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Abstract: In this paper, we investigate the existence of mild solutions to a multi-term fractional
integro-differential equation with random effects. Our results are mainly relied upon stochastic
analysis, Mönch’s fixed point theorem combined with a random fixed point theorem with stochastic
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nonlinear term is of Carathéodory type and satisfies some weakly compactness condition, we
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also given.
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1. Introduction

For more than three decades, fractional calculus has played an important role in
the study of linear and nonlinear fractional integro-differential equations that arise from
the modeling of nonlinear phenomena, optimal control of complex systems and other
scientific research (see, e.g., [1,2]). Multi-term time-fractional differential systems have
also attracted a great interest in recent years, see for instance [3–6] and references cited
therein. As inherently deterministic extensions, random fractional differential equations
exist in many applications and have been studied by many authors and more details from
historical points of view and recent developments of such equations are reported to the
monographs [7,8], papers [9–11], and the references cited therein. To be more precise, the
existence results and qualitative properties for fractional differential equations with random
effects are examined in [12,13] and references cited therein. Very recently, considerable
attention has been given to multi-term time-fractional differential systems. For instance,
Pardo and Lizama [6] studied the existence of mild solutions under Carathéodory type
conditions by using measure of noncompactness techniques, Singh and Pandey [14] have
established the existence and uniqueness of mild solutions for multi-term time-fractional
differential systems with non-instantaneous impulses and finite delay by using Banach
fixed point theorem whereas Chang and Ponce [15], with the help of the theory of fractional
resolvent families, established the existence of mild solutions to a multi-term fractional
differential equation. It may be noted here that the mentioned works are confined to
deterministic systems. Inspired by the aforementioned papers [6,12–14], this work focuses
on the existence of mild solution of problem (1) with multi-term time-fractional integro-
differential equations with random effects in the form

Axioms 2021, 10, 252. https://doi.org/10.3390/axioms10040252 https://www.mdpi.com/journal/axioms

https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-3212-8765
https://orcid.org/0000-0001-8996-2270
https://doi.org/10.3390/axioms10040252
https://doi.org/10.3390/axioms10040252
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/axioms10040252
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms10040252?type=check_update&version=1


Axioms 2021, 10, 252 2 of 17


CD1+βϑ(t, ω) +

n

∑
k=1

αk
CDγk ϑ(t, ω) = Aϑ(t, ω) + F

(
t, ϑ(t, ω),

∫ t

0
B(t, s)ϑ(s, ω)ds, ω

)
,

ϑ(0, ω) = ϑ0(ω),
ϑ′(0, ω) = ϑ1(ω),

(1)

for 0 < t ≤ b < ∞ and ω ∈ Ω, where the state ϑ(·, ·) takes values in a separable Banach
space X with norm ‖ · ‖, (Ω,F ,P) is a complete probability space, CDu stand for the Caputo
fractional derive of order u > 0, 0 < β ≤ γn ≤ · · · ≤ γ1 ≤ 1 and αk ≥ 0, k = 1, 2, · · · n be
given and A : D(A) ⊂ X → X is the infinitesimal generator of a bounded and strongly
continuous cosine family. F : [0, b]×X×X×Ω→ X is a random nonlinear function to be
specified later. The operator B(·, ·) : ∆→ R+ is a continuous operator satisfying

ζB = sup
s,t∈[0,b]

∫ b

0
B(t, s)ds < ∞,

where ∆ = {(t, s) ∈ R2 : 0 ≤ s ≤ t < b} and ϑ0(·) and ϑ1(·) are given random functions.
To the best of our knowledge, the study of the existence of mild solutions of multi-term

time-fractional integro-differential equations with random effects by the abstract form (1)
has not yet been treat in the literature. The main contributions of this paper are: Firstly,
the study of existence of random multi-term time-fractional integro-differential equations
of the form (1) via measure of noncompactness is an untreated topic in the literature.
Secondly, the nonlinear term satisfies a weak compactness condition that does not require
the compactness of the resolvent family and sufficient conditions for the existence of mild
solutions where the solution operators are only equicontinuous, are established by means
of Mönch fixed point theorem and a random fixed point theorem with stochastic domain
via the noncompactness measure. At last, our theorems guarantee the effectiveness of
existence results under some weakly compactness condition and the work can considered
as a supplemented for the case that the corresponding (β, γk)-resolvent operator is compact
and deterministic one. The results are established using of the (β, γk)-resolvent operators
developed in [6].

This paper is organized as follows. Section 2 contains preliminary details. In Section 3,
we show the existence of random mild solutions by Mönch’s fixed point theorem combined
with a fixed point theorem with stochastic domain and (β, γk)-resolvent family. A nontrivial
example illustrating our main result (Theorem 2; see below) is also given.

2. Preliminaries

In this section, we recall some basic concepts, notations, definitions, lemmas, and
preliminary facts, which are used throughout this article. We set (Ω,F , P) be a complete
probability space. Let X be a separable Banach space and denote C([0, b],X) be the Banach
space of all continuous X-valued functions on interval [0, b] equipped with the supremum
norm ‖ϑ‖ = sup{‖ϑ(t)‖ : t ∈ [0, b]}. In the sequel, a mapping ϑ : [0, b]×Ω→ X is said
to be a stochastic process if for each t ∈ [0, b], ϑ(t, ·) = ϑ(t)(·) is measurable. First, we
recall some basics definitions and properties related to random operators which are used
in this paper.

Definition 1. A mapping F : I × X× X×Ω → X is said to be random Carathéodory if the
following hold:

(a) The mapping (t, ω)→ F(t, , x, y, ω) is jointly measurable for all x ∈ X and for all y ∈ X;
(b) The mapping (x, y)→ F(t, , x, y, ω) is jointly continuous for almost each t ∈ [0, b] and for

all ω ∈ Ω;

Definition 2 (see [16]). Let X be a separable Banach space with Borel σ-algebra B. A mapping
Υ : Ω×X→ X is called a random operator if Υ(., y) is measurable for each y ∈ X.
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It is generally expressed as Υ(ω, y) = Υ(ω)y. We will use these two expressions
interchangeably in this paper.

