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1. Introduction

Wilson bases were constructed by I. Daubechies, S. Jaffard, and J. Journé in [1] to
overcome constraints arising from the Balian–Low theorem, and soonafter shown to be
unconditional bases for modulation spaces, see [2]. By combining the Wilson bases and
tools from a time–frequency analysis, approximate diagonalization of different classes of
pseudodifferential operators is obtained in [3,4]. Wilson bases of Meyer type were used
in the study of gravitational waves, cf. [5,6]. We refer to [7] for recent construction of
orthonormal Wilson bases in the multidimensional case, which overcomes a deficiency of
the tensor product construction used in, e.g., [4,8].

Gelfand–Shilov spaces were initially introduced for the analysis of solutions of certain
parabolic initial-value problems [9] and thereafter applied in different contexts when
precise estimates of global decay and regularity are needed, see [10] for an overview.
Recently, Hermite expansions of Fourier transform invariant Gelfand–Shilov spaces, and
more generally Pilipović spaces, are considered in [11], see also [12,13].

In this paper, we give a description of Gelfand–Shilov spaces and their dual spaces of
tempered ultradistributions in terms of Wilson bases. This extends some results from [14]
given for Beurling type Gelfand–Shilov spaces. Both Wilson bases and Hermite functions
are orthonormal bases for L2(Rd) consisting of functions that are well localized in phase–
space (time–frequency plane). From such perspective, our results are expected. However,
due to the specific structure of Wilson bases, the proofs are based on entirely different
arguments than those related to the Hermite basis, which utilize recursive relation between
Hermite functions and the fact that they are eigenfunctions of the harmonic oscillator.

Instead, we apply the powerful general theory of coorbit spaces [15,16]. The key
auxiliary result is the fact that Wilson bases are unconditional bases for coorbit spaces [2].
We modify and simplify the approach from [14] related to the Beurling case and provide
detailed proofs since the more involved Roumieu case contains nontrivial modifications
of arguments given there. As a consequence of our results, we recover the well-known
relation between Gelfand–Shilov spaces and modulation spaces. Furthermore, if that
relation is taken for granted, we give an alternative proof of our main results without an
explicit reference to coorbit spaces.

Since both proofs are essentially based on the exponential decay of elements of Wilson
bases and asymptotic behavior of the STFT, the techniques from the present paper can be
modified to include other time–frequency representations and also more general (for exam-
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ple anisotropic) spaces of test functions and their distribution spaces. Such investigations
are out of the scope of the present paper and will be the subject of our future work.

We end the introduction by recalling basic notation that will be used in the sequel.

Notation

Operators of translations and modulations of a given function f are, respectively,
given by Tx f (·) = f (· − x) and My f (·) = e2πiy· f (·), x, y ∈ Rd. The notation A ↪→ B means
that the topological spaces A and B satisfy A ⊆ B with continuous embeddings. We write
A(θ) . B(θ), θ ∈ Ω, if there is a constant c > 0 such that A(θ) ≤ cB(θ) for all θ ∈ Ω.

The scalar product in L2(Rd) is given by

〈 f , g〉 =
∫
Rd

f (x)g(x)dx,

and ‖ · ‖2 = 〈·, ·〉.
The Fourier transform of an absolutely integrable function f is given by

f̂ (ξ) = F f (ξ) =
∫
Rd

e−2πiξx f (x)dx, ξ ∈ Rd.

It extends uniquely to a unitary operator on L2(Rd).
Let φ ∈ L2(Rd) be fixed. Then the short-time Fourier transform (STFT) Vφ f of f ∈

L2(Rd) with respect to the window function φ is defined by

Vφ f (x, ξ) = F( f φ( · − x))(ξ) = ( f · Txφ)̂ (ξ)

=
∫
Rd

f (y)φ(y− x)e−2πiξy dy = 〈 f , Mξ Txφ〉, x, ξ ∈ Rd. (1)

Let f1, f2, φ1, φ2 ∈ L2(Rd). Then Vφj f j ∈ L2(R2d), j = 1, 2, and it satisfies the orthogo-
nality relation ([Theorem 3.2.1] in [17]):

〈Vφ1 f1, Vφ2 f2〉 = 〈φ2, φ1〉〈 f1, f2〉, (2)

whence ‖Vφ f ‖ = ‖φ‖ · ‖ f ‖. The following fundamental identity of the time–frequency
analysis ([17,18]) is often used:

Vφ f (x, ξ) = e−2πix·ξVφ̂ f̂ (ξ,−x), x, ξ ∈ Rd. (3)

By Σ1(Rd) we denote the Gelfand–Shilov space of smooth functions given by:

f ∈ Σ1(Rd)⇔ ‖ f (x)eh·|x|‖L∞ < ∞ and ‖ f̂ (ω)eh·|ω|‖L∞ < ∞, ∀h > 0, (4)

and its dual space is denoted by Σ′1(Rd).
If φ ∈ Σ1(Rd), then Mξ Txφ ∈ Σ1(Rd), so by (1) it follows that the STFT can be

extended to Σ′1(Rd), and restricted to Σ1(Rd).

2. Preliminaries

In this section, we recall the Wilson bases, weight functions, coorbit spaces and
Gelfand–Shilov type spaces. We also prove some auxiliary results (Lemmas 1 and 2 and
Theorem 2), which will be used in Sections 3 and 4.

