of Problem (1), and define operator T as

T : F(x)→ U.

Then, operator T is a continuous operator.

Proof. For convenience, assume a solution of Problem (1) is

U(t) = (û(x); ũ(x)),

where

û(x) =
∫ x

0

∫ t

0
f̂ (t)dtdx +

(
b̂− â−

∫ 1

0

∫ t

0
f̂ (t)dtdx

)
x + â,

ũ(x) =
∣∣∣∣ ∫ x

0

∫ t

0

(
f̃ (t)

)
dtdx +

[
b̂− â−

∫ 1

0

∫ t

0

(
f̃ (t)

)
dtdx

]
x + â

∣∣∣∣.
It is clear that operator T is a continuous operator.

4. The Nonlinear Interval Boundary Value Problems

In what follows, we consider a class of nonlinear interval boundary problems{
U′′(x) = F

(
x, U(x)

)
, x ∈ I,

U(0) = A, U(1) = B.
(3)

where A, B ∈ KC, F(t, U) ∈ C
(

I ×KC,KC
)
.

Definition 6. If U(x) ∈ C2(I,KC
)

and U(x) satisfy Problem (3), then we say that U(x) is a
solution of Problem (3).
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We present the concept of upper and lower solution of a two-point boundary value
problem of nonlinear interval differential equation under the gH-derivative in the follow-
ing definition.

Definition 7. U(t) ∈ C2(I,KC
)

is said to be an upper solution of Problem (3) if{
U′′(x) wγ− ,γ+ F

(
x, U(x)

)
, x ∈ I,

U(0) vγ− ,γ+ A, U(1) vγ− ,γ+ B,

U(t) ∈ C2(I,KC
)

is said to be a lower solution of Problem (3) if{
U′′(x) vγ− ,γ+ F

(
x, U(x)

)
, x ∈ I,

U(0) wγ− ,γ+ A, U(1) wγ− ,γ+ B.

U(t) is said to be a solution of Problem (3) if U(t) is an upper solution and is also a lower
solution of Problem (3).

The following theorems concern the existence of solutions of a two-point boundary
value problem of a nonlinear interval differential equation under the gH-derivative.

Theorem 6. Let U(x), U(x) be an upper solution and a lower solution of Problem (3), and
U(t) wγ− ,γ+ U(t). If F(t, U) ∈ C

(
I ×KC,KC

)
, and F(x, V) vγ− ,γ+ F(x, W) when V wγ− ,γ+

W, then Problem (3) exists at least two solutions.

Proof. Since U(x) is a lower solution of Problem (3), then{
U′′(x) vγ− ,γ+ F

(
x, U(x)

)
, x ∈ I,

U(0) wγ− ,γ+ A, U(1) wγ− ,γ+ B.

By Theorem 4, we know that there exists V1(x) ∈ C2(I,KC
)
, which is the solution of

the linear interval boundary value problem{
U′′(t) = F

(
t, U(t)

)
, x ∈ I,

U(0) = A, U(1) = B.

Hence, {
U′′(x) vγ− ,γ+ V′′1 (x),

U(0) wγ− ,γ+ V1(0), U(1) wγ− ,γ+ V1(1).

It follows that
Û′′(x) > V̂′′1 (x),

γ+Û′′(x)− Ũ′′(x) > γ+V̂′′1 (x)− Ṽ′′1 (x),

−γ−Û′′(x) + Ũ′′(x) > −γ−V̂′′1 (x) + Ṽ′′1 (x),

Û(0) 6 V̂1(0),

γ+Û(0)− Ũ(0) 6 γ+V̂1(0)− Ṽ1(0),

−γ−Û(0) + Ũ(0) 6 −γ−V̂1(0) + Ṽ1(0),

Û(1) 6 V̂1(1),

γ+Û(1)− Ũ(1) 6 γ+V̂1(1)− Ṽ1(1),

−γ−Û(1) + Ũ(1) 6 −γ−V̂1(1) + Ṽ1(1).
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Since
Û′′(x) > V̂′′1 (x),

Û(0) 6 V̂1(0),

Û(1) 6 V̂1(1),

we obtain
Û(x) 6 V̂1(x).

Similarly, we also find

γ+Û(x)− Ũ(x) 6 γ+V̂1(x)− Ṽ1(x),

−γ−Û(x) + Ũ(x) 6 −γ−V̂1(x) + Ṽ1(x),

i.e., 
Û(x) 6 V̂1(x),

γ+Û(x)− Ũ(x) 6 γ+V̂1(x)− Ṽ1(x),
−γ−Û(x) + Ũ(x) 6 −γ−V̂1(x) + Ṽ1(x).

Then,
U(x) wγ− ,γ+ V1(x).

By similar reasoning, if U is an upper solution of Problem (3), and U1 is a solution of
the linear fuzzy boundary value problem{

U′′(x) = F
(
x, U(x)

)
, x ∈ I,

U(0) = A, U(1) = B.

We find
U vγ− ,γ+ U1.

Assume U wγ− ,γ+ V wγ− ,γ+ W wγ− ,γ+ U, let TV be a solution of the linear interval
boundary value problem {

U′′(x) = F
(
x, V(x)

)
, x ∈ I,

U(0) = A, U(1) = B.

Since,
F(x, V) vγ− ,γ+ F(x, W),

then
(TV)′′ vγ− ,γ+ (TW)′′, (TV)(0) = (TW)(0), (TV)(1) = (TW)(1).