Definition 3 (see [16]). Let D : Ω→ 2X be a mapping and

U = {(ω, y) : ω ∈ Ω and y ∈ D(ω)}.

(i) A mapping Υ : U → X is called a random operator with stochastic domain D if

(a) D is measurable (i.e, {ω ∈ Ω : D(ω) ∩ A 6= ∅} ∈ F for all A ⊆ X);
(b) for every open set O ⊆ X and any y ∈ X,

{ω ∈ Ω : y ∈ D(ω) and Υ(ω, y) ∈ O} ∈ F .

(ii) We say that Υ is continuous if every Υ(ω) is continuous.

Definition 4 (see [16]). For a random operator Υ, a mapping y : Ω → X is called a random
(stochastic) fixed point of Υ if for P-almost all ω ∈ Ω, we have

y(ω) ∈ D(ω),

Υ(ω)y(ω) = y(ω)

and
{ω ∈ Ω : y(ω) ∈ O} ⊂ F

for every open set O ⊆ X (i.e., y is measurable).

Lemma 1 (see [16]). Let (Ω,F ,P) be complete and let y0 : Ω → X and r : Ω → R∗+ be
measurable. Then D : Ω→ 2X defined by

D(ω) = {y ∈ X : ‖y− y0(ω)‖ ≤ r(ω)}

is a measurable multivalued mapping.

Lemma 2 (see [16]). Let D : Ω → 2X be measurable with D(ω) closed, convex and solid ( i.e.,
int(D(ω)) 6= ∅) for all ω ∈ Ω. Assume there exists a measurable random variable y0 : Ω→ X
with y0(ω) ∈ int(D(ω)) for all ω ∈ Ω. Let Υ be a continuous random operator with stochastic
domain D such that for every ω ∈ Ω,

{y ∈ D(ω) : Υ(ω)y = y} 6= ∅.

then Υ has a stochastic fixed point.

In this work, the existence of a mild solution to problem (1) is related to the existence
of resolvent family introduce by Pardo and Lizama [6].

2.1. Resolvent Family

Now, we recall some definitions and basic results on fractional calculus. Let Γ(·)
denote the gamma function and define gx for x > 0 by

gx(t) =


tx−1

Γ(x)
, t > 0;

0, t ≤ 0.

It is known that gx satisfies the following properties:

(i) for any a, b > 0, (ga ? gb)(t) = ga+b(t);
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(ii) for a, λ > 0 and Re(λ) > 0, ĝa(λ) = 1/λa, where (̂·) and (· ? ·)(·) denote the Laplace
transformation and convolution, respectively.

The most frequently encountered tools in the theory of fractional calculus are provided
by the Riemann–Liouville and Caputo fractional differential operators.

Definition 5. The Riemann–Liouvulle fractional integral of a function f ∈ L1
loc([0, ∞),X) of

order η > 0 with lower limit zero is defined as follows

Iη f (t) = (gη ? f )(t) =
∫ t

0
gη(t− s) f (s) ds f or t > 0

and I0(t) = f (t), provided that side integral is point-wise defined in [0, ∞).

Definition 6. Let η > 0 be given and denote m = dηe. The Caputo fractional derivative of order
η > 0 of a function f ∈ Cm([0, ∞),X) with lower limit zero is given by

cDη f (t) = Im−η Dm f (t) =
∫ t

0
gm−η(t− s)Dm f (s) ds,

and cD0 f (t) = f (t), where Dm = dm/dtm and d·e is ceiling function.

For more progress and important properties about fractional calculus and its appli-
cations, we refer the reader to [1,2] and references therein. The following definition was
introduced by Pardo and Lizama [6] and provides a suitable representation of a mild
solution for Problem (1) in terms of a specific family of bounded and linear operators.

Definition 7 (see [6]). Let A be a closed linear operator on a Banach space X with domain
D(A) and let β > 0, γk, αk, k = 1, 2, · · · n be real positive numbers. Then A is called the
generator of a (β, γk)-resolvent family if there exists κ ≥ 0 and a strongly continuous function
Rβ,γk : R+ → L(X) such that{

λβ+1 +
n

∑
k=1

αkλγk : Re(λ) > κ

}
⊂ ρ(A)

and

λβ

(
λβ+1 +

n

∑
k=1

αkλγk − A

)−1

ϑ =
∫ ∞

0
e−λ tRβ,γk (t)ϑ dt,

where Re(λ) > κ and ϑ ∈ X.

Theorem 1 (see [6]). Let 0 < β ≤ γn ≤ γn−1 ≤ · · · ≤ γ1 ≤ 1 and αk ≥ 0, k = 1, 2, · · · , n
be given and let A be a generator of a bounded and strongly continuous cosine family {C(t)}t∈R.
Then, A generates a bounded (β, γk)-resolvent family (Rβ,γk (t))t≥0.

Motivated by Pardo and Lizama [6], we introduce the concept of random mild solution
for Equation (1) as follows.