2.1. Wilson Bases

Following the idea of K. Wilson [19], Daubechies, Jaffard and Journe constructed a
real-valued function ψ such that

|ψ(x)| ≤ Ce−a|x|, |ψ̂(ξ)| ≤ Ce−b|ξ| x, ξ ∈ R, (5)
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for some constants a, b, C > 0, and obtain an orthonormal basis (ONB) {ψl,n}l∈N0,n∈Z, of
L2(R), where

ψ0,n(x) = Tnψ(x),

ψl,n(x) =
√

2<(MlTn/2ψ(x)), l + n ∈ 2Z, l 6= 0, (6)

ψl,n(x) =
√

2=(MlTn/2ψ(x)), l + n ∈ 2Z+ 1, l 6= 0,

see [1]. From (5), it follows that

|ψl,n(x)| ≤ Ce−a|x|, |ψ̂l,n(ξ)| ≤ Ce−b|ξ|, x, ξ ∈ R, (l, n) ∈ N0 ×Z, (7)

for some constants a, b, C > 0 depending on l and n, and {ψl,n} is therefore called the
Wilson basis of exponential decay.

Equivalently, (6) can be written as ψ0,n = Tnψ and

ψl,n(x) =
{ √

2 cos 2πlxψ(x− n
2 ), l + n ∈ 2Z, l 6= 0,√

2 sin 2πlxψ(x− n
2 ), l + n ∈ 2Z+ 1, l 6= 0.

Moreover, following Gröchenig [17], we may rewrite (6) as

ψ0,n(x) = Tnψ(x), and

ψl,n(x) =
1√
2

Tn/2(Ml + (−1)n+l M−l)ψ(x), (l, n) ∈ N×Z.

To obtain an orthonormal basis of L2(Rd), Tachizawa in [4] considered the d−dimensional
Wilson basis given by the tensor product

ψl,n(x) = ψl1,n1(x1)⊗ ψl2,n2(x2)⊗ · · · ⊗ ψld ,nd
(xd),

x = (x1, x2, . . . , xd) ∈ Rd, l = (l1, l2, . . . , ld) ∈ Nd
0, n = (n1, n2, . . . , nd) ∈ Zd. If {ψlk ,nk

(xk)},
k = 1, . . . , d, are Wilson bases of exponential decay, then we have

|ψl,n(x)| ≤ Ce−a|x|, |ψ̂l,n(ξ)| ≤ Ce−b|ξ| x, ξ ∈ Rd, (l, n) ∈ Nd
0 ×Zd, (8)

for some constants a, b, C > 0, depending on l and n.
The tensor product Wilson bases are 2d−modular, i.e., their elements have 2d peaks in

frequency, which may have undesirable consequences in applications, see [7] for details.
That motivated Bownik et al. [7] to construct a family of orthonormal Wilson bases with
2k−modular covering of the frequency domain with k = 1, . . . , d. The tensor product
Wilson bases turned out to be the special case of their construction.

2.2. Weight Functions

A weight on Rd is a positive function ω ∈ L∞
loc(R

d) such that 1/ω ∈ L∞
loc(R

d). The
weight ω on Rd is called moderate if there is a positive locally bounded function v on Rd

such that
ω(x + y) ≤ Cω(x)v(y), x, y ∈ Rd, (9)

for some constant C ≥ 1. If ω and v are weights on Rd such that (9) holds, then ω is
also called v-moderate. If v can be chosen as a polynomial, then ω is called a weight of
polynomial type. The set of all moderate weights on Rd is denoted by PE(Rd).

The weight v on Rd is called submultiplicative, if it is even and (9) holds for ω = v.
From now on, v always denotes a submultiplicative weight if nothing else is stated. In
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particular, if (9) holds and v is submultiplicative, then it follows by straight-forward
computations that

ω(x)
v(y)

. ω(x + y) . ω(x)v(y),

v(x + y) . v(x)v(y) and v(x) = v(−x), x, y ∈ Rd.

(10)

If ω is a moderate weight on Rd, then there is a submultiplicative weight v on Rd such
that (9) and (10) hold, see [20,21]. Moreover if v is submultiplicative on Rd, then

1 . v(x) . er|x| (11)

for some constant r > 0 (cf. [20]). In particular, if ω is moderate, then

ω(x + y) . ω(x)er|y| and e−r|x| . ω(x) . er|x|, x, y ∈ Rd (12)

for some r > 0.
We will consider only weight functions w satisfying Beurling–Domar’s non-quasiana-

lyticity condition
∞

∑
n=1

n−2 log ω(nx, ny) < ∞, x, y ∈ Rd. (13)

The most important examples of weight functions that satisfy (13) are (1 + |x|)s,
(1 + |y|)s, (1 + |x|+ |y|)s, es(|x|γ+|y|γ), x, y ∈ Rd, s ≥ 0, γ ∈ (0, 1).

If ω ∈ PE(Rd) then the weighted L2(Rd) space, L2
ω(Rd) is given by

f ∈ L2
ω(Rd) ⇔ ‖ f ‖L2

ω
= ‖ f ω‖L2 < ∞. (14)

2.3. Coorbit Spaces

For the purpose of this paper, we focus our attention to subexponential weights of the
form ωh,s(·) = eh|·|1/s

, s > 1, h ≥ 0. Such weights satisfy the condition (13).

Definition 1. Let there be given s > 1, h ≥ 0 and φ ∈ Σ1(Rd) \ 0. The coorbit space CoYh,s(Rd)
is defined by

CoYh,s(Rd) = { f ∈Σ′1(Rd) |

‖ f ‖CoYh,s ≡
∫
Rd
(
∫
Rd
|Vφ f (x, ξ)|2dx)e2h|ξ|1/s

dξ < ∞}. (15)

In other words, f ∈ CoYh,s(Rd) if F(ξ) = ‖Vφ f (·, ξ)‖L2 ∈ L2
ωh,s

(Rd) (cf. (14)).
This terminology (and notation) is justified by the general theory of coorbit spaces

developed in [15,16], see also [22] for a more recent survey.
From the results given there, it follows that CoYh,s(Rd) is a Banach space invariant

under translations, modulations, and complex conjugations. Moreover, CoYh,s(Rd) is
independent on the choice of φ ∈ Σ1(Rd) \ 0, see e.g., [Proposition 3.2 (ii)] in [22].

