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Abstract: This paper establishes a model of economic growth for all the G7 countries from 1973 to
2016, in which the gross domestic product (GDP) is related to land area, arable land, population,
school attendance, gross capital formation, exports of goods and services, general government, final
consumer spending and broad money. The fractional-order gradient descent and integer-order
gradient descent are used to estimate the model parameters to fit the GDP and forecast GDP from
2017 to 2019. The results show that the convergence rate of the fractional-order gradient descent is
faster and has a better fitting accuracy and prediction effect.
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1. Introduction

In recent years, fractional model has become a research hotspot because of its advan-
tages. Fractional calculus has developed rapidly in academic circles, and its achievements
in the fields include [1–10].

Gradient descent is generally used as a method of solving the unconstrained opti-
mization problems, and is widely used in evaluation and in other aspects. The rise in
fractional calculus provides a new idea for advances in the gradient descent method. Al-
though numerous achievements have been made in the two fields of fractional calculus and
gradient descent, the research results combining the two are still in their infancy. Recently,
ref. [11] applied the fractional order gradient descent to image processing and solved the
problem of blurring image edges and texture details using a traditional denoising method,
based on integer order. Next, ref. [12] improved the fractional-order gradient descent
method and used it to identify the parameters of the discrete deterministic system in
advance. Thereafter, ref. [13] applied the fractional-order gradient descent to the training
of neural networks’ backpropagation (BP), which proves the monotony and convergence
of the method.

Compared with the traditional integer-order gradient descent, the combination of
fractional calculus and gradient descent provides more freedom of order; adjusting the
order can provide new possibilities for the algorithm. In this paper, economic growth
models of seven countries are established, and their cost functions are trained by gradient
descent (fractional- and integer-order). To compare the performance of fractional- and
integer-order gradient descent, we visualize the rate of convergence of the cost function,
evaluate the model with MSE, MAD and R2 indicators and predict the GDP of the seven
countries in 2017–2019 according to the trained parameters.
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The Group of Seven (G7)

The G6 was set up by France after western countries were hit by the first oil shock.
In 1976, Canada’s accession marked the birth of the G7, whose members are the United
States, the United Kingdom, France, Germany, Japan, Italy and Canada seven developed
countries. The annual summit mechanism of the G7 focuses on major issues of common
interest, such as inclusive economic growth, world peace and security, climate change and
oceans, which have had a profound impact on global, economic and political governance.
In addition to the G7 members, there are a number of developing countries with large
economies, such as China, India and Brazil. In the context of economic globalization, the
study of G7 economic trends and economic-related factors can provide a useful reference
for these countries’ development.

The economic crisis broke out in western countries in 1973, so the data in this paper
cover the period from 1973 to 2016, and data for the seven countries are available since
then. Some G7 members (France, Germany, Italy and the United States) were members of
the European Union (EU) during this period, so this paper also establishes the economic
growth model of the EU. Data for this article are from the World Bank.

2. Model Describes

The prediction of variables generally uses time series models [14] (for example, ARIMA
and SARIMA), or artificial neural networks [15,16], which have been very popular in recent
years. The time series model mainly predicts the future trend in variables, but it is difficult
to reflect the change in unexpected factors in the model. Additionally, the neural network
model needs to adjust more parameters, the network structure selection is too large, the
training efficiency is not high enough, and easy to overfit.

Although the linear model is simple in form and easy to model, its weight can intu-
itively express the importance of each attribute, so the linear model has a good explanatory
ability. It is reasonable to build a linear regression model of economic growth, which can
clearly learn which factors have an impact on the economy.