Definition 8. Let 0 < β ≤ γn ≤ · · · ≤ γ1 ≤ 1 and αk ≥ 0, k = 1, 2, · · · n be given and A
be a generator of a bounded (β, γk)-resolvent family {Rβ,γk (t)}t≥0. Then, a stochastic process
ϑ : [0, b]×Ω → X is said to be random mild solution of Equation (1) if ϑ(·, ω) ∈ C([0, b],X),
ϑ(0, ω) = ϑ0(ω), ϑ′(0, ω) = ϑ1(ω) and satifies the following integral Equation
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ϑ(t, ω) = Rβ,γk (t)ϑ0(ω) + (g1 ?Rβ,γk )(t)ϑ1(ω) +
n

∑
k=1

αk

∫ t

0

(t− s)β−γk

Γ(1 + β− γk)
Rβ,γk (s)ϑ0(ω)ds

+
∫ t

0
Tβ,γk (t− s)F

(
s, ϑ(s, ω),

∫ s

0
B(s, τ)ϑ(τ, ω)dτ, ω)

)
ds

for (t, ω) ∈ [0, b]×Ω, where Tβ,γk (t) = (gβ ?Rβ,γk )(t).

2.2. Measures of Noncompactness

We recall some fundamental definitions and lemmas related to the measure of non-
compactness. We introduce first the definition for Hausdorff’s measure of noncompactness
and its properties.

Definition 9 (see [17]). The Hausdorff measure of noncompactness χ(·) defined on bounded set E
of Banach space X is

χ(E) = inf{ε > 0 : E can be covered by finite number of balls of radii smaller then ε}.

More details on the Hausdorff’s measure of noncompacness can be found in Goebel [17]
and Deimling [18].

The notations χ(·) and χC(·) stand for the Hausdorff measure of noncompactness on
the bounded set of X and C([0, b],X), respectively. For any V ⊂ C([0, b],X) and t ∈ [0, b],
set V(t) = {ϑ(t) : ϑ ∈ V}. Then V(t) ⊂ X.

The next results play an important role in demonstrating our main result.

Lemma 3 (see [17]). Let V ⊂ C([0, b],X) be bounded, then

χ(V(t)) ≤ χC(V) for all t ∈ [0, b],

where V(t) = {v(t); v ∈ V}. Furthermore, if V is equicontinuous on [0, b], then χ(V(t)) is
continuous on [0, b], and χC(V) = sup

t∈[0,b]
α(V(t)).

Lemma 4 (see [19]). Let {Zn : n ∈ N} be a sequence of Bochner integrable functions from
[0, b] into X such that ‖Zn(t)‖ ≤ f (t) for every n ≥ 1 and almost all t ∈ [0, b], where f ∈
L1([0, b],R+), then the function Z(t) = χ{Zn(t) : n ≥ 1} ∈ L1([0, b],R+) and satisfy

χ

(∫ t

0
Zn(s) ds : n ≥ 1

)
≤ 2

∫ t

0
Z(s)ds.

Definition 10 (see [20]). A countable set {Zn : n ≥ 1} ⊂ L1([0, b],X) is called semicompact if
there exists a function f ∈ L1([0, b],R+) satisfying sup

n≥1
Zn(t) ≤ f (t) for a.e. t ∈ [0, b] and the

sequence {Zn : n ≥ 1} is relatively compact in X.

Lemma 5. [20] Let (QZ)(t) =
∫ t

0
Tβ,γk (t − s)Z(s)ds and the sequence {Zn : n ≥ 1} ⊂

L1([0, b],X) be semicompact. Then the following statements hold:

(i) The set {QZn : n ≥ 1} ⊂ L1([0, b],X) is relatively compact in C([0, b],X).
(ii) If Zn ⇀ Z, then (QZn)(t)→ (QZ)(t), as n→ ∞, for all t ∈ [0, b].

To prove our existence results, we shall use the following Mönch’s fixed point theorem
combined with the stochastic fixed point theorem (i.e., Lemma 2).
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Lemma 6 (see [21]). Let V be a closed and convex subset of X and 0 ∈ V. Then a continuous
mapping Q : V → X which satisies Mönch condition (i.e., W ⊆ V is countable and W ⊆
con({0} ∪Q(W)) =⇒W is compact) has a fixed point in V.

3. Some Existence Results

In this section, we investigate the existence of random mild solution for Equation (1).
The following conditions will be used in our main theorem.

(H1) A be a generator of a bounded (β, γk)-resolvent family {Rβ,γk (t)}t≥0 which is
equicontinous. Let M = supt∈[0,b] ‖Rβ,γk (t)‖L(X).

(H2) Then function F : [0, b]×X×X×Ω→ X is random Caratheodory and the functions
ϑ0(·) : Ω→ X and ϑ1(·) : Ω→ X are measurables and essentialy bounded. Let

max
{

ess sup
ω∈Ω
‖ϑ0(ω)‖ ; ess sup

ω∈Ω
‖ϑ1(ω)‖

}
≤ c0

for some constant c0 ∈ R+.
(H3) There exist two functions f : [0, b]×Ω → R+ and G : R+ ×Ω → R+ such that

for each ω ∈ Ω, f (·, ω) ∈ L1/p1([0, b],R+) for a constant p1 ∈ (0, 1) and G(·, ω) a
nondeacresing continuous function with

‖F(t, x, y, ω)‖X ≤ f (t, ω)G(‖x‖+ ‖y‖, ω), for a.e t ∈ [0, b] and each x ∈ X, y ∈ X.

(H4) For a constant p2 ∈ (0, 1) and bounded subsets V1,V2 ⊂ X, there exists a function
h : [0, b]×Ω→ R+ such that for each ω ∈ Ω, h(·, ω) ∈ L1/p2([0, b],R+) with

χ(F(t,V1,V2, ω)) ≤ h(t, ω)[χ(V1) + χ(V2)].

(H5) There exists a random function r : Ω→ R\{0} such that

M c0

[
1 + b +

n

∑
k=1

αk b(1+β−γk)

Γ(2 + β− γk)

]
+

M G
(
(1 + ζB)r(ω), ω

)
Γ(1 + β)

P̂1 ‖ f (·, ω)‖L1/p1 ≤ r(ω)

where P̂1 =

[(
1− p1

1 + β− p1

)
b(1+β−p1)/(1−p1)

]1−p1

.