We will use the following simple results.

Lemma 1. Let s > 1, h ≥ 0, and φ ∈ Σ1(Rd) \ 0. Then f̂ ∈ CoYh,s(Rd) if and only if∫
Rd
(
∫
Rd
|Vφ f (y, η)|2dη)e2h|y|1/s

dy < ∞. (16)



Axioms 2021, 10, 241 5 of 16

Proof. Since different elements φ ∈ Σ1(Rd) \ 0 give rise to the same space CoYh,s(Rd) we
may take the Gaussian φ(x) = φ̂(x) = e−πx2

. By (3) and the change of variables we have:

∫
Rd
(
∫
Rd
|Vφ f̂ (x, ξ)|2dx)e2h|ξ|1/s

dξ

=
∫
Rd
(
∫
Rd
|Vφ̂ f̂ (x, ξ)|2dx)e2h|ξ|1/s

dξ

=
∫
Rd
(
∫
Rd
|Vφ f (−ξ, x)|2dx)e2h|ξ|1/s

dξ

=
∫
Rd
(
∫
Rd
|Vφ f (y, η)|2dη)e2h|y|1/s

dy.

Thus f̂ ∈ CoYh,s(Rd) if and only if (16) holds true.

We write
f ∈ FCoYh,s(Rd) if f̂ ∈ CoYh,s(Rd). (17)

(According to the general theory of coorbit spaces it follows that FCoYh,s(Rd) is a
coorbit space as well.)

Lemma 2. Let there be given s > 1 and h ≥ 0. Then we have

(a) f ∈ CoYh,s(Rd) if and only if f (x)eh|x|1/s ∈ L2(Rd).

(b) f ∈ FCoYh,s(Rd) if and only if f̂ (ξ)eh|ξ|1/s ∈ L2(Rd).

Proof. We again choose φ(x) = e−πx2
in the definition of CoYh,s(Rd) and follow the idea of

the proof of [17] (Proposition 11.3.1). By (1) and the Plancherel theorem, we formally have∫
Rd
|Vφ f (x, ξ)|2dξ =

∫
Rd
| f (t)|2|φ(t− x)|2dt.

Since e2h|x|1/s
is a moderate weight, it follows that

e−2h|u|1/s
e2h|t|1/s

. e2h|t−u|1/s
. e2h|t|1/s

e2h|u|1/s
, t, u ∈ Rd,

cf. (10). Therefore,∫
Rd
| f (t)|2e2h|t|1/s

dt
∫
Rd
|φ(u)|2e−2h|u|1/s

du

.
∫
Rd

∫
Rd
| f (t)|2|φ(u)|2e2h|t−u|1/s

dtdu

=
∫
Rd

∫
Rd
| f (t)|2|φ(t− x)|2e2h|x|1/s

dtdx

.
∫
Rd
| f (t)|2e2h|t|1/s

dt
∫
Rd
|φ(u)|2e2h|u|1/s

du,

and (a) follows.
Part (b) follows from (a) and (17).

From the general theory of coorbit spaces it follows that Wilson bases of exponen-
tial decay are unconditional bases for CoYh,s(Rd) and FCoYh,s(Rd), [2,14]. The precise
statement is the following.

Theorem 1. Let there be given s > 1, h ≥ 0, and the Wilson basis of exponential decay
{ψl,n}l∈Nd

0 ,n∈Zd . Let CoYh,s(Rd) and FCoYh,s(Rd) be given by (15) and (17), respectively. Then
we have:
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(a) The Wilson basis {ψl,n}l∈Nd
0 ,n∈Zd of exponential decay is an unconditional basis for the coorbit

spaces CoYh,s(Rd) and FCoYh,s(Rd).
(b) Every function f ∈ CoYh,s(Rd) has the unique expansion

f = ∑
l∈Nd

0 ,n∈Zd

cl,nψl,n where cl,n = 〈 f , ψl,n〉, l ∈ Nd
0, n ∈ Zd, (18)

and

∑
l∈Nd

0

(
∑

n∈Zd

|cl,n|2
)

e2h|l|1/s
< ∞. (19)

(c) Every function f ∈ FCoYh,s(Rd) has the unique expansion of the form (18) and

∑
l∈Nd

0

(
∑

n∈Zd

|cl,n|2
)

e2h| n2 |
1/s

< ∞. (20)

Proof. The proof is omitted since it follows the arguments given in the proof of Theorem
4 in [2], where polynomial type weights are considered instead, see also [4]. The subex-
ponential type weights considered here are treated in [14], see in particular [Theorem 4.4,
Remark 4.5] in [14].

2.4. Gelfand–Shilov Spaces

Gelfand and Shilov introduced the spaces of type S, for the analysis of solutions of
certain parabolic initial-value problems. A comprehensive study of those spaces, which
are afterward called Gelfand–Shilov spaces, is given in [9]. We focus our attention on the
case when regularity and decay are controlled by the so-called Gevrey sequences Mp = p!s,
when s > 0 and refer to, e.g., [23] for an overview of a more general situation.