Next, we chose eight explanatory variables to describe the economic growth in this
paper. The explained variable is y, where y refers to GDP and is a function. The expression
for y is as follows:

y(t) = ∑
j=1,2,3,4,5,6,7,8

θjxj(t) + θ0 + ε, (1)

where t is year (t = 44), θ0 is the intercept. ε is an unobservable term of random error. θj
represents the weight of each variable. The eight explanatory variables are:

x1: land area (km2)
x2: arable land (hm2)
x3: population
x4: school attendance (years)
x5: gross capital formation (in 2010 US$)
x6: exports of goods and services (in 2010 US$)
x7: general government final consumer spending (in 2010 US$)
x8: broad money (in 2010 US$)

3. Fractional-Order Derivative

Due to the differing conditions, there are different forms of fractional calculus defini-
tion, the most common of which are Grünwald–Letnikov, Riemann–Liouville, and Caputo.
In this article, we chose the definition of fractional-order derivative in terms of the Caputo
form. Given the function f (t), the Caputo fractional-order derivative of order α is defined
as follows:

Caputo
cDα

t f (t) =
1

Γ(1− α)

∫ t

c
(t− τ)−α f

′
(τ)dτ,
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where Caputo
cDα

t is the Caputo derivative operator. α is the fractional order, and the interval
is α ∈ (0, 1). Γ(·) is the gamma function. c is the initial value. For simplicity, cDα

t is used in
this paper to represent the Caputo fractional derivative operator instead Caputo

cDα
t .

Caputo fractional differential has good properties. For example, we provide the
Laplace transform of Caputo operator as follows:

L{Dα f (t)} = sαF(s)−
n−1

∑
k=0

f (k)(0)sα−k−1,

where F(s) is a generalized integral with a complex parameter s, F(s) =
∫ ∞

0 f (t)e−stdt.
n =: [α] is the α rounded up to the nearest integer. It can be seen from the Laplace transform
that the definition of the initial value of Caputo differentiation is consistent with that of
integer-order differential equations and has a definite physical meaning. Therefore, Caputo
fractional differentiation has a wide range of applications.

4. Gradient Descent Method
4.1. The Cost Function

The cost function (also known as the loss function) is essential for a majority of
algorithms in machine learning. The model’s optimization is the process of training the
cost function, and the partial derivative of the cost function with respect to each parameter
is the gradient mentioned in gradient descent. To select the appropriate parameters θ for
the model (1) and minimize the modeling error, we introduce the cost function:

C(θ) =
1

2m

m

∑
i=1

(hθ(x(i))− y(i))2, (2)

where hθ(x(i)) is a modification of model (1), hθ(x) = θ0 + θ1x1 + · · ·+ θjxj, which repre-
sents the output value of the model. x(i) are the sample features. y(i) is the true data, and t
represents the number of samples (m = 44).

4.2. The Integer-Order Gradient Descent

The first step of the integer-order gradient descent is to take the partial derivative of
the cost function C(θ):

∂C(θ)
∂θj

=
1
m

m

∑
i=1

(hθ(x(i))− y(i))x(i)j , j = 1, 2, . . . , 8, (3)

and the update function is as follows:

θj+1 = θj − η
1
m

m

∑
i=1

(hθ(x(i))− y(i))x(i)j , (4)

where η is learning rate, η > 0.

4.3. The Fractional-Order Gradient Descent

The first step of fractional-order gradient descent is to find the fractional derivative of
the cost function C(θ). According to Caputo’s definition of fractional derivative, from [17]
we know that if g(h(t)) is a compound function of t, then the fractional derivation of α
with respect to t is

cDα
t g(h) =

∂(g(h))
∂h

· cDα
t h(t). (5)

It can be known from (5) that the fractional derivative of a composite function can be
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expressed as the product of integral and fractional derivatives. Therefore, the calculation
for cDα

θj
C(θ) is as follows:

cDα
θj

C(θ) =
1
m

m

∑
i=1

(hθ(x(i))− y(i))Γ(1− α)
∫ θj

c
(θj − τ)−α ∂[hθ(x(i))− y(i)]

∂θj
dτ

=
1
m

m

∑
i=1

(hθ(x(i))− y(i))x(i)j Γ(1− α)
∫ θj

c
(θj − τ)−αdτ

=
1

m(1− α)Γ(1− α)
(θj − c)(1−α)

m

∑
i=1

(hθ(x(i))− y(i))x(i)j ,

and the update function is as follows:

θj+1 = θj − η
1

m(1− α)Γ(1− α)
(θj − c)(1−α)

m

∑
i=1

(hθ(x(i))− y(i))x(i)j , j = 1, 2, . . . , 8 (6)

where η is the learning rate, η > 0. α is the fractional order, 0 < α < 1. c is the initial value
of Caputo’s fractional derivative, and c < min{θj}.