The following existence theorem is one of the main results of this paper.

Theorem 2. Assume that the assumptions (H1)–(H5) are valid, then the multi-term time-fractional
integro-differential problem (1) has at least one mild random solution on [0, b] provided that

M P̂2(1 + ζB)

Γ(1 + β)
‖h(·, ω)‖L1/p2 <

1
2

, (2)

where P̂2 =

[(
1− p2

1 + β− p2

)
b(1+β−p2)/(1−p2)

]1−p2

.

Proof. It is noted that

‖Tβ,γk (t)‖L(X) ≤
M tβ

Γ(1 + β)
.
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Consider the random operator N : Ω× C([0, b],X)→ C([0, b],X) defined by

(N (ω)ϑ)(t) = Rβ,γk (t)ϑ0(ω) + (g1 ?Rβ,γk )(t)ϑ1(ω)

+
n

∑
k=1

αk

∫ t

0

(t− s)β−γk

Γ(1 + β− γk)
Rβ,γk (s)ϑ0(ω)ds (3)

+
∫ t

0
Tβ,γk (t− s)F

(
s, ϑ(s, ω),

∫ s

0
B(s, τ)ϑ(τ, ω)dτ, ω)

)
ds

for t ∈ [0, b]. We divide the proof into a sequence of steps.
Step 1. We show that the mapping N is a random operator with stochastic domain.
By assumption (H2), we know that F(t, x, y, ·) for t ∈ [0, b], x, y ∈ X, ϑ0(·) and ϑ1(·) are
measurables. Then N (·)ϑ : Ω→ C([0, b],X) is a random varriable. Let D : Ω→ 2C([0,b],X)

be defined by
D(ω) = {ϑ ∈ C([0, b],X) : ‖ϑ‖ ≤ r(ω)}.

Thus, the set D(ω) is bounded, closed, convex and solid for all ω ∈ Ω. So D is
measurable by Lemma 1. For each ϑ ∈ D(ω), using (H2), (H3), (H4), and Hölder’s
inequality, we have

‖(N (ω)ϑ)(t)‖

≤ ‖Rβ,γk (t)ϑ0(ω)‖+ ‖(g1 ?Rβ,γk )(t)ϑ1(ω)‖+ ‖
n

∑
k=1

αk

∫ t

0

(t− s)β−γk

Γ(1 + β− γk)
Rβ,γk (s)ϑ0(ω)ds‖

+‖
∫ t

0
Tβ,γk (t− s)F

(
s, ϑ(s, ω),

∫ s

0
B(s, τ)ϑ(τ, ω)dτ, ω

)
ds‖

≤ M c0 + b M c0 +
n

∑
k=1

αk M c0 b(1+β−γk)

Γ(2 + β− γk)

+
∫ t

0
‖Tβ,γk (t− s)‖L(X)‖F

(
s, ϑ(s, ω),

∫ s

0
B(s, τ)ϑ(τ, ω)dτ, ω

)
‖ds

≤ M c0 + b M c0 +
n

∑
k=1

αk M c0 b(1+β−γk)

Γ(2 + β− γk)

+
M

Γ(1 + β)

∫ t

0
(t− s)β f (s, ω) G

(
‖ϑ(t, ω)‖+ ‖

∫ s

0
B(s, τ)ϑ(τ, ω)dτ‖, ω

)

≤ M c0 + b M c0 +
n

∑
k=1

αk M c0 b(1+β−γk)

Γ(2 + β− γk)
+

M
Γ(1 + β)

∫ b

0
(b− s)β f (s, ω) G((1 + ζB)r(ω), ω)ds

≤ M c0 + b M c0 +
n

∑
k=1

αk M c0 b(1+β−γk)

Γ(2 + β− γk)

+
M G

(
(1 + ζB)r(ω), ω

)
Γ(1 + β)

(∫ b

0
(b− s)β/(1−p1) ds

)1−p1(∫ b

0
( f (s, ω))1/p1 ds

)p1
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≤ M c0 + b M c0 +
n

∑
k=1

αk M c0 b(1+β−γk)

Γ(2 + β− γk)

+
M G

(
(1 + ζB)r(ω), ω

)
Γ(1 + β)

[(
1− p1

1 + β− p1

)
b(1+β−p1)/(1−p1)

]1−p1

‖ f (·, ω)‖L1/p1

≤ M c0

[
1 + b +

n

∑
k=1

αk b(1+β−γk)

Γ(2 + β− γk)

]
+

M G
(
(1 + ζB)r(ω), ω

)
Γ(1 + β)

P̂1 ‖ f (·, ω)‖L1/p1

≤ r(ω),

which implies thatN is a random operator with stochastic domain D andN (ω) : D(ω)→
D(ω) for each ω ∈ Ω.
Step 2. Show that N is continuous on D(ω).

Let (ϑ(m))m∈∈N be a sequence in D(ω) satisfying ϑm → ϑ in D(ω) and define

F̃m(s) = F
(

s, ϑ(m)(s, ω),
∫ s

0
B(s, τ)ϑ(m)(τ, ω)dτ, ω

)
and

F̃(s) = F
(

s, ϑ(s, ω),
∫ s

0
B(s, τ)ϑ(τ, ω)dτ, ω

)
.

then

‖(N (ω)ϑ(m))(t)− (N (ω)ϑ)(t)‖ ≤ M
Γ(1 + β)

∫ t

0
(t− s)β‖F̃m(s)− F̃(s)‖ ds.

by assumption (H2) and combining with Lebesgue dominated convergence theorem, we get∫ t

0
(t− s)β‖F̃m(s)− F̃(s)‖ ds→ 0 as m→ ∞, for t ∈ [0, b].

consequently, we obtain

‖(N (ω)ϑ(m))(t)− (N (ω)ϑ)(t)‖ → 0 as m→ ∞.

hence N is continuous.
Step 3. Show that for every ω ∈ Ω, {ϑ ∈ D(ω) : N (ω)ϑ = ϑ} 6= ∅.