Let 0 < s be fixed. Then the (Fourier invariant) Gelfand–Shilov space Ss(Rd) (Σs(Rd))
of Roumieu type (Beurling type) consists of all f ∈ C∞(Rd) such that

‖ f ‖Ss,h ≡ sup
α,β∈Nd

sup
x∈Rd

|xα∂β f (x)|
h|α+β|(α! β!)s

(21)

is finite for some h > 0 (for every h > 0). The semi-norms ‖ · ‖Ss,h induce an inductive
limit topology for the space Ss(Rd), and a projective limit topology for Σs(Rd). Thus, the
former space becomes an LS space, while the latter space is an FS space (Fréchet–Schwartz
space) under these topologies.

The space Ss(Rd) 6= {0} (Σs(Rd) 6= {0}), if and only if s ≥ 1
2 (s > 1

2 ).
The Gelfand–Shilov distribution spaces S ′s(Rd) and Σ′s(Rd) (also known as spaces of

tempered ultradistributions) are the dual spaces of Ss(Rd) and Σs(Rd), respectively.
We have

S1/2(Rd) ↪→ Σs(Rd) ↪→ Ss(Rd) ↪→ Σt(Rd)

↪→ S(Rd) ↪→ S′(Rd) ↪→ Σ′t(Rd)

↪→ S ′s(Rd) ↪→ Σ′s(Rd) ↪→ S ′1/2(R
d),

1
2
< s < t.

(22)

The Fourier transform F extends uniquely to a homeomorphism on S ′s(Rd) and on
Σ′s(Rd). Furthermore, F restricts to a homeomorphism on Ss(Rd) and on Σs(Rd). Similar
facts hold true when the Fourier transform is replaced by a partial Fourier transform.

The Fourier transform invariance of Ss(Rd) and Σs(Rd) follows from the following re-
sult, which also gives a characterization of Gelfand–Shilov spaces in terms of coorbit spaces.
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Theorem 2. Let there be given s > 1. The following conditions are equivalent:

(a) f ∈ Ss(Rd) ( f ∈ Σs(Rd));
(b) There exists h > 0 (for every h > 0)

sup
x∈Rd
| f (x)|eh|x|1/s

< ∞ and sup
ξ∈Rd
| f̂ (ξ)|eh|ξ|1/s

< ∞; (23)

(c) There exists h > 0 (for every h > 0) such that

f ∈ CoYh,s(Rd) ∩ FCoYh,s(Rd).

Proof. (a)⇔ (b) is well known and holds for all s > 0, [24,25].
(b)⇔ (c). We first consider the Beurling case. By the d−dimensional version of [14]

(Theorem 2.2), it follows that the sup-norms in (23) can be replaced by L2
ωk,s

–norms, i.e., for
every k > 0, we have∫

Rd
| f (x)|2e2k|x|1/s

dx < ∞ and
∫
Rd
| f̂ (ξ)|2e2k|ξ|1/s

dξ < ∞. (24)

This, together with Lemma 2 gives

f ∈ Σs(Rd) ⇔ f ∈ CoYh,s(Rd) ∩ FCoYh,s(Rd)

for every h > 0.
For the Roumieu case, by slight modifications of the proof of [Theorem 2.2] in [14], it

also follows that (23) holds for some h > 0 if and only if (24) holds for some k > 0. Again,
Lemma 2 implies that this is equivalent with f ∈ CoYh,s(Rd)∩FCoYh,s(Rd) for some h > 0,
and the proof is finished.

Note that, since the equivalence between a) and b) in Theorem 2 holds even if s = 1, if
ψ satisfies (5), then the Wilson basis elements ψl,n, l ∈ Nd

0, n ∈ Zd, given by (6) belongs to
S1(Rd), cf. (7).

The restriction s > 1 when proving b)⇔ c) in Theorem 2 comes from Definition 1. In
fact, in the general theory of coorbit spaces, as presented in [15,16], an important role is
played by BUPUs (bounded uniform partitions of unity) consisting of compactly supported
smooth functions. In such setting, coorbit spaces consist of non-quasianalytic functions.

From the definitions of CoYh,s(Rd), FCoYh,s(Rd) and Theorem 2 (c) it follows that the
Gelfand–Shilov spaces are essentially characterized by the decay estimates of the short-
time Fourier transform. Note that the estimates given in Proposition 1 below employ the
sup-norm (L∞-norm) whereas in Theorem 2 (c) the L2-norm related to CoYh,s(Rd) and
FCoYh,s(Rd) is considered instead. (In fact, any Lp−norm (1 ≤ p ≤ ∞) can be used,
see [13].)

Proposition 1. Let s ≥ 1
2 (s > 1

2 ), φ ∈ Ss(Rd) \ 0 (φ ∈ Σs(Rd) \ 0) and let f be a Gelfand–
Shilov distribution on Rd. Then the following is true:

(a) f ∈ Ss(Rd) ( f ∈ Σs(Rd)), if and only if

|Vφ f (x, ξ)| . e−r(|x| 1s +|ξ| 1s ), x, ξ ∈ Rd, (25)

for some r > 0 (for every r > 0).
(b) f ∈ S ′s(Rd) ( f ∈ Σ′s(Rd)), if and only if

|Vφ f (x, ξ)| . er(|x| 1s +|ξ| 1σ ), x, ξ ∈ Rd, (26)

for every r > 0 (for some r > 0).
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We omit the proof since the first part follows from [24] (Theorem 2.7) and the second
part from [11] (Proposition 2.2). See also [26] for related results.