5. Model Evaluation Indexes

We use the absolute relative error (ARE) to measure the prediction error:

AREi =
|yi − ŷi|

yi
.

To evaluate the fitting quality of gradient descent on the model, the following three
indicators can be calculated:

The mean square error (MSE):

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2.

The coefficient of determination (R2):

R2 = 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − ȳi)2

.

The mean absolute deviation (MAD):

MAD =

n
∑

i=1
|yi − ŷi|

n
.

In these formulas, n is the number of years (n = 44). yi and ŷi are the real value and
the model output, respectively. ȳi is the mean of the GDP.

6. Main Results

In this article, we standardize the data for each country before running the algorithm,
and each iteration to update θ uses m samples. The grid search method was used to
select the appropriate learning rate and initial weight interval, and the effects of different
fractional orders are compared to select the best order (see Table 1).The learning rate and
the initial weight interval are applicable to both fractional-order gradient descent and
integer-order gradient descent.
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Table 1. Parameters for different countries.

Country α Learning Rate Initial Interval

Canada 0.8 0.03 (−0.5, 0.5)
France 0.8 0.03 (−0.8, 0.8)

Germany 0.8 0.03 (−0.1, 0.1)
Italy 0.8 0.03 (−0.5, 0.5)

Japan 0.8 0.03 (−0.1, 0.1)
The United Kingdom 0.8 0.03 (−0.5, 0.5)

The United States 0.8 0.03 (−0.1, 0.1)
European Union 0.8 0.03 (−0.5, 0.5)

6.1. Comparison of Convergence Rate of Fractional and Integer Order Gradient Descent

In order to facilitate visual comparison, (4) and (6) are iterated 50 times, respectively,
as well as their convergence rates (see Figure 1).

As shown in Figure 1, for each dataset, after the same number of iterations, the
convergence rate of fractional-order gradient descent is faster than that of integer-order
gradient descent, which indicates that the method combining fractional-order and gradient
descent is better than the traditional integer-order gradient descent in the convergence rate
of update equation.

(a) (b)

(c) (d)

Figure 1. Cont.
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(e) (f)

(g) (h)

Figure 1. Comparison of convergence rate and fitting error between fractional- and integer-order
gradient descent: (a) Canada (b) France (c) Germany (d) Italy (e) Japan (f) The United Kingdom
(g) The United States (h) European Union.

6.2. Fitting Result

Then, we fit GDP with integer-order gradient descent and fractional-order gradient
descent, respectively. Start by setting a threshold and stop iterating when the gradient is less
than this threshold. The fitting effect diagram is shown in Figure 2, and the performance
evaluation of the model is shown in Table 2.

Table 2. Performance of integer order and fractional order gradient descent.

Canada France Germany Italy

Index Integer (4) Fractional (6) Integer (4) Fractional (6) Integer (4) Fractional (6) Integer (4) Fractional (6)

MSE (×1020) 2.2548 1.5689 7.3396 4.3851 7.6262 6.8976 3.2521 2.701
R2 0.9984 0.9989 0.9971 0.9983 0.9981 0.9983 0.9974 0.9978

MAD (×1010) 1.1015 0.9066 2.2076 1.68 2.2824 2.0203 1.4947 1.3146

Japan The United Kingdom The United States European Union

Index Integer (4) Fractional (6) Integer (4) Fractional (6) Integer (4) Fractional (6) Integer (4) Fractional (6)

MSE (×1020) 19.9103 16.6656 15.2421 13.7876 98.4201 60.7402 197.9143 90.5717
R2 0.9986 0.9989 0.9946 0.9951 0.9993 0.9995 0.9983 0.9992