To achieve this, we going to demontrate that the Mönch condition holds. Let ω ∈ Ω
be arbitrary fixed. First, let show that N maps bounded sets into equicontinuous sets of
D(ω). Let t1, t2 ∈ [0, b] with t2 > t1 and ϑ ∈ D(ω). By the equicontinuouty of Rβ,γk (t),
we have
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‖(N (ω)ϑ)(t2)− (N (ω)ϑ)(t1)‖

≤ ‖Rβ,γk (t2)−Rβ,γk (t1)‖L(X) ‖ϑ0(ω)‖

+‖(g1 ?Rβ,γk )(t2)ϑ1(ω)− (g1 ?Rβ,γk )(t1)ϑ1(ω)‖

+‖
n

∑
k=1

αk

∫ t2

0

(t2 − s)β−γk

Γ(1 + β− γk)
Rβ,γk (s)ϑ0(ω)ds−

n

∑
k=1

αk

∫ t1

0

(t1 − s)β−γk

Γ(1 + β− γk)
Rβ,γk (s)ϑ0(ω)ds‖

+‖
∫ t2

0
Tβ,γk (t2 − s)F̃(s)ds−

∫ t1

0
Tβ,γk (t1 − s)F̃(s)ds‖

≤ ‖Rβ,γk (t2)−Rβ,γk (t1)‖L(X ‖ϑ0(ω)‖

+
∫ t2

t1

‖Rβ,γk (s)‖L(X ‖ϑ1(ω)‖ ds

+
n

∑
k=1

αk

∥∥∥∥∫ t2

0

(t2 − s)β−γk

Γ(1 + β− γk)
Rβ,γk (s) ds−

∫ t1

0

(t1 − s)β−γk

Γ(1 + β− γk)
Rβ,γk (s)ds

∥∥∥∥ ‖ϑ0(ω)‖

+
∫ t1

0

∥∥Tβ,γk (t2 − s)− Tβ,γk (t1 − s)
∥∥ ‖F̃(s)‖ ds−

∫ t2

t1

‖Tβ,γk (t1 − s)‖ ‖F̃(s)‖ ds

≤ c0‖Rβ,γk (t2)−Rβ,γk (t1)‖L(X) + Mc0(t2 − t1)

+
n

∑
k=1

αk M
Γ(1 + β− γk)

[∫ t1

0
|(t2 − s)β−γk − (t1 − s)β−γk | ds−

∫ t2

t1

|(t2 − s)|β−γk ds
]

c0

+
∫ t1

0

∥∥Tβ,γk (t2 − s)− Tβ,γk (t1 − s)
∥∥ ‖F̃(s)‖ ds +

M
Γ(1 + β)

∫ t2

t1

|(t1 − s)|β ‖F̃(s)‖ ds

≤ c0‖Rβ,γk (t2)−Rβ,γk (t1)‖L(X) + Mc0(t2 − t1)

+
n

∑
k=1

αk M
Γ(1 + β− γk)

[∫ t1

0
|(t2 − s)β−γk − (t1 − s)β−γk | ds−

∫ t2

t1

|(t2 − s)|β−γk ds
]

c0

+
∫ t1

0

∥∥Tβ,γk (t2 − t1 + s)− Tβ,γk (s)
∥∥ ‖F̃(s)‖ ds +

M
Γ(1 + β)

∫ t2

t1

|(t1 − s)|β ‖F̃(s)‖ ds.

By the equicontinuity of Rβ,γk and Lebesgue dominated convergence theorem, we
conclude that the right side of the above inequality tends to zero (independently of ϑ) as
t1 → t2. Thus, N (ω)(V) is equicontinuous on [0, b].

Now, let us assume that V = {ϑ(m)}∞
m=1 be a countable subset of D(ω) and V ⊆

con({0} ∪ N (ω)(V)). Since N (ω)(V) is is bounded and equicontinuous, we have V =
{ϑ(m)}∞

m=1 is bounded and equicontinuous and therefore by Lemma 3, the function t →
χ(V(t)) is continuous on [0, b]. By Lemma 4, we get
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χ
(
{(N (ω)ϑ(m))(t)}∞

m=1
)

≤ χ

({∫ t

0
Tβ,γk (t− s)F

(
s, ϑ(m)(s, ω),

∫ s

0
B(s, τ)ϑ(m)(τ, ω)dτ, ω

)
ds
}∞

m=1

)

≤ 2
M(1 + ζB)

Γ(1 + β)

∫ t

0
(t− s)β h(s, ω)χ

(
{ϑ(m)(s)}∞

m=1

)
ds

≤ 2
M(1 + ζB)

Γ(1 + β)

∫ b

0
(b− s)β h(s, ω) sup

s∈[0,b]
χ
(
{ϑ(m)(s)}∞

m=1

)
ds

≤ 2
M(1 + ζB)

Γ(1 + β)
sups∈[0,b] χ

(
{ϑ(m)(s)}∞

m=1

)(∫ b

0
(b− s)β/(1−p2) ds

)1−p2(∫ b

0
(h(s, ω))1/p2 ds

)p2

≤ 2
M(1 + ζB)

Γ(1 + β)
sups∈[0,b] χ

(
{ϑ(m)(s)}∞

m=1

)
K2‖h(·, ω)‖L1/p2 .

(4)

By Lemma 3, we obtain

χ(N (ω)V) ≤
[

2
MK2(1 + ζB)

Γ(1 + β)
‖h(·, ω)‖L1/p2

]
χ(V).