From these investigations and by [21] (Theorem 2.3) it follows that the definition
of the map ( f , φ) 7→ Vφ f from L2(Rd) × L2(Rd) to L2(R2d) is uniquely extendable to a
continuous map from S ′s(Rd)× S ′s(Rd) to S ′s(R2d), and restricts to a continuous map from
Ss(Rd)× Ss(Rd) to Ss(R2d). The same conclusion holds with Σs in place of Ss, at each
place. Therefore, Definition 1 can be appropriately modified to include ultradistributions
f ∈ S ′s(Rd) (or f ∈ Σ′s(Rd)), and we will use such extension from now on.

3. Main Results

In this section, we discuss Wilson base expansions in the context of Gelfand–Shilov
spaces and their dual spaces of tempered ultradistributions.

Theorem 3. Let s > 1 and let there be given a Wilson basis of exponential decay {ψl,n}l∈Nd
0 ,n∈Zd .

(a) If f ∈ Ss(Rd) ( f ∈ Σs(Rd)) then

f = ∑
l∈Nd

0

∑
n∈Zd

〈 f , ψl,n〉ψl,n, (27)

with the unconditional convergence in Ss(Rd) (in Σs(Rd)) and

∑
l∈Nd

0 ,n∈Zd

|cl,n|2e2k(|n/2|+|l|)1/s
< ∞, for some (for all) k ≥ 0,

where cl,n = 〈 f , ψl,n〉, l ∈ Nd
0, n ∈ Zd.

(b) Conversely, if (cl,n)l∈Nd
0 ,n∈Zd is a (double) sequence such that

∑
l∈Nd

0 ,n∈Zd

|cl,n|2e2k(|n/2|+|l|)1/s
< ∞, (28)

for some (for all) k ≥ 0, then there exists a function f ∈ Ss(Rd) ( f ∈ Σs(Rd)) such that (27)
holds with cl,n = 〈 f , ψl,n〉, l ∈ Nd

0, n ∈ Zd.

Proof. (a) We prove the Roumieu case, since the Beurling case is given in [14] (Theorem
5.1 (a)). Let f ∈ Ss(Rd). By Theorem 2 (c), we have that

f ∈ CoYh,s(Rd) ∩ FCoYh,s(Rd)

for some h > 0. Then, from Theorem 1 it follows that (19) and (20) hold for that constant
h > 0. Therefore,

∑
l∈Nd

0 ,n∈Zd

|cl,n|2e2 h
2 (|n/2|+|l|)1/s

≤ ∑
l∈Nd

0 ,n∈Zd

|cl,n|e2 h
2 |n/2|1/s · |cl,n|e2 h

2 |l|
1/s

≤ ( ∑
l∈Nd

0 ,n∈Zd

|cl,n|2e2h|n/2|1/s
)1/2 · ( ∑

l∈Nd
0 ,n∈Zd

|cl,n|2e2h|l|1/s
)1/2 < ∞,

so that
∑

l∈Nd
0 ,n∈Zd

|cl,n|2e2k(|n/2|+|l|)1/s
< ∞

for k = h/2. The unconditional convergence follows from Theorem 1 (a).
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To prove (b), we note that (28) obviously implies

∑
l∈Nd

0 ,n∈Zd

|cl,n|2e2k|n/2|1/s
< ∞,

and
∑

l∈Nd
0 ,n∈Zd

|cl,n|2e2k|l|1/s
< ∞.

This, together with Theorem 1 gives

f = ∑
l∈Nd

0

∑
n∈Zd

cl,nψl,n ∈ CoYh,s(Rd) ∩ FCoYh,s(Rd),

and since the Wilson basis is an ONB we have that cl,n = 〈 f , ψl,n〉, l ∈ Nd
0, n ∈ Zd. Now, by

Theorem 2, we conclude that f ∈ Ss(Rd), and the proof is finished.

Theorem 4. Let s > 1 and let there be given a Wilson basis of exponential decay {ψl,n}l∈Nd
0 ,n∈Zd .

(a) Every f ∈ S ′s(Rd) ( f ∈ Σ′s(Rd)) has a unique expansion

f = ∑
l∈Nd

0 ,n∈Zd

〈 f , ψl,n〉ψl,n

in S ′s(Rd) (in Σ′s(Rd)) and

∑
l∈Nd

0 ,n∈Zd

|cl,n|2e−2h(|n/2|+|l|)1/s
< ∞, (29)

for every (for some) h ≥ 0, where cl,n = 〈 f , ψl,n〉, l ∈ Nd
0, n ∈ Zd.

(b) Conversely, if (29) holds for some sequence (cl,n)l∈Nd
0 ,n∈Zd and for every (for some) h ≥ 0,

then there exists f ∈ S ′s(Rd) ( f ∈ Σ′s(Rd)) such that

f = ∑
l∈Nd

0 ,n∈Zd

cl,nψl,n

in S ′s(Rd) (in Σ′s(Rd)).

For the proof of Theorem 4, we need a simple lemma on divergent series. We note that
a similar argument is used in the proof of [27] (Theorem 9.6-1). To be self-contained, we
provide the proof in Appendix A.

Lemma 3. Let (an)n∈N0 be a zero convergent sequence of non-negative numbers such that

∑
n∈N0

an = +∞.

Then there exists an increasing sequence of integers ml , l ∈ N, such that

1 <
ml−1

∑
n=ml−1

an < 3.

Proof. The Beurling case can be proved by making appropriate changes if the proof of
[27] (Theorem 9.6-1), cf. [28]. However, since the proof for the Roumieu case contains
nontrivial modifications of Zemanian’s proof, we provide it here. We also consider d = 1
for simplicity.
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(b) Let (29) hold for some h ≥ 0, and let f = ∑
l∈N0,n∈Z

cl,nψl,n.