MAD (×1010) 3.8663 3.2745 3.1182 2.9489 7.8593 5.714 11.8393 7.2684
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2. Fitting of GDP of the G7 countries by fractional-order gradient descent method: (a) Canada
(b) France (c) Germany (d) Italy (e) Japan (f) The United Kingdom (g) The United States (h) Euro-
pean Union.
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It can be seen from Table 2 that the MSE, R2 and MAD results of GDP fitted by
fractional-order gradient descent are better than that fitted by integer-order gradient
descent, which indicates that, under the same iteration number, learning rate and initial
weight interval, the fitting performance of the data fitted by fractional-order gradient
descent is better than that of integer-order.

6.3. Predicted Results

Finally, in order to test the prediction effect of fractional- and integer-order gradient
descent on GDP, we forecast the GDP from 2017 to 2019, and used the ARE index to
measure the prediction error (see Table 3).

Table 3. Integer-order and fractional-order gradient descent for G7 countries’ GDP data from 2017 to 2019.

Country Year Actual Value
Predicted Value ARE

Integer Fractional Integer Fractional

2017 1869939124387.55 1851176120948 1865471720455.36 0.01003 0.00239
Canada 2018 1907592951375.51 1885635961969.18 1897212921116.78 0.01151 0.00544

2019 1939183469806.34 1913183323405.81 1924536620147.11 0.01341 0.00755

2017 2876185347152.35 2945583296625 2913853765393.87 0.02313 0.01211
France 2018 2927751436718.37 2987173241226.19 2955215192748.21 0.0193 0.0084

2019 2971919320115.83 3052414282679.98 3007640733954.07 0.02608 0.01103

2017 3873475897139.37 3992089822476.93 3987473981388.45 0.03062 0.02943
Germany 2018 3922591386837.48 4035516755191.92 4019973502352.35 0.02879 0.02483

2019 3944379455526.15 4007551577032.44 3942199462068.09 0.01602 0.00055

2017 2124019926800.66 2152553322306.66 2148504123256.22 0.01343 0.01053
Italy 2018 2144072575240.17 2184791916115.44 2178336024841.51 0.01899 0.01598

2019 2151420719257.08 1694388219398.54 1946816137097.53 0.21243 0.0951

2017 6150456276847.65 6246751221623.44 6217262375879.73 0.01566 0.01086
Japan 2018 6170335002849.18 6302599251651.13 6266099914852.53 0.02144 0.01552

2019 6210698351093.34 6274298653661.42 6272342082178.18 0.01411 0.01379

The United Kingdom
2017 2841238185971.41 2714332507299.13 2737032647202.61 0.04467 0.03668
2018 2879331251695.23 2735833239476.11 2760916583838.65 0.04984 0.041126
2019 2921446026408.24 2784137398857.08 2812534141119.14 0.047 0.03728

The United States
2017 17403783207186.7 17154216039682.2 17344565695242.3 0.01434 0.0034
2018 17913248631409.5 17681187933498.6 17835485270334.4 0.01725 0.00434
2019 18300385513295.6 18004286468803.1 18168502346487.9 0.01618 0.00721

European Union
2017 16012037378199.3 17983491434848.4 18072460558164 0.04479 0.04006
2018 16351210756244.2 18105516308926.6 18296349316535.8 0.05715 0.04272
2019 16605351894524 18828265531889.1 19241290506759 0.03446 0.01328

7. Conclusions

In this paper, the gradient descent method is used to study the linear model problems
which is different from [18,19]. The results show that, in addition to the least square
estimation, the gradient descent method can also solve the regression analysis problem
by iterating the cost function, and obtain good results, a without complicating the model.
It also improves the interpretability of explanatory variables. We apply the fractional
differential to gradient descent, and compare the performance of fractional-order gradient
descent with that of integer-order gradient descent. It was found that the fractional-order
has a faster convergence rate, higher fitting accuracy and lower prediction error than the
integer-order. This provides an alternative method for fitting and forecasting GDP and has
a certain reference value.
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