From Mönch condition, we get

χ(V) ≤ χ(con({0} ∪N (ω)V)) = χ(N (ω)V) ≤
[

2
MK2(1 + ζB)

Γ(1 + β)
‖h(·, ω)‖L1/p2

]
χ(V).

From inequality (2), we deduce that χ(V) = 0. As a consequence of Theorem 6, we
show that N has a fixed point ϑ(ω) ∈ D(ω). Since ∩ω∈ΩD(ω) 6= ∅, the hypothesis that a
measurable selector of int(D) holds. By Lemma 2, the random operator N has a stochastic
fixed point ϑ?(ω), which is a mild solution of (1). This complete the proof.

With another growth condition of F(·, ·, ·), the condition (H4) can be deleted. Precisely,
we replace the assumption (H3) with (H3′), where

(H3′) There exist two functions Z1, Z2 : [0, b] × Ω → R+ such that for each ω ∈ Ω,
Z1(·, ω), Z2(·, ω) ∈ L1/p1([0, b],R+) for a constant p1 ∈ (0, 1) with

‖F(t, x, y, ω)‖X ≤ Z1(t, ω) + Z2(t, ω)(‖x‖+ ‖y‖)

for t ∈ [0, b] and x, y ∈ X.

Theorem 3. Under the assumptions (H1), (H2), (H3′), (H4) and condition (2), the multi-term
time-fractional integro-differential problem (1) has at least one mild random solution on [0, b].

Proof. Using (H1), (H2), (H3′), and Hölder’s inequality, we have
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‖(N (ω)ϑ)(t)‖

≤ ‖Rβ,γk (t)ϑ0(ω)‖+ ‖(g1 ?Rβ,γk )(t)ϑ1(ω)‖+ ‖
n

∑
k=1

αk

∫ t

0

(t− s)β−γk

Γ(1 + β− γk)
Rβ,γk (s)ϑ0(ω)ds‖

+‖
∫ t

0
Tβ,γk (t− s)F

(
s, ϑ(s, ω),

∫ s

0
B(s, τ)y(τ, ω)dτ, ω

)
ds‖

≤ M c0 + b M c0 +
n

∑
k=1

αk M c0 b(1+β−γk)

Γ(2 + β− γk)

+
∫ t

0
‖Tβ,γk (t− s)‖L(X)‖F

(
s, ϑ(s, ω),

∫ s

0
B(s, τ)ϑ(τ, ω)dτ, ω

)
‖ds

≤ M c0 + b M c0 +
n

∑
k=1

αk M c0 b(1+β−γk)

Γ(2 + β− γk)

+
M

Γ(1 + β)

∫ t

0
(t− s)β

[
Z1(s, ω) + Z2(s, ω)

(
‖ϑ(t, ω)‖+ ‖

∫ s

0
B(s, τ)ϑ(τ, ω)dτ‖)

) ]
ds

≤ M c0 + b M c0 +
n

∑
k=1

αk M c0 b(1+β−γk)

Γ(2 + β− γk)

+
M

Γ(1 + β)

∫ b

0
(b− s)β [Z1(s, ω) + Z2(s, ω) (1 + ζB)‖ϑ‖ ]ds

≤ M c0 + b M c0 +
n

∑
k=1

αk M c0 b(1+β−γk)

Γ(2 + β− γk)
+

M
Γ(1 + β)

(∫ b

0
(b− s)β/(1−p1) ds

)1−p1(∫ b

0
(Z1(s, ω))1/p1 ds

)p1

+
M (1 + ζB)

Γ(1 + β)
‖ϑ‖

(∫ b

0
(b− s)β/(1−p1) ds

)1−p1(∫ b

0
(Z2(s, ω))1/p1 ds

)p1

≤ M

[
c0 + b c0 +

n

∑
k=1

αk c0 b(1+β−γk)

Γ(2 + β− γk)
+

1
Γ(1 + β)

P̂1

(∫ b

0
(Z1(s, ω))1/p1 ds

)p1
]

+M
(1 + ζB)

Γ(1 + β)
P̂1

(∫ b

0
(Z2(s, ω))1/p1 ds

)p1

‖ϑ‖

≤ M K1(ω) + M K2(ω) ‖ϑ‖,

where

K1(ω) = c0 + b c0 +
n

∑
k=1

αk c0 b(1+β−γk)

Γ(2 + β− γk)
+

1
Γ(1 + β)

P̂1

(∫ b

0
(Z1(s, ω))1/p1 ds

)p1

and

K2(ω) = M
(1 + ζB)

Γ(1 + β)
P̂1

(∫ b

0
(Z2(s, ω))1/p1 ds

)p1

.
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choosing r(ω) =
M K1(ω)

1−M K2(ω)
and

D(ω) = {ϑ ∈ C([0, b],X) : ‖ϑ‖ ≤ r(ω)} for all ϑ ∈ D(ω),

we get
‖(N (ω)ϑ))(t)‖ ≤ r(ω).

The proof can be complete similarly to Theorem 2.

Remark 1. Consider the measure of noncompactness χC and ν defined in C([0, b],X) by

χC(K) = max
O∈∆(K)

{ν(O), modc(O)} and ν(O) = sup
t∈[0,b]

e−Ltχ(O(t)), (5)

for all bounded subsets K of C([0, b],X), where ∆(K) stand for the collection of all countable subsets
of K, O(t) = {x(t) , x ∈ O, t ∈ [0, b]} and L is an appropriate constant to be defined later. modC
is the modulus of equicontinuity of the function set O defined by

modC(O) = lim
δ→0

sup
x∈O

max
{
‖x(t2)− x(t1)‖ : t1, t2 ∈ [0, b], |t2 − t1| ≤ δ

}
.