Let φ ∈ Ss(R). Then we have

|〈 f , φ〉| = |〈 ∑
l∈N0,n∈Z

cl,nψl,n, φ〉|

≤ |〈 ∑
l∈N0,n∈Z

cl,ne−h(| n2 |+|l|)
1/s

eh(| n2 |+|l|)
1/s

ψl,n, φ〉|

≤ ∑
l∈N0,n∈Z

|cl,n|e−h(| n2 |+|l|)
1/s

eh(| n2 |+|l|)
1/s |〈ψl,n, φ〉|

≤
(

∑
l∈N0,n∈Z

|cl,n|2e−2h(| n2 |+|l|)
1/s) 1

2
(

∑
l∈N0,n∈Z

|〈ψl,n, φ〉|2e2h(| n2 |+|l|)
1/s) 1

2 .

Since φ ∈ Ss(R), by Theorem 3 (a) it follows that we can choose h ≥ 0 such that

∑
l∈N0,n∈Z

|〈ψl,n, φ〉|2e2h(| n2 |+|l|)
1/s

< ∞,

and for such choice of h ≥ 0, by (29) it follows that

∑
l∈N0,n∈Z

|cl,n|2e−2h(| n2 |+|l|)
1/s

< ∞,

and we conclude that |〈 f , φ〉| < ∞, so that f ∈ S ′s(R), and b) is proved.
Before we proceed to prove a) we note that (29) implies that |cl,n| ≤ Ceh(| n2 |+|l|)

1/s
for

every h ≥ 0, and all l ∈ N0, n ∈ Z, that is, the (double indexed) sequence
(|cl,n|e−h(| n2 |+|l|)

1/s
)l∈N0,n∈Z is bounded for every h ≥ 0.

(a) Let f ∈ S ′s(R) and consider ∑
l∈N0,n∈Z

cl,nψl,n with cl,n = 〈 f , ψl,n〉, l ∈ N0, n ∈ Z. If

φ ∈ Ss(R) then by (27) we have

|〈 ∑
l∈N0,n∈Z

cl,nψl,n, φ〉| = | ∑
l∈N0,n∈Z

cl,n〈ψl,n, φ〉|

= | ∑
l∈N0,n∈Z

〈 f , 〈φ, ψl,n, 〉ψl,n〉| = |〈 f , ∑
l∈N0,n∈Z

〈φ, ψl,n, 〉ψl,n〉|

= |〈 f , φ〉| < ∞,

so that the expansion is unique and

〈 ∑
l∈N0,n∈Z

〈 f , ψl,n〉ψl,n, ∑
k∈N0,m∈Z

〈φ, ψk,m〉ψk,m〉 = ∑
l∈N0,n∈Z

al,ncl,n < ∞,

where al,n = 〈φ, ψl,n〉, l ∈ N0, n ∈ Z.
Next we prove that the sequence (e−k(| n2 |+|l|)

1/s
cl,n)l∈N0,n∈Z is bounded for every k > 0.

We give the proof by contradiction: suppose that there exists k0 > 0 such that the se-
quence (e−k0(| n2 |+|l|)

1/s
cl,n)l∈N0,n∈Z is unbounded. Then there exists a sequence of increasing

(by components) indices (lm, nm)m∈N such that

e−k0(|lm |+| nm
2 |)

1/s |clm ,nm | ≥ m m ∈ N.

Next we consider the sequence (al,n) with the following properties
(a) al,ncl,n = |al,ncl,n|,

(b) |alm ,nm | = e−k0(|lm |+| nm
2 |)

1/s · 1
m

,

(c) al,n = 0 when (l, n) 6= (lm, nm).
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This gives

∑
l∈N0,n∈Z

|ek0(| n2 |+|l|)
1/s

al,n|2

= ∑
m∈N

e2k0(| nm
2 |+|lm |)

1/s
e−2k0(|lm |+| nm

2 |)
1/s · 1

m2 = ∑
m∈N

1
m2 < ∞.

By Theorem 3 (b) it follows that φ = ∑l∈N0,n∈Z al,nψl,n ∈ Ss(R), so that
∑l∈N0,n∈Z al,ncl,n < ∞. On the other hand,

∑
l∈N0,n∈Z

al,ncl,n = ∑
l∈N0,n∈Z

|al,ncl,n|

= ∑
m∈N0

e−k0(|lm |+| nm
2 |)

1/s · 1
m
|cl,n| ≥ ∑

m∈N0

1 = ∞,

which gives the contradiction.
Thus, we conclude that the sequence (e−k(| n2 |+|l|)

1/s
cl,n)l∈N0,n∈Z is bounded for every

k > 0.
Finally, we prove that (29) holds for every h > 0. Again we give the proof by

contradiction. Suppose that there exists h0 > 0 such that

∑
l∈N0,n∈Z

bl,n = ∑
l∈N0,n∈Z

|cl,n|2e−2h0(| n2 |+|l|)
1/s

= ∞. (30)

Since (e−h(| n2 |+|l|)
1/s

cl,n)l∈N0,n∈Z is bounded for every h > 0, then it follows that (bl,n)
is a zero convergent sequence (e.g., by taking h = h0). By Lemma 3 it follows that there is
an increasing sequence of indices (lm, nm)m∈N such that

1 <
lm−1

∑
j=lm−1

nm−1

∑
k=nm−1

|cj,k|2e−2h0(| k2 |+|j|)
1/s

< 3. (31)