Hence,
ˆTV′′(x) > ˆTW ′′(x),

γ+ ˆTV′′(x)− ˜TV′′(x) > γ+ ˆTW ′′(x)− ˜TW ′′(x),

−γ− ˆTV′′(x) + ˜TV′′(x) > −γ− ˆTW ′′(x) + ˜TW ′′(x),

ˆTV′′(0) = ˆTW ′′(0),

γ+ ˆTV′′(0)− ˜TV′′(0) = γ+ ˆTW ′′(0)− ˜TW ′′(0),

−γ− ˆTV′′(0) + ˜TV′′(0) = −γ− ˆTW ′′(0) + ˜TW ′′(0),

ˆTV′′(1) = ˆTW ′′(1),

γ+ ˆTV′′(1)− ˜TV′′(1) = γ+ ˆTW ′′(1)− ˜TW ′′(10),
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−γ− ˆTV′′(1) + ˜TV′′(1) = −γ− ˆTW ′′(1) + ˜TW ′′(1).

It follows that
ˆTV(x) 6 ˆTW(x),

γ+ ˆTV(x)− ˜TV(x) 6 γ+ ˆTW(x)− ˜TW(x),
−γ− ˆTV(x) + ˜TWV(x) 6 −γ− ˆTW(x) + ˜TW(x),

i.e.,
TV wγ− ,γ+ TW.

Therefore, T is a monotone operator.
Since,

U(x) wγ− ,γ+ V1(x),

we obtain
V1 = TU wγ− ,γ+ TV1 = V2,

V2 = TV1 wγ− ,γ+ TV2 = V3,

and let Vn = TVn−1, we have

V0 = U wγ− ,γ+ V1 wγ− ,γ+ V2 wγ− ,γ+ · · · wγ− ,γ+ Vn−1 wγ− ,γ+ Vn wγ− ,γ+ · · · .

A similar argument for Un = TUn−1, we have

· · · wγ− ,γ+ Un wγ− ,γ+ Un−1 wγ− ,γ+ · · · wγ− ,γ+ U2 wγ− ,γ+ U1 wγ− ,γ+ U = U0.

In addition, from
U wγ− ,γ+ U

we conclude that
V1 = TU wγ− ,γ+ TU = U1,

and
V2 = TV1 wγ− ,γ+ TU1 = U2.

Similarly,
Vn = TVn−1 wγ− ,γ+ TUn−1 = Un.

In conclusion,

U wγ− ,γ+ V1 wγ− ,γ+ V2 wγ− ,γ+ · · · wγ− ,γ+ Vn wγ− ,γ+ · · ·

wγ− ,γ+ Un wγ− ,γ+ · · · wγ− ,γ+ U2 wγ− ,γ+ U1 wγ− ,γ+ U.

By Theorem 1, there exist two interval-value functions V(x), U(x) ∈ KC such that

lim
n→∞

Vn(x) = V(x), lim
n→∞

Un(x) = U(x),

and
V wγ− ,γ+ V wγ− ,γ+ U wγ− ,γ+ U.

By Theorems 3 and 5, we have

TV = V, TU = U,

i.e., Problem (3) exists at least two solutions.
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5. Example

In this section, we will give a example to illustrate the effectiveness of the results.

Example 1. If γ− = −1, γ+ = 1, U(x) =
[
u−(x), u+(x)

]
, let

ϕ(U) = max
0≤x≤1

max
{
|u−(x)|, |u+(x)|

}
,

F(x, U) = a(x)
( 1

1 + ϕ(u)

)
C, (x, U) ∈ I ×KC.

where
a(t) ∈ C[0, 1], 0 6 a(t) 6 1,

C = [c−, c+], c− > 0.

It is easy to check that F(t, U) ∈ C
(

I × KC,KC
)
, and F(x, V) vγ− ,γ+ F(x, W) when

V wγ− ,γ+ W if v−(x), w−(x) > 0.
Clearly, U(x) = x2C =

[
x2c−, x2c+

]
is a lower solution of Problem (3), when U(0) =

0 wγ− ,γ+ A, U(1) =
[
c−, c+

]
wγ− ,γ+ B.

U(x) = MC =
[
Mc−, Mc+

]
is an upper solution of Problem (3), when U(0) =

[
Mc−, Mc+

]
vγ− ,γ+ A, U(1) =

[
Mc−, Mc+

]
vγ− ,γ+ B.

Therefore, in this case, the conclusion of Theorem 6 holds.

Remark 2. U(x) = x2C =
[
x2c−, x2c+

]
is a lower solution of Problem (3). In fact, since

U(x) = x2C =
[
x2c−, x2c+

]
=

(
x2(c− + c+)

2
;

x2(c+ − c−)
2

)
,

we have
U′(x) =

(
x(c− + c+); x(c+ − c−)

)
,

U′′(x) =
(
c− + c+; c+ − c−

)
= [2c−, 2c+] vγ− ,γ+ F(x, U(x)).

U(x) = MC =
[
Mc−, Mc+

]
is an upper solution of Problem (3). In fact, since

U(x) = MC =
[
Mc−, Mc+

]
=

(
M(c− + c+)

2
;

M(c+ − c−)
2

)
,

we have
U′(x) =

(
0; 0
)
,

U′′(x) =
(
0; 0
)
= [0, 0] wγ− ,γ+ F(x, U(x)).

6. Conclusions

In this paper, we studied a class of linear interval boundary value problems and then
investigated a class of nonlinear interval boundary value problems by the upper and lower
solution method under the gH-derivative. We found that there are at least four solutions for
linear interval boundary value problems and at least two solutions for nonlinear interval
boundary value problems. In our next works, we will consider the interval boundary
problem when F(x, U) is increasing for U.
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