From [20], we know that there exists a O? which achieves the maximun in (5). Furthermore,
the measure χC is nonsingular, monotone and regular.

Applying the abaove regular measure of noncompactness, we obtain the following result.

Theorem 4. Assume that the assumptions (H1)–(H5) are valid, then the multi-term time-fractional
integro-differential problem (1) has at least one mild random solution on [0, b].

Proof. As in the proof of Theorem 2, we show that the operator N : D(ω) → D(ω) has
a stochastic fixed point. We know that N is a random operator with stochastic domain
which is continuous and maps bounded sets into equicontinuous sets of D(ω). So, in order
to finish the proof it is sufficient to show that N satisfies the Mönch’s condition.

Let ω ∈ Ω and V be a countable subset of D(ω) and V ⊆ con({0} ∪N (ω)(V)). Since
χC
(
(N (ω)V)

)
has a maximum, let {z(m)(·, ω)}∞

m=1 ⊂ (N (ω)V) be a denumerable set
which attain its maximum. Then there exists a set {ϑ(m)(·, ω)}∞

m=1 ⊂ V such that

(N (ω)ϑ(m))(t) = zm(·, ω) for all t ∈ [0, b]. (6)

We choose L > 0 such that

K =
2M(1 + ζB)

Γ(1 + β)
sup

t∈[0,b]

∫ b

0
(b− s)β h(s, ω)eL(s−t)ds < 1. (7)
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Now, by (4), we derive that

χ
(
{(N (ω)ϑ(m))(t)}∞

m=1
)

≤ 2
M(1 + ζB)

Γ(1 + β)

∫ t

0
(t− s)β h(s, ω)χ

(
{ϑ(m)(s)}∞

m=1

)
ds

≤ 2
M(1 + ζB)

Γ(1 + β)

∫ b

0
(b− s)β h(s, ω)eLs sup

s∈[0,b]

[
e−Lsχ

(
{ϑ(m)(s)}∞

m=1

)]
ds

≤ 2
M(1 + ζB)

Γ(1 + β)
ν
(
{ϑ(m)}∞

m=1

) ∫ b

0
(b− s)β h(s, ω)eLsds.

(8)

By using (5) and (8), we get

ν({z(m)}∞
m=1) ≤ sup

t∈[0,b]
e−Ltχ

(
{(N (ω)ϑ(m))(t)}∞

m=1
)

≤ sup
t∈[0,b]

e−Lt 2M(1 + ζB)

Γ(1 + β)
ν
(
{ϑ(m)}∞

m=1

) ∫ b

0
(b− s)β h(s, ω)eLsds

≤ 2M(1 + ζB)

Γ(1 + β)
ν
(
{ϑ(m)}∞

m=1

)
sup

t∈[0,b]

∫ b

0
(b− s)β h(s, ω)eL(s−t)ds

≤ K ν
(
{ϑ(m)}∞

m=1

)
.

(9)

Thus, we have

ν
(
{ϑ(m)(·, ω)}∞

m=1

)
= ν(V) ≤ ν

(
con({0} ∪N (ω)(V))

)
= ν

(
{z(m)(·, ω)}∞

m=1

)
≤ K ν

(
{ϑ(m)(·, ω)}∞

m=1

)
.

From (7), we obtain

ν
(
{ϑ(m)(·, ω)}∞

m=1

)
= ν(V) = ν

(
{z(m)(·, ω)}∞

m=1

)
= 0.

By the definition of ν, we get

χ
(
{ϑ(m)(t, ω)}∞

m=1

)
= χ

(
{z(m)(t, ω)}∞

m=1

)
= 0 for every t ∈ [0, b].

From (H4), we obtain

χ

({
F
(

s, ϑ(m)(s, ω),
∫ s

0
B(s, τ)ϑ(m)(τ, ω)dτ, ω

)}∞

m=1

)

≤ h(t, ω)(1 + ζB)χ
({

ϑ(m)(t, ω)
})

= 0

(10)

which implies that

S :=
{

F
(

s, ϑ(m)(s, ω),
∫ s

0
B(s, τ)ϑ(m)(τ, ω)dτ, ω

)}∞

m=1
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is relatively compact for almost all t ∈ [0, b] in X. Since {ϑ(m)(·, ω)}∞
m=1 ∈ D(ω), by (H3),

we derive that S is uniformly integrable for a.e t ∈ [0, b]. From Definition 10, we conclude
that S is semicompact and by Lemma 4, the set{∫ t

0
Tβ,γk (t− s)F

(
s, ϑ(m)(s, ω),

∫ s

0
B(s, τ)ϑ(m)(τ, ω)dτ, ω

)
ds
}∞

m=1

is relatively compact in X. Hence, by (6), {z(m)(·, ω)}∞
m=1 is also relatively compact in

C([0, b],X). Since χC is a nonsingular, monotone and regular measure of noncompactness,
then by Mönch condition, we have

χC(V) ≤ χC(con({0} ∪N (ω)(V))) = χC
(
{z(m)(·, ω)}∞

m=1

)
= 0,

which shows that V is relatively compact in C([0, b],X). The proof is completed.

Remark 2. In comparison to Theorem 2, the result obtain in Theorem 3 is more general and
interesting. Due to the choice of the measure of noncompactness, we can notice that inequality (2)
in Theorem 2 is not necessary in Theorem 3.

In Theorem 3, when we replace the condition (H4) by (H3′), we obtain the following
result where the condition (H5) is released.

Theorem 5. Under the assumptions (H1), (H2), (H3′) and (H4), the multi-term time-fractional
integro-differential problem (1) has at least one mild random solution on [0, b].