By choosing

aj,k = cj,ke−2h0(| k2 |+|j|)
1/s 1

m
, j = lm−1, . . . , lm − 1, k = nm−1, . . . , nm − 1,

we obtain

lm−1

∑
j=lm−1

nm−1

∑
k=nm−1

|aj,k|2e2h0(| k2 |+|j|)
1/s

=
lm−1

∑
j=lm−1

nm−1

∑
k=nm−1

|cj,k|2e−2h0(| k2 |+|j|)
1/s 1

m2 <
3

m2 ,

for every m ∈ N, where we used (31). Thus,

∑
l∈N0,n∈Z

|al,n|2e2h0(| n2 |+|l|)
1/s

= ∑
j<l0

∑
k<n0

|al,n|2e2h0(| n2 |+|l|)
1/s

+ ∑
j≥l0

∑
k≥n0

|al,n|2e2h0(| n2 |+|l|)
1/s

< C + ∑
m∈N

3
m2 < ∞.
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By Theorem 3 (b) it follows that ∑l∈N0,n∈Z al,nψl,n ∈ Ss(R), and therefore

∑
l∈N0,n∈Z

al,ncl,n < ∞. (32)

However, by using the left hand side inequality in (31) we obtain

lm−1

∑
j=lm−1

nm−1

∑
k=nm−1

|aj,kcj,k| =
lm−1

∑
j=lm−1

nm−1

∑
k=nm−1

|cj,k|2e−2h0(| k2 |+|j|)
1/s 1

m
≥ 1

m
,

for each m ∈ N, so that

∑
l∈N0,n∈Z

al,ncl,n = ∑
l∈N0,n∈Z

|al,ncl,n| ≥ ∑
l≥l0,n≥n0

|al,ncl,n| ≥ ∑
m∈N

1
m

= ∞.

This is a contradiction with (32). We conclude that the assumption (30) cannot hold.
Therefore

∑
l∈N0,n∈Z

|cl,n|2e−2h(| n2 |+|l|)
1/s

< ∞

for every h > 0, which completes the proof.

4. Alternative Proof via Modulation Spaces

Modulation spaces, originally introduced by Feichtinger in [29], are recognized as
an appropriate family of spaces when dealing with problems of time-frequency analysis,
see [17,18,29,30], to mention just a few references. A broader family of modulation spaces,
including quasi-Banach spaces when the Lebesgue parameters p, q belong to (0, 1) is
studied in, e.g., [31].

Let there be given φ ∈ Σ1(Rd) \ 0, p, q ∈ [1, ∞] and ω ∈ PE(R2d). Then the modulation
space Mp,q

ω (Rd) consists of all Gelfand–Shilov distributions f ∈ Σ′1(Rd) such that

‖ f ‖Mp,q
ω
≡
( ∫ ( ∫

|Vφ f (x, ξ)ω(x, ξ)|p dx
)q/p

dξ
)1/q

< ∞ (33)

(with the obvious changes if p = ∞ and/or q = ∞). If p = q we simply write Mp
ω instead

of Mp,p
ω , and if ω = 1, then we set Mp,q = Mp,q

ω and Mp = Mp
ω.

If ω is v-moderate, then the spaces Mp,q
ω are (quasi-)Banach spaces and different choices

of φ ∈ M1
v \ 0 give rise to equivalent (quasi-)norms in (33), and so Mp,q

ω is independent on
the choice of φ ∈ M1

v [31] (Proposition 2.1).

For p, q ∈ [1, ∞) and ω ∈ PE(R2d) the dual of Mp,q
ω (Rd) is Mp′ ,q′

1/ω (R
d), where 1

p + 1
p′

= 1
q +

1
q′ = 1.

For a given weight ω ∈ PE(R2d), we put ω̃ for the (double) sequence ω̃(n, l) = ω( n
2 , l),

(n, l) ∈ Zd ×Nd
0. By lp,q

ω̃ , p, q ∈ [1, ∞], we denote the space of sequences (al,n)(l,n)∈Nd
0×Zd

for which the norm

‖al,n‖lp,q
ω̃

=
(

∑
l∈Nd

0

( ∑
n∈Zd

|al,n|pω̃(n, l)p)q/p)1/p

is finite.
The next theorem is analogous to Theorem 1. It follows from [17] (Chapter 12.3), so

we omit the proof.
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Theorem 5. Let p, q ∈ [1, ∞], ω ∈ PE(R2d), and let there be given a Wilson basis of exponential
decay {ψl,n}l∈N0,n∈Z. Then the Banach spaces Mp,q

ω (Rd) and lp,q
ω̃ are isomorphic. An explicit

isomorphism is provided by the coefficient operator Cψ : Mp,q
ω (Rd)→ lp,q

ω̃ given by

Cψ f = (〈 f , ψl,n〉)(l,n)∈Nd
0×Zd . (34)

By Theorem 5 it follows that

f = ∑
l∈Nd

0 ,n∈Zd

〈 f , ψl,n〉ψl,n

with the unconditional convergence in Mp,q
ω (Rd) if 1 ≤ p, q < ∞, and weak∗ convergence

in M∞
1/v(R

d) otherwise.
Gelfand–Shilov spaces and their dual spaces can be described as projective or inductive

limits of modulation spaces as follows.

Theorem 6. Let 1 ≤ p, q ≤ ∞, s > 1/2, and set

ωh(x, ω) ≡ eh(|x|1/s+|ξ|1/s), h > 0, x, ξ ∈ Rd. (35)

Then
Σs(Rd) =

⋂
h>0

Mp,q
ωh (R

d), (Σs)
′(Rd) =

⋃
h>0

Mp,q
1/ωh

(Rd),

Ss(Rd) =
⋃

h>0

Mp,q
ωh (R

d), (Ss)
′(Rd) =

⋂
h>0

Mp,q
1/ωh

(Rd).

Proof. The proof is well known, see e.g., [21] (Theorem 3.9) and [32].
However, we may give a simple independent proof based on Theorem 2 when p =

q = 2. Namely, if we put ω1(x) = eh|x|1/s
and ω2(ξ) = eh|ξ|1/s

, x, ξ ∈ Rd, s > 1, and h ≥ 0,
then by definition we have

M2
1⊗ω2

(Rd) = CoYh,s(Rd) and M2
ω1⊗1(Rd) = FCoYh,s(Rd),

see also [14], and the claim follows directly from Theorem 2. The same conclusion for
general 1 ≤ p, q ≤ ∞ holds from embedding properties of modulation spaces and certain
equivalence properties of norms for Lebesgue spaces. We omit details, and refer the reader
to, e.g., [32].

As noted by Gröchenig, the isomorphism in Theorem 5 can be formulated in a different
mathematical language. For example, in combination with Theorem 6 we conclude that
there exists a tame isomorphism between FS spaces Σs(Rd) and ∩h>0lp,q

ω̃h
and between LS

spaces Ss(Rd) and ∪h>0lp,q
ω̃h

. We refer to [12] for the precise definition of tame isomorphisms
and related considerations in the context of Hermite functions expansions instead of
Wilson bases.

Now we can present an alternative proof of our main results.

Proof. (Alternative proof of Theorems 3 and 4) We give the proof for the Roumieu case Ss(Rd)
and (Ss)′(Rd). The Beurling case can be proved by using similar arguments.

Let f ∈ Ss(Rd). By Theorem 6 it follows that there exists h > 0 such that f ∈ M2
ωh
(Rd),

where ωh is given by (35). Now, Theorem 5 implies that

f = ∑
l∈Nd

0 ,n∈Zd

cl,nψl,n, where cl,n = 〈 f , ψl,n〉,
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and cl,n ∈ l2,2
ω̃h

, i.e.,

∑
l∈Nd

0 ,n∈Zd

|cl,n|2e2h(|n/2|+|l|)1/s
< ∞, for some h ≥ 0,

which proves Theorem 3 (a).
The converse part follows from the fact that under the assumption of Theorem 3 (b)

we have
∑

l∈Nd
0 ,n∈Zd

cl,nψl,n ∈ Mp,q
ωh

for some h > 0. Therefore, by Theorem 6 it follows that the sum represents a unique
element f ∈ Ss(Rd), and since the Wilson basis is an ONB it follows that cl,n = 〈 f , ψl,n〉,
and we are done.

Theorem 4 follows by duality.

5. Discussion

The proof of Theorems 3 and 4 given in Section 4 does not use any reference to the
coorbit space theory employed in Section 3. It essentially used representation of modulation
spaces by means of Wilson bases, which follows from the relation between Wilson bases
and Gabor frames, cf. [17]. Another ingredient is Theorem 6, which can be proved without
the coorbit space theory, see [21] (Theorem 3.9).

On the other hand, the proof presented in Section 3 is based on direct estimates, and
does not rely on other results, apart from checking whether the construction of Wilson
bases fits well to the general theory of coorbit spaces, which is done in [2,14].

We note that in the background of both proofs are decay properties of the STFT and
the exponential decay property of the considered Wilson bases. Therefore, the techniques
from the present paper can be modified to include other time–frequency representations
and also more general (for example anisotropic) Gelfand–Shilov type spaces, cf. [23].

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The work is partially supported by projects “Localization in Phase space: theoretical,
numerical and practical aspects” No. 19.032/961–103/19 MNRVOID Republic of Srpska, TIFREFUS
Project DS 15, and MPNTR of Serbia Grant No. 451–03–9/2021–14/200125. We would like to thank
the referees for their recommendations, which helped to improve the quality of the paper.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the
writing of the manuscript or in the decision to publish the results.

Appendix A

Since ∑∞
n=1 an = ∞, by a small abuse of notation, we consider the subsequence so that

an > 0, ∀n ∈ N. Consider the partial sum sm0 = ∑m0
n=1 an = M, where m0 is chosen such

that an < 1 for all n ≥ m0 − 1. Then we have:

M− 1 ≤ sm0−1 < M ≤ sm0 < M + 1,

sm0 − sm0−1 = am0 < 1 and sm0−1 − sm0−2 = am0−1 < 1.

Moreover, sm0+1 < M + 2.
Now choose m1 ∈ N as the minimal index such that

sm1 ≥ M + 3.
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Thus, we have M + 3 > sm1−1 ≥ M + 2, and m1 − 1 > m0 Moreover, sm1 = sm1−1 +
am1 < M + 4.

Therefore, we have the following situation:

M ≤ sm0 < M + 1 < M + 2 ≤ sm1−1 < M + 3 ≤ sm1 < M + 4,

wherefrom
1 < sm1−1 − sm0 < 3.

We continue as follows: choose m2 ∈ N such that m2 − 1 > m1 and

M + 3 ≤ sm1 < M + 4 < M + 5 ≤ sm2−1 < M + 6 ≤ sm2 < M + 7.

This gives 1 < sm2−1 − sm1 < 3.
By choosing ml , l ≥ 3, in an analogous way, we obtain an increasing sequence of

integers such that

1 <
ml−1

∑
n=ml−1

an < 3,

which proves the claim.
The same arguments show that for any given ε > 0 there exists an increasing sequence

of integers ml , l ∈ N, such that
ε

3
<

ml−1

∑
n=ml−1

an < ε.
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