Proof. As in the proof of Theorem 3, there exists a random function r : Ω→ R− {0} such
that the operatorN : D(ω)→ D(ω) is a random operator with stochastic domaine D(ω) =
{ϑ ∈ C([0, b],X) : ‖ϑ‖ ≤ r(ω)}. Furthermore, we know that N is a random operator with
stochastic domain which is continuous and maps bounded sets into equicontinuous sets
of D(ω). So, we only need to check that N satisfies the Mönch’s condition. Following a
similar argument as in the proof of Theorem 3, one can verify the conclusion.

Remark 3. The random differential equation with delay is a special type of random functional
differential equations. The random functional differential equations with state-dependent delay
have many important applications in mathematical models of real phenomena. By applying the
ideas and techniques as in this article and making some appropriate conditions, one can obtain the
existence results for a class of multi-term time-fractional random integro-differential equations with
state-dependent delay.

4. A Nontrivial Example of Application of Theorem 2

In this section, we give a nontrivial example to illustrate our main results.

Example 1. Let β, γk > 0 k = 1, 2, · · · , m be such that 0 < β ≤ γm ≤ · · · ≤ γ1 ≤ 1. We
consider the following problem with random effects:
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CD1+βu(t, x, ω) +
m

∑
k=1

αk
CDγk u(t, x, ω) =

∂2u(t, x, ω)

∂2x

(1 + t)−1/3

20
Q(ω)

[
sin(u(t, x, ω)) +

∫ t

0
cos(t− s)u(s, x, ω)ds

]
, x ∈ [0, π], t ∈ [0, 1], ω ∈ Ω

u(t, 0, ω) = u(t, π, ω) = 0, t ∈ [0, 1], ω ∈ Ω,

u(0, x, ω) = u0(x, ω), x ∈ [0, π], ω ∈ Ω,

∂u(t, x, ω)

∂t

∣∣∣
t=0

= u1(x, ω), x ∈ [0, π], ω ∈ Ω,

(11)

where Q is a real-valued random variable, u0, u1 : [0, π] ×Ω → R are given functions
and (Ω,F ,P) a complete probability space. Let X = L2([0, π],R) and define the operator
A : D(A) ⊂ X→ X by Az = z′′, where

D(A) = {z ∈ X : z, z′ are absolutely continuous, z′′ ∈ X, z(0) = z(π) = 0}.

then

Az =
∞

∑
n=1

n2(z, wn)wn, z ∈ D(A),

where wn(θ) =

√
2
π

sin(nθ), n = 1, 2, · · · is the orthogonal set of eigenvectors of A. Thus,

A generates a strongly continuous cosine family {C(t)}t∈R given by

C(t)z =
∞

∑
n=1

cos(nt)(z, wn)wn for z ∈ X.

Since β, γk > 0 k = 1, 2, · · · , m be such that 0 < β ≤ γm ≤ · · · ≤ γ1 ≤ 1, by
Theorem 1, we deduce that A generates a bounded (β, γk)-resolvent family

Rβ,γk (t)z =
∫ ∞

0

1
t(1+β)/2

Φ(1+β)/2(st−(1+β)/2)C(s)z ds, z ∈ X, t ∈ [0, 1],

where

Φ(1+β)/2(y) =
∞

∑
n=0

(−y)n

n! Γ(−(β(n + 1))− n)
, y ∈ C,

is the Wright functions. Furthermore, we define

ϑ(t, ω)(x) = u(t, x, ω) for t ∈ [0, 1], x ∈ [0, π] and ω ∈ Ω

and
ϑ0(ω)(x) = u0(x, ω), ϑ1(ω)(x) = u1(x, ω) for x ∈ [0, π] and ω ∈ Ω.

For every t ∈ [0, 1], x ∈ [0, π] and ω ∈ Ω, define

F
(

t, ϑ(t, ω),
∫ t

0
B(t, s)ϑ(s, ω)ds, ω

)
(x) = f (t, ω)

[
sin(u(t, x, ω)) +

∫ t

0
cos(t− s)u(s, x, ω)ds

]
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where f (t, ω) =
(1 + t)−1/3Q(ω)

20
. Then Equation (11) can be rewritten in the abtract form

of Equation (1). From the definition of the nonlinear term F, we have

‖F
(

t, ϑ(t, ω),
∫ t

0
B(t, s)z1(s, ω)ds, ω

)
− F

(
t, ϑ̃(t, ω),

∫ t

0
B(t, s)z2(s, ω)ds, ω

)
‖

≤ f (t, ω)
[
‖ϑ(·, ω)− ϑ̃(·, ω)‖+ ζB‖z1(·, ω)− z2(·, ω)‖

]
,

where ζB = sup
t∈[0,1]

∫ t

0
cos(t− s)ds ≤ 1. Therefore

‖F
(

t, ϑ(t, ω),
∫ t

0
B(t, s)z(s, ω)ds, ω

)
‖ ≤ f (t, ω)

[
‖ϑ(·, ω)‖+ ζB‖z(·, ω)‖

]
and for any bounded and contable set V of X, we obtain

χ

(
F
(

t,V(t),
∫ t

0
B(t, s)V(s)ds, ω

))
≤ h(t, ω)[χ(V) + ζBχ(V)]

where h(t, ω) = f (t, ω). Taking p1 = p2 =
1
2

and β =
3
4

, we have

P1 = P2 =

√
2
5

and ‖ f (·, ω)‖ = 3
50

[
(2)5/6 − 1

]1/2
|Q(ω)| ≤ 0.06× |Q(ω)|.

If
2M
√

2/5
Γ(7/4)

0.06× |Q(ω)| < 1
2

then by Theorem 2, the random system (11) has at

least one random mild solution.

5. Conclusions

Random fractional integro-differential equations are one of the most important re-
search topics in the past thirty years. In this paper, we investigate the existence of mild
solutions to a multi-term fractional integro-differential Equation (1) with random effects
(see Theorems 2–5). A nontrivial example illustrating Theorem 2 is also given.
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